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Foreword

The Norwegian government established the Abel Prize in mathematics in 2002, and
the first prize was awarded in 2003. In addition to honoring the great Norwegian
mathematician Niels Henrik Abel by awarding an international prize for outstanding
scientific work in the field of mathematics, the prize shall contribute toward raising
the status of mathematics in society and stimulate the interest for science among
school children and students. In keeping with this objective, the Niels Henrik Abel
Board has decided to finance annual Abel Symposia. The topic of the symposia
may be selected broadly in the area of pure and applied mathematics. The symposia
should be at the highest international level and serve to build bridges between
the national and international research communities. The Norwegian Mathematical
Society is responsible for the events. It has also been decided that the contributions
from these symposia should be presented in a series of proceedings, and Springer
Verlag has enthusiastically agreed to publish the series. The Niels Henrik Abel
Board is confident that the series will be a valuable contribution to the mathematical
literature.

Chair of the Niels Henrik Abel Board Kristian Ranestad



Preface

In recent years we have witnessed a remarkable convergence between individual
mathematical disciplines that approach deterministic and stochastic dynamical
systems from mathematical analysis, computational mathematics, and control
theoretical perspectives. One of the prime examples is the theory of rough paths,
pioneered by Terry Lyons (Oxford). Massimiliano Gubinelli (Paris/Bonn) subse-
quently developed the notions of controlled and branched rough paths. This line
of work culminated in the 2014 Fields Medal being awarded to Martin Hairer
(Warwick/London) for his far-reaching work on regularity structures, which led him
to breakthrough discoveries in the theory of stochastic partial differential equations.
Rough paths theory has strong connections to the analysis of geometric inte-
gration algorithms for deterministic flows, where the need to understand structure
preservation has led to the development of new analytical tools based on modern
algebra and combinatorics. Recent developments in these fields provide a common
mathematical framework for attacking many different problems related to differen-
tial geometry, analysis and algorithms for stochastic and deterministic dynamics.
In the Abel Symposium 2016 (August 16-19), leading researchers in the fields
of deterministic and stochastic differential equations, numerical analysis, control
theory, algebra, and random processes met at the picturesque Barony in Rosendal
near Bergen for a lively exchange of research ideas and presentation of the current
state of the art in these fields. The current Abel Symposia volume may serve as a
point of departure for exploring these related but diverse fields of research, as well as
an indicator of important current and future developments in modern mathematics.

Trondheim, Norway Elena Celledoni
Oslo, Norway Giulia Di Nunno
Trondheim, Norway Kurusch Ebrahimi-Fard

Bergen, Norway Hans Zanna Munthe-Kaas
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Facilitated Exclusion Process )

Check for
updates

Jinho Baik, Guillaume Barraquand, Ivan Corwin, and Toufic Suidan

Abstract We study the Facilitated TASEP, an interacting particle system on the
one dimensional integer lattice. We prove that starting from step initial condition,
the position of the rightmost particle has Tracy Widom GSE statistics on a cube root
time scale, while the statistics in the bulk of the rarefaction fan are GUE. This uses a
mapping with last-passage percolation in a half-quadrant which is exactly solvable
through Pfaffian Schur processes. Our results further probe the question of how
first particles fluctuate for exclusion processes with downward jump discontinuities
in their limiting density profiles. Through the Facilitated TASEP and a previously
studied MADM exclusion process we deduce that cube-root time fluctuations seem
to be a common feature of such systems. However, the statistics which arise are
shown to be model dependent (here they are GSE, whereas for the MADM exclusion
process they are GUE). We also discuss a two-dimensional crossover between
GUE, GOE and GSE distribution by studying the multipoint distribution of the first
particles when the rate of the first one varies. In terms of half-space last passage
percolation, this corresponds to last passage times close to the boundary when the
size of the boundary weights is simultaneously scaled close to the critical point.

1 Introduction

Exclusion processes on Z are expected, under mild hypotheses, to belong to the
KPZ universality class [6, 11]. As a consequence, one expects that if particles start
densely packed from the negative integers — the step initial condition — the positions
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of particles in the bulk of the rarefaction fan will fluctuate on a cube-root time scale
with GUE Tracy-Widom statistics in the large time limit. The motivation for this
paper is to consider the fluctuations of the location of the rightmost particle and
probe its universality over different exclusion processes.

In the totally asymmetric simple exclusion process (TASEP) the first particle
jumps by 1 after an exponentially distributed waiting time of mean 1, independently
of everything else. Hence its location satisfies a classical Central Limit Theorem
when time goes to infinity (i.e. square-root time fluctuation with limiting Gaussian
statistics). This is true for any totally asymmetric exclusion process starting from
step initial condition. However, in the asymmetric simple exclusion process (ASEP),
the trajectory of the first particle is affected by the behaviour of the next particles.
This results in a different limit theorem. Tracy and Widom showed [19, Theorem 2]
that the fluctuations still occur on the /2 scale, but the limiting distribution is
different and depends on the strength of the asymmetry (see also [13] where the
same distribution arises for the first particle’s position in a certain zero-range
process). In [3], another partially asymmetric process called the MADM exclusion
process was studied. The first particle there fluctuates on a 7'/3 scale with Tracy-
Widom GUE limit distribution, as if it was in the bulk of the rarefaction fan. An
explanation for why the situation is so contrasted with ASEP (and other model
where the first particle has the same limit behaviour) is that the MADM, when
started from step initial condition, develops a downward jump discontinuity of its
density profile around the first particle (see Figure 3 in [3]).

In this paper, we test the universality of the fluctuations of the first particle in the
presence of a jump discontinuity — does the #!/3 scale and GUE statistics survive
over other models? We solve this question for the Facilitated TASEP. Our results
show that the GUE distribution does not seem to survive in general, though we do
still see the #!/3 scale.

1.1 The Facilitated TASEP

The Facilitated Totally Asymmetric Simple Exclusion Process (abbreviated
FTASEP in the following) was introduced in [4] and further studied in [9, 10].
This is an interacting particle system on Z, satisfying the exclusion rule, which
means that each site is occupied by at most 1 particle. A particle sitting at site x
jumps to the right by 1 after an exponentially distributed waiting time of mean
1, provided that the target site (i.e. x + 1) is empty and that the site x — 1 is
occupied. Informally, the dynamics are very similar with TASEP, with the only
modification being particles need to wait to have a left neighbour (facilitation)
before moving (See Fig. 1). It was introduced as a simplistic model for motion in
glasses: particles move faster in less crowded areas (modelled by the exclusion
rule), but need a stimulus to move (modelled by the facilitation rule). We focus here
on the step initial condition: at time 0, the particles occupy all negative sites, and
the non-negative sites are empty.
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Fig. 1 The particles in black jump by 1 at rate 1 whereas particles in gray cannot

Since the dynamics preserve the order between particles, we can describe the
configuration of the system by their ordered positions

<Xy < X1 < OQ.

Let us collect some (physics) results from [9] which studies the hydrodynamic
behaviour — but not the fluctuations. Assume that the system is at equilibrium
with an average density of particles p. A family of translation invariant stationary
measures indexed by the average density — conjecturally unique — is described in the
end of Sect. 3.1. Then the flux, i.e. the average number of particles crossing a given
bond per unit of time, is given by (see [9, Eq. (3)] and (8) in the present paper)

I=pCp -1
) .

J(p) = ey

This is only valid when p > 1/2. When p < 1/2, [9] argues that the system
eventually reaches a static state that consists of immobile single-particle clusters.
One expects that the limiting density profile, informally given by

p(x,t) == lim IP’(EI particle at site xT at time tT),
T— 00

exists and is a weak solution subject to the entropy condition of the conservation
equation

0 0
g, P D+ o Jlpx, 1) =0. 2

Solving this equation subject to the initial condition p(x, ) = Lo yields the
density profile (depicted in Fig. 2)

1 ifx < —1,
Vi >0, p(xt, 1) = ﬂlﬂ if —1<x<1/4
0 ifx > 1/4.

See also [9, Eq.(5)]. It is clear that there must be a jump discontinuity in the
macroscopic density profile since in FTASEP particles can travel only in regions
where the density is larger than 1/2.
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1/4

Fig. 2 Limiting density profile, i.e. graph of the function x — p(x, 1)

In general, the property of the flux which is responsible for the jump discontinuity
is the fact that j(p)/p, i.e. the drift of a tagged particle, is not decreasing as a
function of p. The density around the first particle will be precisely the value pg that
maximizes the drift. Let us explain why. On one hand, the characteristics of PDEs
such as (2) are straight lines ([7, §3.3.1.]), which means in our case that for any
density p occurring in the rarefaction fan in the limit profile, there exists a constant
7 (p) such that

p(m(p)t,t) = p. A3)

m(p) is the macroscopic position of particles around which the density is p.
Differentiating (3) with respect to ¢ and using the conservation equation (2) yields
w(p) = afé;p ) If we call po the density around the first particle, then the macroscopic
position of the first particle should be 7 (pp). On the other hand, the first particle has

a constant drift, which is' j(00)/po0. Combining these observations yields

dj () _ o) o dje)

.€. =0.
o=y Po do P lp=p

This implies that a discontinuity of the density profile at the first particle can occur
only if the drift is not strictly decreasing as a function of p, and it suggests that py is
indeed the maximizer of the drift (see also [3, Section 4] for a different justification).
In the example of the FTASEP, the maximum of

J(p) _ (I-=pQ2p—1)
P p?

! Assuming local equilibrium — which is not expected to be satisfied around the first particle but
close to it— the drift is given by j(p)/p when the density is p.
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is such that pg = 2/3 and w(pg) = 1/4. In particular, this means that x () /¢ should
converge to 1/4 when ¢ goes to infinity.

The fluctuations of x1(¢) around ¢ /4 are not GUE distributed as for the MADM
exclusion process [3, Theorem 1.3], but rather follow the GSE Tracy-Widom
distribution in the large time limit.

Theorem 1 For FTASEP with step initial data,
) o S B
2_4/3t1/3 Z X PR GSE(_-x)s

where the GSE Tracy-Widom distribution function FGsg is defined in Definition 7.

In the bulk of the rarefaction fan, however, the locations of particles fluctuate as
the KPZ scaling theory predicts [12, 18].

Theorem 2 For FTASEP with step initial data, and for any r € (0, 1),

1—6r+r?
Xy (1) — 70T

- ctl/3

> x | —— Fgue(—x),
11—

_ =43 (1413
where ¢ = 2 (A_r)i/3

defined in Sect. 4.

and the GUE Tracy-Widom distribution function FGuE is

We now consider a slightly more general process depending on a parameter o >
0 that we denote FTASEP(«), where the first particle jumps at rate « instead of 1. We
already know the nature of fluctuations of x1(¢#) when o = 1. It is natural to expect
that fluctuations are still GSE Tracy-Widom distributed on the #!/3 scale for o > 1.
However, if « is very small, one expects that the first particle jumps according to a
Poisson point process with intensity o and thus xj (¢) has Gaussian fluctuations on
the 7172 scale. It turns out that the threshold between these regimes happen when
a=1/2.

Theorem 3 Let x(t) = {x,(t)},>1 be the particles positions in the FTASEP(«)
started from step initial condition, when the first particle jumps at rate a. Then,

1. Fora > 1/2,
x1(t) —
P (24/3t1/3 2 X t—)OO; FGSE(_-X)-
2. Fora =1/2,

p0 4 F
2—4/3/1/3 Z X m GOE(—x).
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3. Fora < 1/2,
t) —ta(l —
P(m() a(l - 2) >x) —
Gt /2 t—00
where G (x) is the standard Gaussian distribution function and ¢ = \/;(712—0‘05)'

It is also possible to characterize the joint distribution of several particles. An
interesting case arises when we scale « close to the critical point and we look at
particles indexed by n¢>/3 for different values of 1 > 0. More precisely, we scale

142483@ 13
= 2 y

where @ € R is a free parameter and for any n > 0 consider the rescaled particle
position at time ¢

L X1/3,23 (1) — 2 + np(;121/3t2/3 — 2243
where pg = 2/3 (This is the density near the first particles in FTASEP(1)).

Theorem 4 Forany p1,...,pr € R, and0<ny < -+ < ni

k
lim P [ () {X:0) = pi} | =PRI = K2y Cpy.piys

t—00 !
i=1

where the right hand side is the Fredholm Pfaffian (see Definition 5) of some kernel
K0S (depending on w and the n;) introduced in [1, Section 2.5] (see also Sect. 5
of the present paper) on the domain Dy (—py, ..., —pk) where

De(x1, ..., xk) ={G, x) e{l,...,k} xR :x > x;}.
For the FTASEP, that is when o = 1 we have
Theorem S5 Forany p1,...,pr € R and0 <n; <--- <k
k
i _ SU
Jim P () {Xe0) > pi} | = PRJ =KD ooy

i=1

where the right hand side is the Fredholm Pfaffian of some kernel KSY (depending
on the n;) introduced in [1, Section 2.5] (see also Sect.5).
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1.2 Half-Space Last Passage Percolation

Our route to prove Theorems 1, 2, 3, 4 and 5 in Sect. 3 uses a mapping with Last
Passage Percolation (LPP) on a half-quadrant.

Definition 1 (Half-space exponential weight LPP) Let (w,,,m)n>m>0 be a
sequence of i.i.d. exponential random variables with rate 1 (see Definition 2)
when n > m + 1 and with rate « when n = m. We define the exponential last
passage percolation time on the half-quadrant, denoted H (n, m), by the recurrence

forn > m,

max{H(n— 1,m): H(n, m — 1)} ifn>m+1,
Hn,m-—1) ifn=m

H(n,m) = wpm+

with the boundary condition H (n, 0) = 0.

We show in Proposition 2 that FTASEP is equivalent to a TASEP on the positive
integers with a source of particles at the origin. We call the latter model half-line
TASEP. The mapping between the two processes is the following: we match the
gaps between consecutive particles in the FTASEP with the occupation variables in
the half-line TASEP. Otherwise said, we study how the holes travel to the left in
the FTASEP and prove that if one shrinks all distances between consecutive holes
by one, the dynamics of holes follow those of the half-line TASEP (see the proof
of Proposition 2, in particular Fig. 6). In the case of full-space TASEP it is well-
known that the height function of TASEP has the same law as the border of the
percolation cluster of the LPP model with exponential weights (in a quadrant). This
mapping remains true for half-line TASEP and LPP on the half-quadrant (Lemma 2,
see Fig. 3).

The advantage of this mapping between FTASEP and half-space last-passage
percolation is that we can now use limit theorems proved for the latter (see [1] and
references therein), which we recall below.

Theorem 6 ([1, Theorem 1.4]) The last passage time on the diagonal H (n,n)
satisfies the following limit theorems, depending on the rate a of the weights on
the diagonal.

1. Fora > 1/2,

lim IED(H(n,n) —4n

2473173 <x> = FGsE (x) .

2. Fora =1/2,

. Hn,n) —4n
n]l)noloP apgls <X) = FgoE (x),

where the GOE Tracy-Widom distribution function FGog is defined in Lemma 6.
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w22 w3
w21

wi1
+—o—o+—o+—+—o+——eo+—1——1—

Fig. 3 LPP on the half-quadrant. One admissible path from (1, 1) to (n, m) is shown in dark gray.
H (n, m) is the maximum over such paths of the sum of the weights w;; along the path. The light
gray area corresponds to the percolation cluster at some fixed time, and its border (shown in black)
is associated with the particle system depicted on the horizontal line

3. Fora < 1/2,

H(n,n)—
. . (1—a)
,,hjgo]}” onl/2

=G),

where G (x) is the probability distribution function of the standard Gaussian, and

2 1 -2«
T o211 —w)?’

Away from the diagonal, the limit theorem satisfied by H (n, m) happens to be
exactly the same as in the unsymmetrized or full-space model.

Theorem 7 ([1, Theorem 1.5]) For any k € (0, 1) and o > 1;/&(, we have that

when m = kn + sn*/37¢, forany s € R and € > 0,

. H(n,m) — (1+ Jk)n
lim P <X

= F X
Jim onl/3 GUE(X),

where

(1+ i)t
o= '3
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In [1], we also explained how to obtain a two dimensional crossover between all the
above cases by tuning the parameters « and « close to their critical value in the scale
n~1/3 (see Fig. 4). The proofs of the following results were omitted in [1] (they were
stated as Theorem 1.8 and 1.9 in [1]) and we include them in Sect. 5. Let us define

H(n +n?Ben,n — nz/?’én) —4n +n'Bg2y?

3

wheren > 0,0 = 24/3 and & = 22/3 We scale « as

1420 ton=1/3
o= 5

where @ € R is a free parameter.

Theorem 8 For0<n; <--- <, o €R,

k
lim P ﬂ {Ha(i) < hi} | =PEJ —KT) o 0

i=1

where K% is defined in Sect. 5.

We refer to [1, Sections 1.5 and 2.5] for comments and explanations about this
kernel and its various degenerations. The phase diagram of one-point fluctuations is
represented on Fig. 4.

In the case when o > 1/2 is fixed, the joint distribution of passage-times is
governed by the so-called symplectic-unitary transition [8].

Theorem 9 Foro > 1/2and0 < n; < --- < nk, we have that

k
im P () {HaCni) < hi} | =PE(J = K)o s
i=1

KSU

where is a certain matrix kernel introduced in [1] (See also Sect. 5).

Theorem 9 corresponds to the w — +oo degeneration of Theorem 8.

Outline of the Paper

In Sect. 2, we provide the precise definitions of all probability distributions arising
in this paper. In Sect. 3, we explain the mapping between FTASEP and TASEP on a
half-space with a source, or equivalently exponential LPP on a half-space. We prove
the limit theorems for the fluctuations of particles positions in FTASEP(«) using the
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GSE
GUE
o
o = +00
GSE :
o : Leross(; @, 1)
a=1/2 : GQOE GUE
N | Z
Gaussian :
@ = Ql n
w =1 =0 GUE
Gaussian GOE?

Fig. 4 Phase diagram of the fluctuations of H (n, m) as n — oo when « and the ratio n/m varies.
The gray area corresponds to a region of the parameter space where the fluctuations are on the
scale n'/? and Gaussian. The bounding GOE? curve asymptotes to zero as n/m goes to +00. The
crossover distribution %5 (+; @, ) is defined in [1, Definition 2.9] and describes the fluctuations
in the vicinity of n/m = l and @ = 1/2

asymptotic results for half-space LPP. In Sect. 4, we recall the k-point distribution
along space-like paths in half-space LPP with exponential weights (Proposition 3),
derived in [1]. In Sect. 5, we provide a rigorous derivation of Theorem 8§ and 9 from
Proposition 3. This boils down to an asymptotic analysis of the correlation kernel
that was omitted in [1].

2 Definitions of Distribution Functions

In this section, we provide definitions of the probability distributions arising in the
paper.

Definition 2 The exponential distribution with rate @ € (0, +00), denoted &(«), is
the probability distribution on R~ ¢ such that if X ~ &(«),

Vx € Rog, P(X > x) = e %"

Let us introduce a convenient notation that we use throughout the paper to specify
integration contours in the complex plane.
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Definition 3 Let 6% be the union of two semi-infinite rays departing a € C with

angles ¢ and —¢. We assume that the contour is oriented from a + coe ™% to a +
+ip

ocoe™?,

We recall that for an integral operator . defined by a kernel K : X x X — R, its
Fredholm determinant det(/ + #)p2x . 1s given by the series expansion

o0
1 k
det(I + Ao,y =1+ Z r /X.../Xdet (K(xi, )cj))l.’j=1 dp®(xy .. xp),
k=1

whenever it converges. Note that we will omit the measure p in the notations and
write simply L?(X) when the uniform or the Lebesgue measure is considered. With
a slight abuse of notations, we will also write det(/ + K)]LZ(X) instead of det(/ +

‘%)LZ(X)'

Definition 4 The GUE Tracy-Widom distribution, denoted -Zgug is a probability
distribution on R such that if X ~ ZGuE,

P(X < x) = Fgue(x) = det(I — Kai)r2(y +o0)

where Kaj is the Airy kernel,

3
dw dz e /3—zu 1
Kai(u, v) = / . / . 3 : Q)
(ﬁﬂlﬂ 24 (6717/3 24w ew?/3—wv 7 —

In order to define the GOE and GSE distribution in a form which is convenient
for later purposes, we introduce the concept of Fredholm Pfaffian.

Definition 5 ([16, Section 8]) For a 2 x 2-matrix valued skew-symmetric kernel,

Kii(x, y) Kia(x, y)
K 5 - ) 9 Xa
() (Kzl(x,y) Kzz(%)’)) HYye

we define its Fredholm Pfaffian by the series expansion

o
PA(T + K) 2y = 1 +Zk! /X.../pr@(x,»,xj))ij:ld;ﬂ (x1 ... %0,
k=1 ’
(6)

provided the series converges, and we recall that for an skew-symmetric 2k x 2k
matrix A, its Pfaffian is defined by

1 .
Pf(A) = k! Z $igN(0)do (1Yo (2)0 (3)0 (4) - - - Ao (2k—1)0 (2k)- (M
T oeSu
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The kernel J is defined by

01
J(x,y) = -10
0 if x # y.

ifx =y,

In Sect.5, we will need to control the convergence of Fredholm Pfaffian series
expansions. This can be done using Hadamard’s bound.

Lemma 1 ([1, Lemma 2.5]) Let K(x, y) be a 2 x 2 matrix valued skew symmetric
kernel. Assume that there exist constants C > 0 and constants a > b > 0 such that

IKi1 (e, )| < Ce™™ ™ [Kpp(x, y)| = Kot (0, 0)] < Ce™ ™ [Kaa(x, y)| < CeP .
Then, for all k € Z~o,

k
< (Zk)k/2ck Hef(afb)xi‘

i=1

L)

Definition 6 The GOE Tracy-Widom distribution, denoted .2GoE, is a continuous
probability distribution on R whose cumulative distribution function Fgog(x) (i.e.
P(X < x) where X ~ ZGoE) is given by

FgoE(x) = Pf(J — K9OF)

L2(x,00)’

where K9OF is the 2 x 2 matrix valued kernel defined by

KGOE(X, ) =/ dz / dw z — wez3/3+w3/3fxzfyw,
1 @ 2in Jgrh 2in 2+ w

dz dw w—z 3 30 o
KGOE i — _KGOE i =/ / 2 /3+w’/3—xz yw,
o (xy) S (x,y) @ 2m <g1/13/2 2im 2w(z + w)e

KGOE(X, y) = / dz / dw  z—-w 623/3+w3/37xzfyw
22 @3 2im g/ 2im dzw(z + w)

+/' dz ¥ /3= /' dz @ /32 sgn(x — y)
<g;’/3 2im 4z <g;’/3 2im 4z 4 ’

where sgn(x) = Ty>0 — Ty <o.
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Definition 7 The GSE Tracy-Widom distribution, denoted -ZGsE, is a continuous
probability distribution on R whose cumulative distribution function FGoE is given
by

Fosk (x) = Pf(J — KO5F)

L2(x,00)’

where KOSE is a 2 x 2-matrix valued kernel defined by

GSE(X y) = / / dw  z—-w o7 /3w Bxz—yw
/3 2im /3 2im dzw(z + w) ’

dw z—w 3 3
KGSE , — _KGSE , — / / 7 /3+w /37xzfyw’
o (x,y) or (x,y) /r/g i @m/i Dir dz(z + w)e

GSE(X y) = / / - 623/3+w3/3—x2—ywdzdw.
G 2im G 2im 4(z + w)

3 Facilitated Totally Asymmetric Simple Exclusion Process

3.1 Definition and Coupling

A configuration of particles on a subset X of Z can be described either by occupation
variables, i.e. a collection = (1,)xex Where n, = 1 if the site x is occupied and
ny = 0 else, or a vector of particle positions X = (x;);e; Where the particles are
indexed by some set /. We will use both notations.

Definition 8 The FTASEP is a continuous-time Markov process defined on the
state space {0, 12 via its Markov generator, acting on local functions f : {0, 1% —
R by

LE) =Y ne1me(l = nes ) (f O x) — F ),

xX€Z

where the state 7, ,; is obtained from n by exchanging occupation variables at
sites x and x 4 1.

That this generator defines a Markov process corresponding to the particle dynamics
described in the introduction can be justified, for instance, by checking the
conditions of [14, Theorem 3.9].

We will be mostly interested in initial configurations that are right-finite, which
means that there exists a right-most particle. Since the dynamics preserves the
order between particles, it is convenient to alternatively describe a configuration
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of particles by their positions
<X < X < 0.

We also consider a more general version of the process where the first particle jumps
atrate , while all other particles jump at rate 1, and denote this process FTASEP(«).
Let us define state spaces corresponding to configurations of particles in FTASEP(«)
where the distance between consecutive particles is at most 2:

Xop = !(xi)ieZ>0 e 720 . vi ¢ Z~o, xi —xi+1 — 1 € {0, 1}},
and
X = !(x,'),'ez eZl Vi eZ, xi—xip1— 1€ (0, 1}}.

Because of the facilitation rule, it is clear that the FTASEP(«) dynamics preserve
both state spaces.

Definition 9 For « > 0, the FTASEP(«) is a continuous-time Markov process
defined on the state space X. via its Markov generator, acting on local functions
f:X.0— Rby

LETASEP £(x) = ol =1 (f ) = fX)) + D L=t L v =2 (f (D) — f (),

i22

where we use the convention that the state Xl.+ is obtained from x by incrementing
by one the coordinate x;.

Remark 1 One may similarly define FTASEP(«) on the state space X instead of
X0, in order to allow initial conditions without a rightmost particle.

In order to study FTASEP(«), we use a coupling with another interacting particle
system: a TASEP with a source at the origin that injects particles at exponential rate
a. We consider configurations of particles on Z-¢ where each site can be occupied
by at most one particle, and each particle jumps to the right by one at exponential
rate 1, provided the target site is empty. At site O sits an infinite source of particles,
which means that a particle always jumps to site 1 at exponential rate « when the
site 1 is empty (See Fig.5). We will denote the occupation variables in half-line
TASEP by g; (¢) (equals 1 if site i is occupied, O else).

> > >
source . —— t —@— f t
1 2 3 4 5 6 7 8 9 10 11 12

Fig. 5 Illustration of the half-line TASEP. The particles in gray cannot move because of the
exclusion rule
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Definition 10 The half-line TASEP with open boundary condition is a continuous-
time Markov process defined on the state space {0, 1}2>0 via its Markov generator,
acting on local functions f : {0, 1}4>0 — R by

L f@) = a(f(l g2 g3 ...) — f(81.82.-..))
+ Y (= g ) (f @ext) — £(@).

XEZ>0

where the state g, x4 is obtained from g by exchanging occupation variables at
sites x and x + 1. We define the integrated current N, (¢) as the number of particles
on the right of site x (or at site x) at time 7.

Define maps

Dog:Xog  —> {0, 1}%50

(xi)iezoo F> (% — xip1 — l)ieZ>0’
and

®: X — {0, 1}Z
(xi)iez —> (X = X1 — 1), 5

Proposition 1 Let x(t) = (x,(t))n>1 be the particles positions in the FTASEP(«)
started from some initial condition x(0) € X.¢ (resp. X). Then denoting g(t) =
{gi(D}z., = PX(1)), the dynamics of g(t) are those of half-line TASEP (resp.
TASEP) starting from the initial configuration @~ (x(0)) (resp. @ (x(0))).

Proof We explain how the mapping between the two processes works in the
half-space case (which corresponds to the FTASEP(«) defined on the space of
configurations X (), since this is the case we will be most interested in this paper,
and the full space case is very similar (Fig. 6).

— — —
- — ——— — —0— —O— . —_—
-0-9 8§ -7 -6 -5-4-3-2-10 1 2 3 4 5 6 7 8

— — —

- N S -

— &5

Fig. 6 Illustration of the coupling. The dynamics of particles in the bottom picture is nothing else
but the dynamics of the holes in the top picture. In order to see it more precisely, consider the
holes in the top picture and shrink the distances so that the distance between two consecutive holes
decreases by 1; one gets exactly the bottom picture with the corresponding dynamics
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Assume that particles at positions (x;);cz_, follow the FTASEP(«) dynamics,
starting from some initial condition x(0) € X.(, and let us show that the g; =
x; — xj+1 — 1 follow the dynamics of the half-line TASEP occupation variables.

If x; = x2+1 (i.e. g1 = 0), the first particle in FTASEP(«) jumps at rate . After
it has jumped, x; = x2+2 (i.e. g1 = 1). This corresponds to a particle arriving from
the source to site 1 in the half-line TASEP. After this jump, x; = xp+2 (i.e. g1 = 1),
so that the first particle cannot move in the FTASEP(«) because of the facilitation
rule and no particle can jump from the source in half-line TASEP. More generally,
because of the exclusion and facilitation rules, the (i + 1)th particle in FTASEP(«)
can move only if g; = 1 and g;;+1 = 0 and does so at rate 1. After the move, x; 1
has increased by one so that g; = 0 and g;+1 = 1. This exactly corresponds to the
half-line TASEP dynamics.

Remark 2 Formally, Proposition 1 means that for any x € X. ¢ and local function
f:{0, 13220 S5 R,

L f(@(F)) = LETASEP (f 0 @) ().

In the following, we are mainly interested in FTASEP(«) starting from the step
initial condition, or equivalently the half-line TASEP started from a configuration
where all sites are initially empty.

Proposition 2 Let x(t) = (x,(¢))}n>1 be the particles positions in the FTASEP(«)
started from step initial condition (see Definition 9). Let (Nx(t))xez., be the
currents in the half-line TASEP started from empty initial configuration (see
Definition 10). Then we have the equality in law of the processes

(2n (1) + ”)n>1,t>o = (Nn(’))n>1,z>()‘

Proof Because we start from step initial condition, x,(¢) + n in FTASEP(«) equals
the number of holes (empty sites) on the left of the nth particle. Using Proposition 1,
and denoting the occupation variables in half-line TASEP by g;, we have

(@)
Xn+n = Zgi = Ny,

i>n

jointly for all n as claimed.

Let us explain how Proposition 2 enables us to quickly recover the results from [9].
We later provide rigorous results substantiating many of these claims, but for the
moment just proceed heuristically. Consider the case « = 1. One expects (and we
prove in the next Sect. 3.2) that the law of large numbers for the current of particles
in the half-line TASEP is the same as in TASEP. Intuitively, this is because we expect
that the law of large numbers is determined by a conservation PDE (of the form (2))
which is simply the restriction to a half-space of the conservation PDE governing
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the hydrodynamics of TASEP on the full line. Thus,

Niet(t) as. 1
—
t t—oo 4

(1 —x)%

Then, Proposition 2 implies that for FTASEP,

1 1 — 6k + k?
Xt a.s. a —K)2—K= K+ K .
t t—oo 4 4

One can deduce the shape of the limiting density profile from the law of large
numbers of particles positions. Let 7 (k) be the macroscopic position of the particle
indexed by «t, i.e.

1 — 6k + &2
w(k) = 4 .
This yields k = 3—2+/2 4+ 7 (which can be interpreted as the limit of the integrated
current in the FTASEP at site 7¢, rescaled by 7). The density profile is obtained by
differentiating « with respect to 7, and we get (as in [9, Equation (5)])

p(me,t) = «/2—}—71'

In light of the mapping between FTASEP and half-line TASEP from Propo-
sition 1, it is possible to write down a family of translation invariant stationary
measures in the FTASEP. They are given by choosing gaps between consecutive
particles as i.i.d Bernoulli random variables. From these, we may also deduce the
expression for the flux from (1). Assume that the system is at equilibrium, such
that the gaps between consecutive particles are i.i.d. and distributed according to
the Bernoulli(p) distribution. Let us call v, this measure on {0, 1%, Then, by the
renewal theorem, the average density p is related to p via

1 1

P 4 Elgapl ~ 14 p

The flux j(p) is the product of the density times the drift of one particle, and
since particles jump by 1, the drift is given by the probability of a jump for a
tagged particle, i.e. p(1 — p). Indeed, considering a tagged particle in the stationary
distribution, then its right neighbour has a probability p of being empty and its left
neighbour has a probability 1 — p of being occupied. This yields

I=pCp -1
) .

J()=p(d—-p)p= (8)
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3.2 Proofs of Limit Theorems

We use now the coupling from Proposition 2 to translate the asymptotic results
about last passage percolation from Theorems 6, 7, 8 and 9 into limit theorems for
the FTASEP(w).

Let x(¢) = {x,(¢)},>1 be the particles positions in the FTASEP(«) started from
step initial condition. Using Proposition 2, we have that for any y € R

P(xa(t) < y) = P(x,(t) < L))
=P(N, (1) < Ly +n).

In order to connect the problem with half-space last passage percolation, we use the
next result.

Lemma 2 Consider the exponential LPP model in a half-quadrant where the
weights on the diagonal have parameter o, and recall the definition of last passage
times H(n, m) from Definition 1. Consider the half-line TASEP where the source
injects particles at rate o with empty initial configuration and recall N(t), the
current at site x. Then for anyt > 0 and n,y € Z-o we have that

P(Na(t) < y) =P(H(n+y—1,y) >1).

Proof This is due to a standard mapping [17] between exclusion processes and last
passage percolation, where the border of the percolation cluster can be interpreted
as a height function for the exclusion process. More precisely, the processes have to
be coupled in such a way that the weight w;; in the LPP model is the (i — j + 1)th
waiting time of the jth particle in the half-line TASEP — the waiting time is counted
from the moment when it can jump, and by convention the first waiting time is when
it jumps from the source into the system.

3.21 GSE (¢ > 1/2) and GOE (¢ = 1/2) Cases
By Theorems 6 we have that
H(n,n) =4n + onl/?’xn,
where o = 2%/3 and y,, is a sequence of random variables weakly converging to the

GSE (divided by +/2 according to the convention chosen in Definition 7) distribution
when o > 1/2 and to the GOE distribution when o« = 1/2. Let y € R be fixed and
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¢ > 0 be a coefficient to specify later. For ¢ > 0, we have
LRV _ LRV L a3
1P’<xl(t)<4+t gy)—P<H(L4+t gyJ,L‘th gyJ 2t

_ s roap Jm
_]P<4([4+t gyJ>+aL4+r S| A gy | 21

=P (4§yt1/3 + o/ + 0(’1/3))XL2+z‘/3gyJ > 0([1/3))

4/3

where the o(tl/ 3 ) errors are deterministic. Thus, if we set ¢ = 277/, we obtain that

. t 1/3 .
> = Sy = -
tlingoIP’ (xl(t) Z 4 +t gy) tlingOIP’ (XL’;H”};YJ < y) FGsg( \/2y)
when ¢ > 1/2 and
t
lim P (xl(t) > +t1/3y) = FGoE(—Y)
t—00 4

when o = 1/2.

3.2.2 Gaussian Case
By Theorem 6 we have that

Hn,n) = h(a)n + anl/an,

o

a)?
weakly converging to the standard Gaussian when o < 1/2. As in the previous
case, let y € R be fixed and ¢ > 0 be a coefficient to specify later. For t > 0, we

have

where h(a) = a(ll—a)’ o = azl(l_f and G, is a sequence of random variables

P (xl(t) <t/ h(@) + tl/zgy)
_p (H (Lh(ta) +t1/2§yJ, Lh(ta) +t1/25yJ> > t)

_ ! 12 t 12 |V?
_P<h(a)<Lh(a) 1 ”D”Lh@ SRR BTN >t>

=P (h(a)gyr”z T/ h@) PG, g | 2 0@1/2)) :
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Thus, if we set ¢ = , we obtain that

1—2a
Va(l-a)
. t 12 _ 1 v = -
th&P<x1(t) > h@) +t gy) = }gglﬂ(GLh(twﬂl/zgyJ < y) = G(—y).
3.2.3 GUE Case

We have

]P’()CLHJ(I) <7t + gt1/3y) =
P (H (2lre) + [+ st Py ] = 1Lt + e+ 61y ]) > t) G

By Theorem 7 we have that for m = kn + on'’?),
H(n,m) = (1+i)’n +on' Py,
where
ENIERVOME
= \/K1 /3
and yx, is a sequence of random variables weakly converging to the GUE distribu-

. VK
tion, for o > e Hence

2
9=P <1+\/r—t7t> n—l—on1/3xn >t

2
where n = 2|rt |+ |t +¢t'/3y | — 1. Choosing 7 such that (1 + \/zr;:fT) Qr+

) =1,ie.

1—6r+r2
T = ,
4

we get that

2
r+m
O="r (1+\/2r+n) 5t1/3y+0((2r+n)t)1/3xn>o(t1/3)
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Hence, letting

IPNCERORE
_ 473 _ o-as3(
yields

lim (9) = lim P(x, > —y + o(1)),

so that
, (1—6r+rt
Jim P (xtm (1) = 4 +1'Pys | = Four(—y),

foro > 15’ (This condition comes from the condition o > in Theorem 7).

VK
1+k
3.2.4 Crossover Case

For the sake of clarity, we explain how the proof works in the one-point case. The
multipoint case is similar. Assume

1420 Yon1/3
o= 5

Combining Lemma 2 and Proposition 2 as before,
B (Ha() < p) = P (xa2gy 10 + (po — €27 ) > n — 30 1))
where £ = 2%/3. Letting
t =4n+ (po — 2;‘2772)111/3,

we have that

1+ 243wt 1/3

~1/3
t 3
) + o( )

o

203 +1 =205 1 o('3),

3 282
ﬂ§t2/3_|_775 op

1/3 1/3
21/3 28/3 t 77 4 o(t7).

t
n —3n*3 = 4"
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Hence, under this matching of parameters
lim P (H,(n) < p) = lim P(X;(n) > p),
n—oo 1—00

where the rescaled position X;,(n) is defined in (4).

Remark 3 Although we do not attempt in this paper to make an exhaustive analysis
of the FTASEP with respect to varying initial conditions or parameters, such further
analysis is allowed by our framework in several directions. In terms of initial
condition, Proposition 1 allows to study the process starting form combinations of
the wedge, flat or stationary initial data and translate to FTASEP some of the results
known from TASEP [5, 15]. In terms of varying parameters, one could study the
effect of varying « or the speed of the next few particles and one should observe the
BBP transition [2] when considering fluctuations of x,; for > 0 (See Remark 1.6

in [1]).

4 Fredholm Pfaffian Formulas for k-Point Distributions

We recall in this Section a result from [1] which characterizes the joint probability
distribution of passage times in the half-space exponential LPP model.

Proposition 3 ([1, Proposition 1.7]) For any hy, ..., h;y > 0 and integers 0 <
ny<ny<---<ngandmi) > my > --- > my such that n; > m; for all i, we have
that

P(H(ni,my) < hi, ..., H(g,mg) < hi) =Pf(J — K"/"P)LZ(MM1 ’’’’’ )’

where J is the matrix kernel

. . 01
J@,u; j,v) = L=, , (10)
—10
and
De(gr, ..., g0) ={G, x) e{l,... .k} xR:x > g}.

The kernel K®*P was introduced in [1] in Section 4.4. It is defined on the state-
space ({1, ..., k} x R)2 and takes values in the space of skew-symmetric 2 x 2 real
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matrices. The entries are given by

Re*P(i, x; j, y) whena > 1/2,
KEP(i, x; j, y) = I¥P(i, x5 j, ¥) + Y RP(i, x; j, y) whena < 1/2,
RYP(i, x; j,y) whena = 1/2.

Recalling the Definition 3 for integration contours in the complex plane, we define
I°*P by the following formulas.

exp _
v, y) = //*2171//*2171

Wy LHR2ZNA 20
4zw(z~|—w)e (1—2z)’"i(1—2w)’”f'( 72420 - 1)Qw + 2 —1).

exp _
2 (b xij.y) = /cgfﬂ 2im /gfﬂ 2im

(I +22)" (14+2w)™ 20— 142z an

I—w —XZ—yw
27(z + w) (1 =2w)" (1 =22 200 —1—2w

where in the definition of the contours ‘KTZ/ and ‘67/ the constants a;, a,, € R are
chosenso that0 < a; < 1/2,a; +ay > 0anda, < Qo —1)/2.

2 Yx: ) = /céﬂ/* 2im /gf/* 2imw

z— wefxzfyw (1 +22)"™M 1 +2w)™i 1 1 (12)
4w (I =22)m1 =2w)" 20 — 1 —2720— 1 —2w’
where in the definition of the contours ‘KT/ 3 and ‘K’Tu/ 3. the constants b;, by € Rare
chosen so that 0 < b, by, < Qa — 1)/2 when o > 1/2, while we impose only
b;, by > 0whena < 1/2.
We set R?;P(i,x; j,y) =0, and R%p(i,x; Jj>y) = 0wheni > j, and likewise
for RP and Re*P. The other entries depend on the value of « and the sign of x — y
Casea > 1/2: Whenx > y,

/ dz (1422)™ (1 —2z)"i 1 1

zzefley\z
@3 2im (1 —22)%(14+22)" 20 —1—-272a —1+2z ’

Ry (i, x; j,y) = —
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andwhenx < y

exp, . . . dz (1422)™ (1 —2z)™ 1 1 —|x—ylz
R22 @, xj,y) = . n . 2ze o,
<3 2ir (1 -22) (1 +29)" 20 —1—-2z20—1+2z

where (1 — 20)/2 < a; < (2o — 1)/2. One immediately checks that R;’;p is

antisymmetric as we expect. Wheni < jandx > y
RYY G, x; j,y) = _/ dz (142" (1=29™ | .
R 3 2im (1429 (1 =22 ’

while if x < y, R?ép(i, X5 j,y) = F{Tép(i, y; j, x). Note that Ry, is not antisymmet-
ric nor symmetric (except when k = 1, i.e. for the one point distribution).
Case o < 1/2: When x > y, we have

1-2a
: —e' Yz (A 420m Qe e
RYGx o= / C

2 2imr (1 = 22)% (2 — 2a)"i 200 — 1 + 22
. el / dz (1 +27)™i Qo)™ e Ve
2 2im (1 —22)" (2 —2a)"% 20 — 1 + 27
_/ dz (142z)™ 1 —2z)™ 1 1 IR E
i 2ir (1 —=22)M (1 +22)" 20 —1—2z20 — 1 4+ 2z ‘
(x—y) ' min _ mj (y—x) ' mj oy _ m;
e 2 Qo 2—20)" e 2 Qo)™ (2 -2«
_ 2a)™i( ) n (2a)™i( ) 7 (13)

4 (2 — 20) o) 4 (2 = 2a)" ey

where the contours in the two first integrals pass to the right of (1—-2«)/2. When x <
y, the sign of the third term is flipped so that R;ép(i, xX;j,y) = —R;ép(j, v i, X).
One can write slightly simpler formulas by reincorporating residues in the first two

integrals: thus, when x > y,

e 2y / dz (1 +22)" Qo)™ e
i 2imr (1 = 22)" (2 —2a)" 20 — 1 + 27

eE“x / dz  (1+22)" Q)™ e Y?
2 Jgp 2in (1= 22)W/(2 = 200" 20 — 1 + 22
/ dz (14221 —29)™ 1 1

2z VI (14)
¢ 2im (1 —22)"% (14 22)" 20 — 1 —2z 20 — 1427
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1

20— 1—-2a . A
where “5" <a; < 5% Wheni < j,ifx >y

ﬁexp(l. Xij,y) = _/ dz (1422)"% (1 —2z)™ PP (15)
e ) 20 (1422 (1= 22)m ’

while if x < y, Ifﬁép(i, x;j,y)= If{i’ép(i, v; j, X).

Caseo = 1/2: When x > y,

SEXp . . _ dz (1427)™ e™*¢ dz (1 427)" e 7%
R22 (lv-xv.]sy)—_ 3 9; n: 3 . ni
(517//4 2imr (1 —27)" 4z (6’{//4 2imr (1 —22)" 4z

/ dz (14 2z2)Mi(1 —2z)"i e =yl 1
&

B3 2im (1 -2 +2)% 2z 4

1/4

’

(16)

with a modification of the last two terms when x < y so that ﬁ;ép(i, X, j,y) =
—R;ép(j, v;i,x). Wheni < j,ifx >y

RIY (. x: j,y) = — f de (14+22)" (1=20)" 1.
R 3 2im (1429 (1 =22 ’
while if x < y, Ifﬁép(i, x;j,y)= If{%p(i, v; j, X).

Remark 4 1t may be possible to write simpler integral formulas for K®P by
changing the contours used in the definition of 1**P and identifying certain terms of
R®*P as residues of the integrand in I1°*P. The reason why we have written the kernel
I*P as above is mostly technical. For the asymptotic analysis of these formulas, it

is convenient that all contours may be deformed so that they approach 0 without
encountering any singularity, as will be explained in Sect. 5.

5 Asymptotic Analysis in the Crossover Regime

This section is devoted to the proofs of Theorems 8 and 9. We start by providing
formulas for the correlation kernels K8 and KSU used in the statements of both
theorems.
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5.1 Formulas for K
The kernel K% introduced in [1, Section 2.5] can be written as
KCI‘OSS(Z" x; jv y) — |cross(i7 x; j’ y) + RCI‘OSS(Z" x; jv y)’
where we have

. . dz dw
Iﬁr{’ss(l,x;J,y)=/ 3o / 3o
<g*lf/ 2imw <g*lf/ 2imw

z+n—w—=njz+w+n; w+w+njez3/3+w3/3fxzfyw

z+w+n +n; 2+ w+n;
oce dz dw
Cross i,x; -, 2/ /
2GS Z foas gige Jens 2in
z+n —w—+n; -+ @ i 3 3/2 vry
ni ’7/ Z+ +771 EZ /3+w /3 Xz )w,

2z+n)z+n +w—nj) —w+o+0n;
ISP, x5 7, y) = = 1555 (3, %),
dz / dw z—n—w+n; o /34w 3—xz—yw
G,

ICYOSS i,X; ~, =/ ) ) .
22 ( 73 <g;z/32m f21n4(z—ni+w—nj)(z—w—ni)(w—w—nj)

The contours in I{5** are chosen so that a; > —n;, a; +ay > n; —n; and ay <
@ +n;. The contours in I5°*° are chosen so that b, > n;, b, > n; +@ and by, > n;,
by >nj+w.

We have R{"*(, x; j, y) = 0, and R{**(i, x; j, ) = O wheni > j. When
i<j,

B == 6 (e +Y) (ni—n;)? +3(x—)?
exp < 20-17)

R2™G, x5, y) =

3

VAT —ni)
which may also be written as
+00
RO (i, x: . y) = — / dre ™D Ai(x; + AN + ).
—0oQ

The kernel RSY** is antisymmetric, and when x — n; > y — n; we have

REY™SGi, x; J, ) =

—1/ dz exp((z+m)*/3+ (@ +1;)*/3 = x(z+ i) — y(@ + 1))
4 <g:7/3 2im w +z
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N 1/ dz exp((z+n))*/3 + (@ +1)%/3 — y(z+nj) — x(@ +m1))
4 ng 21 w +zZ

1 / dz zexp (@ +m)*/3+ (=24 )33 —x@+n) — y(—=z+n)))
2 Jgii? 2im (o +2)(w —2) ’

Z

where the contours are chosen so that c; < —w and d; is between — and w.

5.2 Formulas for KSY

The kernel KSY introduced in [1, Section 2.5] decomposes as

KSUG, x; j,y) = BV, x5 7, ) + R%YG, x; j, ),

where we have

R dz dw (z+ 1 — w — et [Fw’Amxamyw
VG, x; /. y) = : : ! :
& 2 Jgr? 2im 4z +n)(w + )z +w +ni +n))

BYG, x5 j, ) = / - / o Srmowrn o7 P Axamyw,
e 2 Jo7/3 2im 2z + i)z +w +ni —nj)

5YG, x5 7, 9) = =Y Guxjs i)

ISU(i )C'j y) :f dz / dw =N _w+njez3/3+w3/3_xz_yw.
22 s Ay s Cbjb't/3 21T ngﬂ 2177Z_711+U)—77]

The contours in I%J are chosen so that a; > —n;, a; + ay, > n; — n;. The contours
in I%J are chosen so that b; > n; and by, > n;.

We have R} (i, x; j, y) = 0,and R}Y (i, x; j, y) = O wheni > j. Wheni < j,

—i—n)*+6(x+y)(ni—n ;)2 +3(x—y)?
—exp ( ey

RIYG, x; j,y) = RS, x; j,y) =
VAT (nj — i)

The kernel Rgg is antisymmetric, and when x — n; > y — n; we have
R3Y (i, x: j.y) =
1

_¢/ Mzwﬂ@+mvuwﬁ+nfﬂ—ﬂmma—ﬂﬁ+n»
2 Jgrr 2im ! J ! J

where the contours are chosen so that a, > —@ and b; is between —ww and @w.
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5.3 Proof of Theorem 8

Recall that we scale « as

_ 1420 ton1/3
N 2

The proof of Theorem 8 follows the same lines as that of Theorems 1.4 and 1.5 in
Sections 5 and 6 of [1] (corresponding to Theorems 6 and 7 in the present paper).
We introduce the rescaled correlation kernel

KPM (i, x5, xj) ==

3 /3 . i a3 3 . .

o 2n2/3 NNt NX =3 '7!'/3K?);p(t,X,‘;j,Xj) onl/3eMN NN ﬂ’/3+ﬂ1/3KT§p(l,Xi;J,X_/')
1/3 g~ Mixitnjxj+nd 3=l /3yexp iy oy —0iXi X0} /3B CXD (¢ yr L

onl/3 e miXitnxj+; b K21 (l, Xi; j, j) e MK TN jX b K22 (17 Xi: Jj, Xj)

where
Xi=4n+n'"ox; — Sznl-z),
so that we have

P (Hn(nl) < X1,...,Hy(qi) < xk) = Pf(] — Kexp’n)]Lz(Dk(xl ..... W)’
where the quantity H,(n) is defined in Sect. 1.2. We will decompose the kernel
as K*P (i, x;; j,xj) = 19P"(0, x5 j, xj) + R¥P(i, x;; j, xj) according to the
formulas in Sect. 4. The parameter o can be greater or smaller than 1/2 depending
on the sign of @, so that we will need to be careful with the choice of contours.

In order to prove Theorem 8, we need to show that

lim Pf(J — KSP)

100 L2(Dg (X1, 8))

PE(J — Koo%) (17)

L2(Dg (x1,....xk)) "

We will first show that the kernel K®*P-"(i, x; j, y) converges to K™5(i, x; j, y) for
fixed (i, x; j, y). Then, we will prove uniform bounds on the kernel K**P'" so that
the Fredholm Pfaffian is an absolutely convergent series of integrals and hence the
pointwise convergence of kernels implies the convergence of Fredholm Pfaffians.
We introduce two types of modifications of the contour ‘Kg/ 3 Fora parameter
r > 0, we denote by %]r] the contour formed by the union of an arc of circle
around 0 of radius rn~1/3, between —x /3 and 7/3, and two semi-infinite rays in
directions £ /3 that connect the extremities of the arc to oo (see Fig. 7, left). With
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Elr]

Fig. 7 The contours 4]r] when r > 0 (left) and 4[r] when r < 0 (right)

this definition O is on the left of the contour %]r]. For a parameter r < 0, we denote
by %]r] a similar contour where the arc of circle has radius —r and is now between
angles from 77 /3 to 57/3 so that 0 is on the right of 4]r] (see Fig. 7, right).

Thanks to Cauchy’s theorem, we have some freedom to deform the contours used
in the definition of K®*P in Sect. 4, as long as we do not cross any pole. Thus we can
write

. 3.3 dz dw I—w
Kexp,n X ], — Slixtn;y n; /3 77./'/3 2 2/3/ /
0 Gxij,y)=e o'n a1 21w Jeqn 21w dzw(z + w)
Qz+20"'wn ) Qw + 20 wn Py exp (”(f(Z) +Sw)
+n*(Enilog(1 — 42%) + £ log(1 — 4w?))

+nBgpde 4 Bgtdn —nPo ez yw), (18)
where the function f is

f(z) = —4z+log(1 + 2z) — log(1 — 2z).

To take asymptotics of this expression, we use Laplace’s method. The function f
has a double critical point at 0. We have

0_3
f@="7 2+ oY, (19)
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where o = 2%/3 and we know from Lemma 5.9 in [1] that the contour %g/ 3 is steep-
descent for fRe[ f] (which shows that the main contribution to the integral comes
from integration in a neighborhood of 0, see the proof of Theorem 6 in Section 5 of
[1]). Let us make the change of variables z = n—1/3z /o and likewise for w, and use
Taylor expansions of all terms in the integrand. Using the same kind of estimates
(to control the error made when approximating the integrand) as in Proposition 5.8
in [1], we arrive at

Kexpn

Gox: o) e’?i*‘*’?j)’*ﬂ?ﬂ*ﬂ?/?’ dz dwz—wz+ow+ow
11 XY n—00 <galf

€3 2im B2rz+w oz w
exp (/3 + w*/3 — dgm;2? o> — 4w fo? + €2z /o + Enjw/o — xz = yw).

With our choice of o and &, we have that 4¢ /o2 = £2 /o = 1, so that after a change
of variables (a simple translation where z becomes z + 1; and w becomes w + n;),

K" Jo ) S KT 33 g, 3) =

/‘ dz/ dw z—i—m—w—njz+w+mw+w+njeza/3+w3/3_xz_yw
@ 27 Jg P 2im (+n)(w+n;) 24 w+7n; '

Regarding K2, we write K32 = 1P 4 RSP where
12 12 12

v 3 3 d d _
157" (x5, y) = €M /3+’7.f/30n1/3/ ; / woemw
Haz] 27 J4a, 21 22(z + w)

22420 ton13
—2w 420 lwn-1/3 exp (n(f(z) +f(w)

+n?3(En; log(1 — 42%) — £n; log(1 — 4w?)) +n'Pe?n?z

+nBgdw —nBo 2+ yw).  (20)

where the contours are chosen so thata; > 0, a; +a,, > 0 and a,, < @w. Applying
Laplace method as for K;, we arrive at

e v—n3 3 dz dw z—w 7+ o
I?ép’n(i,x;j,w————»e"’x njy "1/3+"//3/ - / 2 o
n—00 &3 2im %‘L 2ir 2z(z + w) —w + @

exp (z3/3 +w?/3 —deniz? Jo? + denjwPo? + E2niz/o + E2njw/o — xz — yw) .
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Thus, we find that after a change of variables

|T§P,n(i’x;j, y) —— cross(l X j,y) =
n—o0
/ dz f dw T = WA t@+u e13/3+w3/3—xz—yw
e 2Um Jor3 2w 2@+ )@+ ni +w —nj) —w+@ +1; ’

where the contours in the last equation are now chosen so thata, > —n;, a; +a, >
nj —ni and ay < @ + n;. Wheni < j (and consequently n; < 7;), and for x, y
such that ox — £%n; > oy — Sznj (which is equivalent to x — n; > y —n;), we use
Eq. (15) for Ry, and find

xpn

dz
Gioxi j.y) —— /(gm exp (c—n)/3— (= ))* 3—x(e—n)+yG—1))).

One can check that with x — n; > y — n;, the integrand is integrable on the contour
‘KT/ 3 When x — ni <y — nj however, we have

eXP dz 3 3
@ x:j,y) —— s i exp(@+n))° /3= @ +n)’/3+x@+m)—yE+n)).
1/4

One can evaluate the integrals above, and we find that in both cases

—@i—n ) 46(x+y) (i —n ;)2 +3(x—y)?
_e"p( iy

NZEIOTEE D

exp n

s, ) —= R0 x; j,y) =

As for Ky;, we again decompose the kernel as KeXp "= |eXp "4+ F{CXP " For Iz)ép’n, we
chose contours that pass to the right of all poles except 1 / 2,asin the casea = 1/2
of Sect. 4. We can write

exp,

(i,x;j,y)=e ”"x”’f””z'}/3+”3/3/ dz / dw z —w

Ab,1 2 J4p,) 21T 2+ w
1
(=274 20 lon=13) (2w + 20l

+ 23 (—&n; log(1 — 4z%) — &n; log(1 — 4w?))

A GORI)

+ gk 4 Bgtdn —nPo ez yw), @1
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where b; and b,, are positive and greater that . Again, by Laplace’s method we
obtain

ISP G, x y) e nix—nj.V+m-3/3+n§/3/ (?z / d.w z-w
i 2im <g;:f 2imr 24w
exp (z3/3 + w3+ 460207 + dgnwP o7 + Emiz/o +§2nw/0 — xz = yw)
2z —2o@) 2w — 2w) ’

Thus,

CXP"(I x; J y)_> |cros%(l x: J y)

dw z-— ni —w+ nj 23/3+w3/37xzfyw
/@’”/3 2im //’/3 2ird(z—mi+w—nj) @—@ —n)(w—@ —n;)’

where the contours are chosen so that b, > n;, b, > n; + @ and by, > n;j, by >
n; + @ . For Ry, we use (13). Note that the form of the expression does not depend
on whether @ is positive or negative, because of our choice of contours for IeXp "
in (21). We find for x; — n; > x; — n;

RCXP i, x; J»y) —
—1/ dz exp((z+m)*/3+ (@ +1;)*/3 = x(z+ i) — y(@ + 1))
4 <g:7/3 2im w +z

N 1/ dz exp((z+n))*/3+ (@ +1)*/3 — y(z+nj) — x(@ + 1))
4 (gcfzﬁ 2im w +z

1/ dz zexp ((z +m)%/3+ (—z+ 1) /3 —x(@+ni) — y(—z+n;))
2 %32/3 Qi (o +2)(w —2)

1
= P (@ + 03+ @ +0)*/3 = y(—o +nj) = x(@ + )
1
+, exp ((—@ + 1) /34 (@ +1;)*/3 —x(—@ + ;) — y(@ +1))),

where the contours are chosen so that ¢, > —w and d; is between —@ and w.
When x — <y =g, R;ép’n is determined by antisymmetry. .

At this point, we have shown that when ¢« = 1/2 and for any set of points
{ir7 -xlrv jS! xjx}lgr,sgk € {17 MR} k} X R,

k
Pf(KCXp,n(l.r’ Xiy 3 Jso xjs)) ol Pf(Kmm (lr’ Xirs Jss xb))

r,s=1 g—1

k

r,s=1
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In order to conclude that the Fredholm Pfaffian likewise has the desired limit, one
needs a control on the entries of the kernel K**P-", in order to apply dominated
convergence.

Lemma 3 Leta € Rand0 > ny < --- < ng be fixed. There exist positive constants
C,c,mforn>mandx,y > a,

exp n

@i, x; j, y)‘ <Cexp(—cx—cy)

exp n

@i, x; j, y)‘ <Cexp(—cx)
‘K‘;’;P*“(i,x; i, y)‘ <cC.

Proof The proof is very similar to that of Lemmas 5.11 and 6.4 in [1]. Indeed, using
the same approach as in the proof of these lemmas, we obtain that

‘Iﬁp’n(i, x; j, y)‘ < Cexp ( —cx — cy),

exp n

@i, x; j, y)‘ <Cexp(—cx)

exp n

(i, x; j, y)‘ < Cexp(—cx—cy),
and

RP"G. x| =0,

‘Rexp "G xs y)‘ < Clicjexp ((x + y)mi —n))),
Re".x: j.y)| < C.

Recall that wheni < j, n; —n; < 0, so that the bounds on I1**P-" and R**P'" combine
together to the statement of Lemma 3.

The bounds from Lemma 3 are such that the hypotheses in Lemma 1 are satisfied.
We conclude, applying dominated convergence in the Pfaffian series expansion, that

k
lim PP ﬂ1 {Ha(ni) < xi} | =PEJ —K™) o0 00y
i=
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5.4 Proof of Theorem 9

The proof is very similar as that of Theorem 8. We use a similar rescaling of the
kernel: we define the rescaled kernel

KE*PM G, xi5 j, xj) =

w ‘on

(wzoznzn it xj = n}/3— n; /3Kexp( Xi: j, X) o lanl/B3ehi%i—nixj= n,/3+nj/3Kexp( Xi: j, X ))
w

1 173 ,—nixi+njxj+u [3-n3 /?KBXP( Xis j, X; ) 2, Miki— njxj+n; 340} /?KBXP( X,,j,X‘)

Then, we decompose the kernel as K®P" (i, x;; j,x;) = 19P7(, x;5 j,x;) +
R®*P"(i, x;; j, xj) using the formulas (and choice of contours) of Sect. 4 in the case
a > 1/2. Thus, the formulas are slightly simpler than in the proof of Theorem 8. To
show that the kernel K®P-" converges pointwise to K3V | we follow the same steps as
in the proof of Theorem 8 as if @ = 400 and contours éla;], 6lay], E1b;], €1by]
are chosen to be consistent with the constraints on contours in the case & > 1/2 of
Sect. 4. Finally, the kernel satisfies the same uniform bounds as in Lemma 3, so that
we conclude the proof by dominated convergence as above.
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Stochastic Functional Differential )
Equations and Sensitivity to Their Initial %
Path

D. R. Baiios, G. Di Nunno, H. H. Haferkorn, and F. Proske

Abstract We consider systems with memory represented by stochastic functional
differential equations. Substantially, these are stochastic differential equations with
coefficients depending on the past history of the process itself. Such coefficients
are hence defined on a functional space. Models with memory appear in many
applications ranging from biology to finance. Here we consider the results of some
evaluations based on these models (e.g. the prices of some financial products) and
the risks connected to the choice of these models. In particular we focus on the
impact of the initial condition on the evaluations. This problem is known as the
analysis of sensitivity to the initial condition and, in the terminology of finance, it
is referred to as the Delta. In this work the initial condition is represented by the
relevant past history of the stochastic functional differential equation. This naturally
leads to the redesign of the definition of Delta. We suggest to define it as a functional
directional derivative, this is a natural choice. For this we study a representation
formula which allows for its computation without requiring that the evaluation
functional is differentiable. This feature is particularly relevant for applications.
Our formula is achieved by studying an appropriate relationship between Malliavin
derivative and functional directional derivative. For this we introduce the technique
of randomisation of the initial condition.
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1 Introduction

Several phenomena in nature show evidence of both a stochastic behaviour and
a dependence on the past history when evaluating the present state. Examples of
models taking into account both features come from biology in the different areas
of population dynamics, see e.g. [8, 26], or gene expression, see e.g. [27], or
epidemiology, see e.g. [11]. We find several stochastic models dealing with delay
and memory also in the different areas of economics and finance. The delayed
response in the prices of both commodities and financial assets is studied for
example in [1, 2, 5, 6, 12, 13, 23-25, 36, 37]. The very market inefficiency and also
the fact that traders persistently use past prices as a guide to decision making induces
memory effects that may be held responsible for market bubbles and crashes. See
e.g. [3,22].

In this work we consider a general stochastic dynamic model incorporating
delay or memory effects. Indeed we consider stochastic functional differential
equations (SFDE), which are substantially stochastic differential equations with
coefficients depending on the past history of the dynamic itself. These SFDEs
have already been studied in the pioneering works of [28, 29, 38] in the Brownian
framework. The theory has later been developed including models for jumps in [9].
From another perspective models with memory have been studied via the so-called
functional It6 calculus as introduced in [17] and then developed steadily in e.g.
[14, 15]. For a comparison of the two approaches we refer to e.g. [16, 18], see
also [9, Appendix] for a short survey on the different notions of derivative. In the
deterministic framework functional differential equations are widely studied. See,
e.g. [21].

By model risk we generically mean all risks entailed in the choice of a model
in view of prediction or forecast. One aspect of model risk management is the
study of the sensitivity of a model to the estimates of its parameters. In this paper
we are interested in the sensitivity to the initial condition. In the terminology
of mathematical finance this is referred to as the Delta. However, in the present
setting of SFDEs, the very concept of Delta has to be defined as new, being
the initial condition an initial path and not only a single initial point as in the
standard stochastic differential equations. It is the first time that the sensitivity to
the initial path is tackled, though it appears naturally whenever working in presence
of memory effects.

As illustration, on the probability space (£2, .%, P), let us consider the SFDE:

dx (1) = f(t,x(@), x)dt + g(t, x(1), x))dW(t), t € (0,T]
(x(0), x0) =1
where by x () we mean the evaluation at time ¢ of the solution process and by x; we

mean the segment of past that is relevant for the evaluation at 7. Let us also consider
the evaluation p(n) at ¢t = 0 of some value @ (7x(T)," x7) att = T of a functional
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@ of the model. Such evaluation is represented as the expectation:

p(n) = E[@("x(T)," x7)] . ey

We have marked explicitly the dependence on the initial path n by an anticipated
superindex.

Evaluations of this type are typical in the pricing of financial derivatives, which
are financial contracts with payoff ¥ written on an underlying asset with price
dynamics S given by an SFDE of the type above. Indeed in this case the classical
non arbitrage pricing rule provides a fair price in the form

v ("S(T)," Sr)

} _E [nZ(T)W("S(mST)]
N(T)

Drisk—neutral(n) = E"Q |: N(T)

where "Z(T) = dd”PQ is the Radon-Nykodim derivative of the risk-neutral probabil-
ity measure "Q and N(T) is a chosen numéraire used for discounting. We observe
that such pricing measure "7 Q depends on 1 by construction.

Analogously, in the so-called benchmark approach to pricing (see e.g. [32]), a

non-arbitrage fair price is given in the form

E v (S(T)," St)
Dbenchmark () = [ 1G(T) :| s
where "G (T) is the value of an appropriate benchmark process, used in discounting
and guaranteeing that the very P is an appropriate pricing measure. Here we note
that the benchmark depends on the initial path n of the underlying price dynamics.
Both pricing approaches can be represented as (1) and from now on we shall
generically call payoff the functional @, borrowing the terminology from finance.

Then, in the present notations, the study of the sensitivity to the initial condition
consists in the study of some derivative of p(7):

0 E[®("x(T)," x1)].

d
p(n) = o

an
and its possible representations.

In this work we interpret the derivative above as a functional directional deriva-
tive and we study formulae for its representations. Our approach takes inspiration
from the seminal papers [19, 20]. Here Malliavin calculus is used to obtain a nice
formula, where the derivative is itself represented as an expectation of the product
of the functional @ and some random variable, called Malliavin weight.

We remark immediately that the presence of memory has effects well beyond
the expected and the formulae we obtain will not be, unfortunately, so elegant. The
representation formulae we finally obtain do not formally present or require the
Fréchet differentiability of @. This is particularly relevant for applications e.g. to
pricing. To obtain our formulae we shall study the relationship between functional
Fréchet derviatives and Malliavin derivatives. However, this relationship has to be
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carefully constructed. Our technique is based on what we call the randomisation of
the initial path condition, which is based on the use of an independent Brownian
noise to “shake” the past.

The paper is organised as follows. In Sect.2 we provide a detailed background
of SFDEs. The first part of Sect.3 is dedicated to the study of the sensitivity to
the initial path condition and the technique of randomisation. We obtain a general
representation formula for the sensitivity. Here we see that there is a balance
between the generality of the functional @ allowed and the regularity on the
coefficients of the dynamics of the underlying. The second part of Sect. 3 presents
further detailed results in the case of a suitable randomisation choice. The Appendix
contains some technical proof, given with the aim of a self-contained reading.

2 Stochastic Functional Differential Equations

In this section we present a general setup for stochastic functional differential
equations (SFDEs). Our framework is inspired by and generalises [5, 6, 25].

2.1 The Model

On the complete probability space (£2,.%, (Fi)ie0,1], P) where the filtration
satisfies the usual assumptions and is such that .# = Zr, we consider W =
{(W(t,w); o € §2,t € [0, T]} an m-dimensional standard (.%;);¢[o0,77-Brownian
motion. Here let T € [0, 00).

We are interested in stochastic processes x : [—r, T] x £2 — R4 ,r = 0, with
finite second order moments and a.s. continuous sample paths. So, one can look at
x as a random variable x : 2 — €([—r, T], R?) in L2(82, €([—r, T1, R?)) where
E([—r, T1, RY) is the space of continuous functions from [—r, T] to R4, In fact, we
can look at x as

x: 02— C-r, T, RY < L*>(—r, T],RY) — R? x L*([—r, T], RY)

where the notation < stands for continuously embedded in, which holds since the
domains are compact. The parameter r here above introduced represents the time
gap linked to the delay or memory effect.

From now on, for any u € [0, T], we write Ma([—r, u], Rd) = R x
Lz([—r, ul, RY ) for the so-called Delfour-Mitter space endowed with the norm

1/2
1.l = (WP +1013) . (0,6) € Ma(l—r, ul, R, @)

where || - ||2 stands for the L2-norm and | - | for the Euclidean norm in R?. For short
we denote My := M, ([—r, 0], Rd).
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The interest of using such space comes from two facts. On the one hand, the
space M, endowed with the norm (2) has a Hilbert structure which allows for a
Fourier representation of its elements. On the other hand, as we will see later on,
the point O plays an important role and therefore we need to distinguish between
two processes in L2([—r, 0], R?) that have different images at the point 0. In
general the spaces My ([—r, u], R?) are also natural to use since they coincide with
the corresponding spaces of continuous functions €([—r, u], R?) completed with
respect to the norm (2), by taking the natural injection i (¢ (-)) = (@), () 1{—r.u))
fora ¢ € €([—r, ul, Rd) and by closing it.

Furthermore, by the continuous embedding above, we can consider the random
process x : £2 X [—r,u] — R4 as a random variable

x: 2 —> Ma([—r, u], R

in L2(82, Ma([—r, u], RY)), that is

1/2
2
”-x”Lz(Q,Mz([*V,M],Rd)) = (/;2 ”'x(a))”Mz([—r,u],Rd)P(dw)) < Q.

For later use, we write L%(Q, Mo ([—r, ul, Rd)) for the subspace of Lz(Q, M»
([—r, ul, Rd)) of elements that admit an (%;)e[0.4]-adapted modification.

To deal with memory and delay we use the concept of segment of x. Given a
process x, the delay gap r, and a specified time ¢ € [0, T'], the segment of x in the
past time interval [t — r, 7] is denoted by x;(w, -) : [-7,0] — R4 and it is defined
as

x(w,s) :=x(w,t +5), s €[—r0].

So x;(w, -) is the segment of the w-trajectory of the process x, and contains all the
information of the past down to time ¢ — r. In particular, the segment of x( relative
to time ¢+ = 0 is the initial path and carries the information about the process from
before t = 0.

Assume that, for each w € 2, x(-, w) € L*([—r, T],R%). Then x;(w) can be
seen as an element of L2([—r, 0], Rd) for each w € §2 and ¢t € [0, T]. Indeed
the couple (x(t), x;) is a .%;-measurable random variable with values in M5, i.e.
(x(t, w), x/(w, ) € Mp, givenw € £2.

Let us consider an .%y-measurable random variable n € Lz(.Q, M>). To shorten
notation we write My = Lz(.Q, M>). A stochastic functional differential equation
(SFDE), is written as

dx(t) = f(t, x(t), xp)dt + g(t, x(t), xr)dW (@), t €[0,T]

3)
(x(0), x0) =n € M>
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where

Fi00,TIx My > RY and g:[0,T] x My — L(R",RY).

2.2 Existence and Uniqueness of Solutions

Under suitable hypotheses on the functionals f and g, one obtains existence and
uniqueness of the strong solution (in the sense of L?) of the SFDE (3). The
solution is a process x € L2(.Q, M>([—r, T], Rd)) admitting an (% );e[0, 71-adapted
modification, that is, x € L% (22, Mo([—r, T1, RY)).

We say that two processes xlx2 e L2(.Q, M>([—r, T], Rd)) are L2-unique, or
unique in the L?-sense if [x; — 2l 2@ My ((—r. 7). REy) = 0.

Hypotheses (EU):

(EU1) (Local Lipschitzianity) The drift and the diffusion functionals f and g are
Lipschitz on bounded sets in the second variable uniformly with respect
to the first, i.e., for each integer n > 0, there is a Lipschitz constant L,
independent of ¢ € [0, T] such that,

|f (2, 01) = [, p2)Iga + 118(2, 01) — g(2, @) | L gm Ry < Lallor — @2lla,

for all t € [0, T] and functions ¢, 92 € M, such that ||¢1lly, < n,

lo2lla, < n.
(EU2) (Linear growths) There exists a constant C > 0 such that,

|f @ Wlga + 18 V)| Ln ey < C (14 1¥11a1,)

forallz € [0, T] and Y € M>.

The following result belongs to [28, Theorem 2.1]. Its proof is based on an
approach similar to the one in the classical deterministic case based on successive
Picard approximations.

Theorem 1 (Existence and Uniqueness) Given Hypotheses (EU) on the coeffi-
cients [ and g and the initial condition n € My, the SFDE (3) has a (strong)
solution "x € Li(.Q, M>([—r, T1,RY)) which is unique in the sense of L?. The
solution (or better its adapted representative) is a process "x : 2 x [—r, T] — R4
such that

(1) "x(@) =n@),t €[-r0]
() "x(@) € Ma([—r, T],RY) w-a.s.
(3) Foreveryt €[0,T], "x(t) : 2 — R is Z;-measurable.
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From the above we see that it makes sense to write

t t
n(0)+/ fu, "x), "xu)dIH—/ glu, "x (), "x,)dW(u), t €[0,T]
0 0

n(), t € [—r,0].

Tx(t) =

Observe that the above integrals are well defined. In fact, the process
(@, 1) = ("x(t, 0), "x;(w))

belongs to M, and is adapted since x is pathcontinuous and adapted and its
composition with the deterministic coefficients f and g is then adapted as well. Note
that "x represents the solution starting off at time O with initial condition n € M.

One could consider the same dynamics but starting off at a later time, let us say,
s € (0, T], with initial condition n € M. Namely, we could consider:

dx(t) = f(t,x(@), xp)dt +g(t,x(), x)dW(t), te(s,T]

“4)
x(@t)=n(t—s), tels—rs]

Again, under (EU) the SFDE (4) has the solution,

t t
e (1) 17(0)-1—/ fu, "x* (), "x;)du-f—/ g, "x* (), "x))dW(u), tels,T]
x° (1) = s s

n(t—s), tels—rs]

&)

The right-hand side superindex in "x* denotes the starting time. We will omit the
superindex when starting at 0, 7x? = "x. The interest of defining the solution to (4)
starting at any time s comes from the semigroup property of the flow of the solution
which we present in the next subsection. For this reason we introduce the notation

Xi(n,0):=X(s,1,n,0) =x"10),"5 @), 0, s<t. (6)
In relation to (4) we also define the following evaluation operator:
po - My — Rd, pop :=v forany ¢ = (v,60) € M>.

We observe here that the random variable 7x*(¢) is an evaluation at O of the process
Xi(m),tels, TI
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2.3 Differentiability of the Solution

We recall that our goal is the study of the influence of the initial path 7 on the
functionals of the solution of (3). For this we need to ensure the existence of
an at-least-once differentiable stochastic flow for (3). Hereafter we discuss the
differentiability conditions on the coefficients of the dynamics to ensure such
property on the flow.

In general, suppose we have E and F Banach spaces, U C E an open set and
k € N. We write L¥(E, F) for the space of continuous k-multilinear operators A :
E* — F endowed with the uniform norm

IAN ke, Fy == sup{llAur, ..., v llF, Nlville < 1, i=1,...,k}.

Then an operator f : U — F is said to be of class %0 ifitis C¥ and Dff U —
LK(E, F) is 8-Holder continuous on bounded sets in U. Moreover, f:U— Fis
said to be of class %’5 if it is CK, Dkf : U — LK(E, F) is 8-Holder continuous
on U, and all its derivatives D/ f, 1 < j < k are globally bounded on U. The
derivative D is taken in the Fréchet sense.

First of all we consider SFDEs in the special case when

8, (9(0), 9(1) = g1, 9(0)), ¢ = (9(0), (")) € My

that is, g is actually a function [0, T] x R? — R4>*",
For completeness we give the definition of stochastic flow.

Definition 1 Denote by S([0,T]) := {s,t € [0,T] : 0 < s <t < T}. Let
E be a Banach space. A stochastic %*°-semiflow on E is a measurable mapping
X :8([0,T]) x E x 2 — E satisfying the following properties:

(i) Fora.e.w € £2,the map X(-, -, -, w) : S([0, T]) x E — E is continuous.
(ii) For fixed (s,7) € S([0, T]) the map X(s,7,-,w) : E — E is € for a.e.
w€E 2.
(i) For0 < s < u < t,ae. o € 2 and x € E, the property X (s,t,n, w) =
X(u,t, X(s,u,n, w),w) holds.
@iv) Forall (¢,n) € [0, T] x E and a.e. w € §2, one has X (t, ¢, n, w) = n.

In our setup, we consider the space E = M.
Hypotheses (FlowS):

(FlowS1) The function f : [0, T] x My — RY is jointly continuous; the map M, >
¢ = f(t, @) is Lipschitz on bounded sets in M; and €0 uniformly in ¢
(i.e. the 5-Holder constant is uniformly bounded in ¢ € [0, T']) for some
5 € (0, 1].

(FlowS2) The function g : [0, T] x RY — R?*™ is jointly continuous; the map
RY 5 v g(t,v) is (gzb,a uniformly in 7.
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(FlowS3) One of the following conditions is satisfied:
(a) There exist C > 0 and y € [0, 1) such that

|f (6, 9) < CA+llglhy,)

forallt € [0, T] and all ¢ € M
(b) Forallt € [0,T] and ¢ € M>, one has f(t, ¢, w) = f(t, 9(0), w).
Moreover, it exists ro € (0, r) such that

[t 9,0)= [, 9, 0)

for all + € [0,7] and all ¢ such that ()1, () =
(Z)(-)l[,r’,m](-).
(¢c) Forallw € £2,

sup [[(DY(t, v, )~ lm, < oo,
t€l0,T]

where (¢, v) is defined by the stochastic differential equation

dy(t,v) = g(t, ¥ (t,v)dW(),
(0, v) =v.

Moreover, there exists a constant C such that

lf@ ol < CA+llellm,)

forallt € [0, T] and ¢ € M>.
Then, [29, Theorem 3.1] states the following theorem.

Theorem 2 Under Hypotheses (EU) and (FlowS), X] (n, w) defined in (6) is a Fhe.
semiflow for every € € (0, §).

Next, we can consider a more general diffusion coefficient g following the
approach introduced in [29, Section 5]. Let us assume that the function g is of type:

t
g(t, (x(1), x1)) =§(I,X(t),a+/0 h(s, (x(s), x5))ds),

for some constant a and some functions g and h satisfying some regularity
conditions that will be specified later. This case can be transformed into a system
of the previous type where the diffusion coefficient does not explicitly depend on
the segment. In fact, defining y(¢) := D), yP )T where y V(1) = x(1),
t € [-r T, yP) == a+ [y h(s, (x(s), x5))ds, t € [0,T]and y® () := 0 on
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[—r, 0], we have the following dynamics for y:

dy(t) = F(t,y(1), y)dt + G(t, y())dW (1),

7
y(0) =00, a)", yo= (1,07,
where
(1@ yO@, v
F(t, y(l‘), yl‘) - (/’l(t,y(l)(t),yt(l)) s
o (€)] 2)
Gt.y(1) = (g(t’ I “”) . ®)

The transformed system (7) is now an SFDE of type (3) where the diffusion
coefficient does not explicitly depend on the segment. That is the differentiability of
the flow can be studied under the corresponding Hypotheses (FlowS). Hereafter, we
specify the conditions on g and % so that Hypotheses (EU) and (FlowS) are satisfied
by the transformed system (7). Since the conditions (FlowS3)(a) and (b) are both
too restrictive for (7), we will make sure that (FlowS3)(c) is satisfied. Under these
conditions we can guarantee the differentiability of the solutions to the SFDE (4)
for the above class of diffusion coefficient g.

Hypotheses (Flow):

(Flow1) f satisfies (FlowS1) and there exists a constant C such that

lf(t, o)l < CU + lelm,)

forall € [0, T] and ¢ € M>.
(Flow2) g(t, ¢) is of the following form

g(t,9) =8(1,v,80)), 1€[0,T], ¢=(v0)ecM

where g satisfies the following conditions:

(a) The function g : [0, T] x Rtk — R4*™ is jointly continuous; the map
RITE 5 y > g(t, y) is %zh,a uniformly in .

(b) Foreachv € RI*k | Jet {W(t, v)}ieq0, 7] solve the stochastic differential
equation

—
v(t,v) =v+ (fo 8(s, W(i), v))dW(s)> ’
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where 0 denotes the null-vector in R¥. Then ¥ (¢, v) is Fréchet differ-
entiable with respect to v and the Jacobi-matrix DV (¢, v) is invertible
and fulfils, for all w € £2,

sup ||Dl1/*1(t, v, w)|| < oo, where | - || denotes any matrix norm.
t€[0,T]
veRd+k

and, g : L*>([—r, 0], RY) — R* satisfies the following conditions:

(c) It exists a jointly continuous function & : [0, T] x My — R¥ s.t. for
each ¢ € L2([—r, T], RY),

t

560 = §(@0) + fo h(s, G(s). 5))ds.

where ¢; € L2([—r, 0], Rd) is the segment at ¢ of a representative of ¢.
(d) My > ¢ — h(t, ¢) is Lipschitz on bounded sets in M», uniformly with
respectto ¢ € [0, T'] and Gk uniformly in ¢.

Corollary 1 Under Hypotheses (Flow), the stochastic flow X{(n) = X (s, t, n, w),
w e R, 1> s to4)isa € t-semiflow for every ¢ € (0,8). In particular, ¢ +
X(s,t,@,w)is C! in the Fréchet sense.

3 Sensitivity Analysis to the Initial Path Condition

From now on, we consider a stochastic process x which satisfies dynamics (3),
where the coefficients f and g are such that conditions (EU) and (Flow) are satisfied.
Our final goal is to study the sensitivity of evaluations of type

p) = E[0(X§m))] = E[#Cx(T), "1)]. n e My ©)

to the initial path in the model "x. Here, @ : M> — R is such that dﬁ(X(} ) €
L*(£2, R). The sensitivity will be interpreted as the directional derivative

p(n+eh) — p(n)

h e M. (10)

d .
Hhp() = ds[?(ﬁ+sh) =3£%

e=0

Hence we shall study pertubations in direction & € M>. The final aim is to give a
representation of d; p(n) in which the function @ is not directly differentiated. This
is in the line with the representation of the sensitivity parameter Delta by means of
weights. See, e.g. the Malliavin weight introduced in [19, 20] for the classical case of
no memory. For the sake of clarity in notation in the sequel we use 9, for directional,
D for Fréchet and & for Malliavin derivative. Hereafter, we impose some regularity
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conditions on f and g:

Hypotheses (H):

(H1) (Global Lipschitzianity) ¢ + f(t,¢), ¢ +— g(t, @) are globally Lipschitz
uniformly in ¢ with Lipschitz constants L ¢ and L, i.e.

[ f(t,01) — f(&, @) Ire < Lyllor — o2l
g, 1) — g, )l L@mn rey < Lgllor — @2llm,

forallt € [0, T] and @1, @2 € M>.
(H2) (Lipschitzianity of the Fréchet derivatives) ¢ +— Df (¢, ¢), ¢ — Dg(t, @) are
globally Lipschitz uniformly in ¢ with Lipschitz constants L py and L pyg, i.e.

IDf(t, o1) — Df(t, p2)|l
| Dg(t, 1) — Dg(t, p2)l

Lprller — o2llm,

NN

Lpgllor — @2llm,

forall t € [0, T] and @1, 2 € M>.
The corresponding stochastic &1 -semiflow is again denoted by X.

Before proceeding, we give a simple example of SFDE satisfying all assumptions
(EU), (Flow) and (H).

Example 1 Consider the SFDE (3) where the functions f and g are given by

0
ft,9) = MOp©O) + | M(s)¢(s)ds,

0
8t ) = X(t)p(0) +/ Z(s)g(s)ds,

—r

where M : [0, T] — R%4 M : [—r,0] —» R9*4 ¥ :[0,T] — L(RY, RI>m),
and X : [—r, 0] = L(R?, R4*™) are bounded differentiable functions, X (—r) = 0
and s —> X'(s) = ds X (s) are bounded as well.

Obviously, f and g satisfy (EU) and (H) and therefore also (Flow1). In order to
check conditions (Flow2), we note that

where

0
56y = 2Oy 1@,y = 6D yD) T and F(e() = / 5 ()p(s)ds.

—r

The function g satisfies condition (Flow2)(a) as X' is bounded and continuous.
Let us check condition (Flow2)(b) in the case d = m = 1. Then g(t,y) =
o (t)y®D + y@ where o is a real valued, differentiable function and ¥ fulfils the
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two-dimensional stochastic differential equation

t
v, v) = oM +[ (o ()T D (s, v) +vP)aW(s),
0

O, v) = v?,

which has the solution
t t
W(l)(t, v) = lf/(t) (v(l)—/ a(s)v(z)lj_l(s)ds—i-/ v(z)lf/_](s)dW(s)> R 11/(2)(t, v) = v(z),
0 0
with
- 1 t t
(1) =exp{— / o?(s)ds + / o(s)dW(s) } .
2 Jo 0
Therefore, we get that

L+0@ PO (= fyo@d T )ds + f§ AW ())

DY (t,v) =

0 1

and
1 o ot =1 A

pot. v — [ b o ( S o) F N s)ds + [ & (s)dW(s))
0 1

Using in fact that (1) > 0 and applying the Frobenius norm || - ||, we obtain

w-a.e.

10w @ e =t ((D¥ 1, )T DY 1, v)
- t - t - 2
<2+ 921 (—f o(s)w—‘(s)ds+/ w—l(s)dW(s)> < 00,
0 0

fort € [0, T], v e R2 By this Hypothesis (Flow2)(b) is fulfilled.
Moreover, a simple application of partial integration and Fubini’s theorem
together with the fact that X' (—r) = 0 shows that

0

0 t 0
2(@) =/ Z()@: (s)ds =/ 2(s)¢0(s)ds+/ {2(0)¢(u)—/ i(s)@u(s)ds}du

—r —r 0 —r

=§(¢o)+/0 h(t, (), ¢u)du.
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It can be easlily checked that i (¢, ¢) = X (0)p(0) — fi)r Z_"(s)go(s)ds satisfies the
conditions given in (Flow2)(c) and (d). O

We are now ready to introduce two technical lemmas needed to prove our main
results.

Lemma 1 Assume that the solution to (4) exists and has a ch 1-semiﬂow X (n, w),
s < t, w € §2. Then, the following equality holds for a.e. ® € §2 and all directions
he M:

DXi(n, w)[h] = (D"x*(t, w)[h], D"x*(t + -, w)[h]) € M>.

Proof Note that DX; (n, w)[h] € M>. Let {e;}{2, be an orthonormal basis of M>.
Then,

DX (n, @)kl = Y (DX} (n, 0)[h], &), ei = Y D(X] (0, ), €i) , [hle;
i=0 i=0

0

—r

= D(xs(t, w)e; (0) +/ x5t +u, we; (u)du)[h]e,-
i=0

0

= Z <st(t, w)[h]e; (0) +/
i—0

—r

Dx*(t +u, w)[hle; (u)du)e,-

=Y (DX (1. )[h], D (1 + -, )[h]). ), e
i=0

= (D"x%(t, w)[h], D"X*(t + -, w)[h]).

This finishes the proof. O

Lemma 2 Let Hypotheses (EU), (Flow) and (H) be fulfilled. Then, for all t €
[0, T1, we have that E[|X{()},,] < oo and E[|DX)(m[h]l};,] < oo and

the functions t E[||X?(n)||j*wz] and t > E[||Dx?(n)[h]||j*wz] are Lebesgue
integrable, i.e.

T
/0 E[IIX{ ()3, 1dt < o0, (11)

T
/0 E[IDX? (A1}, 1dt < oo. (12)
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Proof To see this, observe that
0 0 2
1X20 Iy, = (1x)P +/ I—oo.0) (s +10)In(s +u)[*du +/ 1000 (5 +w)lx(s +w)Pdu)
—r —-r
<3 sup [x()[* +3lInllj, +3r* sup [x()[,

t€[0,T] t€[0,T]

and thus, for all s € [0, T]

ETIXY () 3,1 < 3lInlly, + 30+ r)EL sup [x(0)]*], (13)
t€(0,T]
and
T
/0 ENIX)) I3y, )dr < 3T \nlly, + 301+ rHTE[ sup |x(0)]*]. (14)
t€l0,T]

To prove (11) it is then enough to show E[sup,[o 7 lx(1)|*] < oo. Therefore,
consider first

E[ sup [x(n*]
t€l0,T]

t t 4
=E|: sup ‘n(0)+/ f(s,X?(n))ds+/ g(s,X?(n))dW(s)‘ }
t€[0,T] 0 0

t 2 t 2.2
2 0 0
gELS[‘S?T] (3103, +3( fo Fls x0mds)”+3( /0 g5 X0aw s)”) }

T T 2
< 27lnllyy, +277 /0 Enf(s,X?(n>>|“]ds+z7KBDGE[( /0 195, X0 ds) }

Here we applied twice the fact that (3"}, a)?> <n Yo la;|? as well as Jensen’s
inequality, Fubini’s theorem. Since the process fo g(s, X?(n))d W (s) is a martingale
(as a consequence of Theorem 1), we have also used the Burkholder-Davis-Gundy
inequality (with the constant Kzpg).

By the linear growth condition (EU2) on f and g and (13), we have

£ XY < (CA+ XTI Iwy))* < 8CH+8CHI X (I,

< 8CH+24CHnllyy, + 241 +77) sup |x(n)[,
tel0,T]

and the same applies to |g(s, X?(n))l“. Plugging this in the above estimates, we
obtain

E[ sup [x(®)]*] < 27Inll},(1 + 24C*T*(1 + Kpe)) + 216C*T*(1 + K5po)
tel0,T]

+648(1 +r2)C*T*(1 4+ KppG)EL sup |x(1)[*1,
t€[0,T]
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which is

(1 = T*%DE[ sup |x(0)]*] < ko,
t€l0,T]

where

ki == /648(1 + r2)C*(1 + Kppg) and
k= 27|}, (1 +24C*T>(1 + Kpc)) + 216C*T>(1 + Kppe).

Then we distinguish two cases.

Casel: T < kll . Then E[sup,c(o, 1) lx()]*] < ka ) Hence, by (13) and (14)

(1-T2%?
we have that (11) holds.
Case2: T > kll . In this case, choose 0 < T} < T» < --- < T,, = T for some
finite n such that

1 1
T < and T, — Ty < ., i=2,...,n.
k1 k1

By the semiflow property, we have X g (X(}1 ) = X% (n), so we can solve the
SFDE on [0, T1], and by Case 1 we have

T
E[ sup |x()]4 <ooand/ E[X? () 3,)dt < oo.
tel0,Tq] 0

Then, we use X % (n) as a new starting value and solve the equation on [T, T2]. By
the same steps as before, we obtain

E[ sup |x(n[*]
te[T,T]

_ 2TEUXE I3y, 11424 =T1)* (14K 506) CH+216C (T =T1)*(14+K 5.06)
< 1-648(14+72) (Ty—T1)2 (14K ) C -
and therefore,
T 0 4 T 0 4 Ly 0 4
fo ETIX! (n)uMz]dr:/o ET) X (n>||M2]dr+f ENIXO Gl 1dr

T

T
< fo ELIXY () 135,)dt +3(T — TOELIXY, ()34,]

+3(T, — T +rHE[ sup  |x(1)[*] < oc.
te[T, 1]
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Iterating the argument, we conclude that for all T € (0, 00), E[sup, ¢ 77 1x(#) |4] <

oo and fOT E[||X?(n)||ﬁ,12]dt < 00, that is (11) holds.
In order to prove (12), we define the process

o xo ~
y(t) = (Dx(t)[h]) ,tel[-rT]

and the corresponding short-hand notation
Mt,n, h) = (X7 (), DX]()[h]) € Mz x My

The process y satisfies the SFDE

t t
vy = ("0 & f £, Hs.n. hyyds + / &5, Ws. 0, h)AW(s),
h(0) 0 0

yo=(,h) (15)

where, for (¢, w)T € My x M>,

; — f(s,9) A L g(s, )
f: . ¥)) = (Df(w)[m)’ 86 (0. ¥)) 1= (Dg(s,w)[w]>'

Thanks to Lemma 1, we recognize Eq.(15) as being of type (3). In fact, we
can identify the M» x Mj-valued random variable (X?(n), DX?(n)[h]) with the
M>([—r, 0], R??)-valued random variable (y(s), y(s + -)). Using (H) it is now easy
to check that f and g fulfil Hypothesis (EU), which are sufficient for the existence
and uniqueness of a solution.

We can therefore argue exactly as in the proof of (11) and obtain that

T
ELI2At 1. W) I34y a1, < 00 V1 € [0, T and[ E[ZAt, 0, )[4, p1, 1At < 00.
0
Moreover, since

0 2
I2AE, 1. W) 3,1, = (|y(r>\§w + | b +u>\§wdu)

—r

0 2
(|x(r>\]§d + Dx(Oh] Ry +/ (|x(r+u)|§y+|Dx<t+u>[h1|§d)du)

(X213, + IDXCIANI3,,)* = IDX )[R,

we conclude that E[|| DX} (m)[h]l},,] < oo forall 7 € [0, T] and (12) holds. O
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Our aim in the study of (10) is to give a formula for d,p(n) that avoids
differentiating the function @. Our approach consists in randomizing the initial
condition 7 and in finding a relationship between the Fréchet derivative DX (}(n)
applied to a direction # € Mj and the Malliavin derivative of the X (% with the
randomized starting condition.

3.1 Randomization of the Initial Condition and the Malliavin
Derivative

Following the approaches in, e.g. [30] or [34], we define an isonormal Gaussian
process B on L*([-r, 0], R), independent of the m-dimensional Wiener process W
that drives the SFDE (3). Without loss of generality, we can assume that W and B are
defined on indepentent probability spaces (2", FV_ PV)and (2B, 7%, PB) and
that (2, .7, P) = (2V x 2B, 2V © Z®, PV ® PB). From now on we shall work
in 2 = 2% x 2B. Hence, we correspondingly transfer the notation introduced so
far to this case. However, we shall deal with the Malliavin and Skorohod calculus
only with respect to B. In fact, for the isonormal Gaussian process B we define the
Malliavin derivative operator & and the Skorohod integral operator § as performed
in e.g. [30] or [34].

For immediate use, we give the link between the Malliavin derivative of a
segment and the segment of Malliavin derivatives.

Lemma 3 If X?(n) = ("x(t), "x;) € My is Malliavin differentiable for all t >

0, then, for all s > 0, Z5"x; = {Zs"x(t + u), u € [—r, 0]} and .@SX?(n)
(Zs"x(t), D5 "x(t + ) € M.

O

Proof The proof follows the same lines as the proof of Lemma 1.

Here below we discuss the chain rule for the Malliavin derivative in M. This
leads to the study of the interplay between Malliavin derivatives and Fréchet
derivatives.

We recall that, if DX is bounded, ie. for all 0 = (0", 0®) € @,

SUP, e, ||DX(% (n(w), ®V)|| < oo, the chain rule in [34, Proposition 3.8] gives
2 X7 ((@", %), 0") = DX ((@", %), 0" Zsn(@", ™)),

as the Malliavin derivative only acts on w®. We need an analoguous result also in
the case when DX (% is possibly unbounded. To show this, we apply Z; directly to
the dynamics given by Eq. (3).

Theorem 3 Let X°(n) € L2(2; Ma([—r, T1,R?)) be the stochastic semiflow
associated to the solution of (3). Let Hypotheses (EU), (Flow) and (H) be fulfilled.
Then we have

2:X%(n) = DXS()[Zsn]  (0,5) —a.e. (16)
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Proof To show this, we apply Z; directly to the dynamics given by Eq. (3). Doing
this, we get, by definition of the operator pyp and Lemma 3, for a.e. w € 2

Zsn(0) + [o Df (u, XI)[ 25 X0 ()1du
po(Zs X9 () = 5 "x(t) = + Jo Dglu, X[ 2: X0 1dW W), t €0, T],
(), te[-r,0].

a7
Define the processes
— x(1) [ "x®
o= (D ”X(t)[.@m]) 0= (% "x(r)) |
From the proof of Lemma 2 we know that y satisfies the SFDE
_ n(0) rp ta
yi) = + fo £, y), y)du + [y §u, yu), y)dW (),
Zsn(0)
yo = sn),

with the functions f and g as in the proof of Lemma 2. Moreover, by (17) and
Lemma 3, it holds that z satisfies the SFDE

2(t) = n(0) + o Fu, zu), z)du + [y &G, z(u), Z)dW (),
Dsn(0)
20 =W D).

Comparing those two SFDEs, it follows that y = z in L2(.Q, My([—r, T, Rd)).
Therefore,

T T 0
EU ||y,—zf||%42dt]=E[/ o =z + |y(r+u>—z(t+u>|2dudr}
0 0

—r

< (T +0ly =zl @ my—r11,RY) = 0

which implies that ||y, — z[ls, = O for a.e. (w,1) € 2 x [0, T]. O

‘We now introduce the randomization of the initial condition. For this we consider
an R-valued functional £ of B, non-zero P-a.s. In particular, £ is a random variable
independent of W. Choose & to be Malliavin differentiable with respect to B with
9s& # 0 for almost all (w, s). Furthermore, let n, & € Mj be random variables
on 2% ie. n(w) = "), h(w) = h(w"). We write n, h € My(£2"V), where
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M, (£2W) denotes the space of random variables in M that only depend on " €
2W . Here 1 plays the role of the “true” (i.e. not randomized) initial condition and
h plays the role of the direction in which we later are going to differentiate. For
simpler notation, we define 7 := n — h.

Corollary 2 Let X7 + Aéh) € L%(2; Ma([—r, T1,R?)) be the stochastic
semiflow associated to the solution of (3) with initial condition 1 + Méh € My,
where . € R. Let Hypotheses (EU), (Flow) and (H) be fulfilled. Then we obtain

2:X5%. (70" + 26 (@P)h(")) = DX5 (")
+ 2@ (" )12 (@) h(w")] (18)

(w, s)-a.e. In short hand notation:
DX (i + AER) = DX (7 + AER) L D). (19)

We are now giving a derivative free representation of the expectation of the
Fréchet derivative of @ o X (% at 1 in direction % in terms of a Skorohod integral.
This representation will later be used to get a representation for the derivative of
p(n) in direction h.

Theorem 4 Let Hypotheses (EU), (Flow) and (H) be satisfied and let ® be Fréchet
differentiable. Furthermore, let a € L?([—r, 0], R) be such that f?r a(s)ds = 1.
If a(1&/D.£ is Skorohod integrable and if the Skorohod integral below and its
evaluation at .. = é € R are well defined then following relation holds

0 - _ 0~ K3
ELD(® o X§)()[h1] = [{5(®(XT(77 +A5h>)a(>%)} L:J .o

Proof First of all we can see that, by Corollary 2, we have the relation
P X35 + AEh) = DX)(ij + MWL DsEh] (o, 5) — a.e.
Multiplication with ;. yields

3

D ZsX9.(ii + M) = DX + MEM[MIAE (0, 5) —a.e. 1)

For the above, we recall that Z;& # 0 a.e. Since the right-hand side in (21) is defined
w-wise, the evaluation at A = é yields DX (% (n + h)[h]. Summarising, we have

= DXY.(7 + h)[h] = DXY.(lh]

1

§ ZXGG+aEm}| | = DXGG+ashlhni|
&

{@sé =]
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Multiplying with 1 = f i)r a(s)ds and applying the chain rule, together with the fact
that D@ (X (% (1)) is defined pathwise, we obtain

ELD(@ o X))l = E[ DO X} ) DX (1Al

0
E [ [ D<P(X9(n))DX(}(n)[h]a(S)dS}

' 5]

r=]

0
_ _ £
—E [{ /_ DOOXGGI+ AKX G+ 1) ) ds|

—E {/0_@{¢(X0(77+A5h))}a(s) § dsH
P r g Th=l |’

The partial integration formula for the Skorohod integral, see e.g. [30, Prop. 1.3.3],
yields

§

EID(@ o X)) = E [{¢<X°T<ﬁ 23 (a0)

) — (@ (X9 G + Agh)ac) ;s)HA-J

. [(p(xg(n))(;(a(.) ;g) —{8(exX%G + rgmac) @S’;‘)}‘A:J'

Observe that @ (X (} () is .Z" -measurable and § (a(~) 9”;) is .Z®-measurable. The

result follows from the independence of W and B and E |:8 (a(~) 5%_ >:| =0. |

Remark 1 As for a numerically tractable approximation of the stochastic integral in
the above formula we refer to [30, Section 3.1].

Proposition 1 Define u(s, L) := @(X(}(ﬁ + AEh))a(s) @ié" s € [-r,0], A € R
Assume that the Skorohod integral §(u(-, 1)) exists for all A € R. If for all A > 0
there exists a C > 0 such that for all A1, Ay € supp&—1, |Aq], [A2] < A:

(- 20 = uC 2172 @ oy + 12 G D) = uC A 72 g ropy < CIA1 =22l
then the evaluation §(u(-, 1))|, _1 is well defined.
¢
Proof The Skorohod integral §(u(-, 1)) is an element of L?(£2, R). From
18 e I 72y < NG M T 2@ pron iy T 128G M2 0 ror k)

(see [30, eq. (1.47) Proof of Prop. 1.3.1]), under the assumptions above and by
means of Kolmogorov’s continuity theorem, we can see that the process

Z: 2 xsuppE~! — L*(2,R), A — 8u(-, 1))
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has a continuous version. Applying this continuous version, the evaluation at the
random variable ; is well defined:

1
Sl M @)l,_1 = Z(w, M],_1 = Z(o, E(w))~

Hence we conclude the proof. O

3.2 Representation Formula for Delta Under a Suitable Choice
of the Randomization

A particularly interesting choice of randomization is § = exp(B(1[—, o)), since in
this case, ;& = & forall s € [—r, 0] and

18 e, 1)) = 8 (-, 2272,
< MNallFaq_yop IPXT G+ 1ER) = DXT G+ kM7 g)  (22)
HIAP KT+ 21E) = DX7 G+ 12572 @ rop)-

In this setup, let the following hypotheses be fulfilled:

Hypotheses (A): @ is globally Lipschitz with Lipschitz constant Lg and C!. The
Fréchet derivative D@ is globally Lipschitz with Lipschitz constant L pg.

A more general payoff function @ will be considered in the next subsection.
Recall that p(n) = E[®@(X (} (n))] and the sensitivity with respect to the initial path,

the Delta, in direction & € M is 9 p(n) := % p(n + sh)|e=o.
Lemma 4 Under Hypotheses (EU), (Flow), (H) and (A), we have

wp(n) = E[D(@ o X)([A]].

Proof By definition of the directional derivative, we have
. 1 .
p() = lim E[_(@XG01+eh)) = #(XG0)) | = lim EIF],

where Fp(w) = L(®(X(n + eh, 0)) — DX} (. ®))) = D(@ o X ())(n)[h]
a.s. since the Fréchet derivative of @ o X (} in 5 is defined for a.e. w. Moreover,

|®(X%(n + eh, w)) — D(X%(n, )] <L X907+ eh, w) — X9 (n, @)l m
& &

[ Fe(w)| = =: Gg(w).
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So if we can find G € Ll(.Q, P)st. G — gin Ll-convergence as e — 0, we
would have that F, — D(® o X(%)(n)[h] in Ll-convergence by Pratt’s lemma (see
[33, Theorem 1]). This would conclude the proof.

Observe that, by the continuity of the norm ||-||y, and the w-wise Fréchet
differentiability of X (% in 1, we have that

Ge(@) > Lo | DX7(n, @)[Mllmy, w-ace.

Let G(w) := Lo|DX%(n, ®)[hllm,- By Lemma 2, G € L'(£2,R). We apply
Vitali’s theorem (see [35, Theorem 16.6]) to show that the convergence G, — G
holds in L'. This means that we have to prove that the family {G¢}ce(—s,s) for some
8 > 01is uniformly integrable. To show that, we will proceed in two steps:

(1) Prove that ||G¢|l 2oy < K for some constant K uniformly in .
(2) Show that this implies that {g¢}sc(—s,s) is uniformly integrable.

Step (1): By Lemma 2, it holds that for each fixed ¢ € (-4, §)\{0}, the function s —
E[C 11X +eh, 0) — X0, w)llm,)?] is integrable on [0, T]. Now, making use of
Jensen’s inequality, Fubini’s theorem and the Burkholder-Davis-Gundy inequality,

1 2
E[(8||X%(n+eh>—X‘%(n)HMZ) }
1 T
—E (ysh(O) +/ (f(s,xg(msh)) - f(s,xg(n))) ds
g2 0
T 0 0 2 0 2
[ (s X000 = 5. X0 ) W + [ 10T + et

0 T+u
+/ 1{0,00) (T + u)|eh(0) +/
—r 0

(£, X0 +em) = 1G5, X00)) ds
T+u 0 0 5

[ (. X000+ e - g6, X000 ) aw )| du)]

0

» 3T (T 0 00,12

<3P+ [ BN x00 + ok~ £ X0 Plds

3 T 0
+5 /O Ellg(s, X+ eh)) — g(s, XJ)*1ds + / |h(w)du + 3r 1 (0)

3 0 T+u 0 0 )
+ o2 / 110,00) (T + u)-/(; (TH+uwE[|f(s, Xg(m+€h)) — f(s, X{ ()| 1dsdu

3 0 T+u 0 0 5
5 [ oo [ Elleto, X001+ e — (s, X0 Pldsd
—r



60 D. R. Baiios et al.

T
<3+, + G+ r)T/O 2 LG X2 +em) = £, X)) s

T
G40 [ LBl X0+ ) = g6, X000 Plds

T 1 2
<3 +nlhllgy, + G+rLg + TL})/O E[(e 1X0( + eh) — x?(n)an) ]ds.

It follows from Gronwall’s inequality that

1 2
lge 720 = LéE[(S I1X9.( + eh) — X‘%(n)uMz) }

G+r)(TLI4T?L?

<3LG (1 +1)lhl,e P = K2

Step (2): Fix § > 0. Then, by Holder’s inequality and Markov’s inequality

lim sup E[|ge|l{g>ay] < lim sup |Igell 2@y P(Ige| > M)
M—o00 le|<é

M— o0 le|<é

lge K2
< lim sup 5 < dim T =0,
M—o0 le] <8 M M—oo M
i.e. the family {g;}sc(—s,5) is uniformly integrable. O

With this result, we can give a derivative free representation formula for the
directional derivatives of p(n).

Theorem 5 Let Hypotheses (EU), (Flow), (H) and (A) be fulfilled. Let a <
L2([—r, 0], R) be such that f?ra(s)ds = 1 and let § = exp(B(1[—.01)). Then
the directional derivatives of p have representation

0 p(n) = —E [{S(QD(X‘%(ﬁ + Aéh))a(-))} A } : 23)

&

We remark that different choices of function a may lead to different statistical
properties of the estimator under the expectation sign in (23).
To prove the theorem, we need the following lemma:

Lemma 5 Assume (H) and (A) and & = exp(B(1{—r,01)). For any A > O there
exists a C > 0 such that, for all |A1], |M2| < A, we have

(@) E[NX$Gi + Mgh) — X9G + Magh) 4,12 < Clag — Aol

(i) ELIDXYGi+ mEMDERY, 12 < Claa P
(iii) E[IDXY (7 + AER) &R — DXG.(7 + 2aEM[A26h]I3,] < Clrr — Aol
Proof See Appendix. O
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Proof (of Theorem 5) By Lemma 4, we know that we can interchange the directional
derivative with the expectation. We shall prove that the Skorohod integral in (23) is
well defined. For this we apply Proposition 1 and use (22).

Let A1, A2 € R, |A1], |A2] < A. Because of Hypotheses (A), and by Lemma 5,
we have that

1D (X (7 + 216h)) — B (XT (7 + A2Em)171 g,
o ELNXY G+ Mi&h) — X5.(7 + 2280 13,]
< LY EIX G+ MER) — X0Gi + Aagh) 4,12

< L3CIh — aal

On the other hand, the chain rule for the Malliavin derivative, the property 7§ = &,
and the fact that for two linear operators A1 and A it holds Ajx; — Axxy = (A1 —
Aj)x1 + Az(x1 — x2) together with the property |a + b|*> < 2lal* +2|b? yield

| 2P (X + MER)) — (XD (i + Aok M)}
< 2/(DD (XY (i + MER)) — DD (XY (7 + MER)IDXY (i + MEMMERN
+ 2| DD (XY (i + MaEMID XY (7 + MER[MER] — DXJ(7 + MER) MR

< 2IDD (XY (i + MER)) — DD (XY (T + MERDIPIIDXT (G + MEMDaERy,
+ 2 DD (XG (i + AEW)IPIIDXG (i + MERMiER] — DX+ A& AR,
< 2LH IXT G+ &R — X767+ MEW 54, IIDXT G+ MEMMERTI,,

+ 2L [[DXY (7 + MER1ER] — DX + daM) g1,

where we used Hypothesis (A) in the end. Taking expectations, applying Holder’s
inequality and Lemma 5 we finally get

AP (X7 (i + MER) — DXT G + 2257 @ 1o
< 2L ENIX G+ Eh) — X9+ M EMy, 12 ENNIDXY G + M EMAERTIIY, 12
+2LG E[I[DX} (i + MER)[MiER] — DXT.( + ko h)DagR113y,]

<2(Lpe CPHM 1 + L3 O) A — Aa)?

= O0()|r — ral*.

Hence, Proposition 1 guarantees the existence of the evaluation of the Skorohod
integral in A = é O
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3.3 Generalization to a Larger Class of Payoff Functions

This section intends to generalize the findings of the previous section for a larger
class of pay-off functions. In particular, this has interest in the context of finance
where typical pay-off function are not smooth. The results of this section allow
to treat, e.g., vanilla options such as European call and put options or even Asian
options averaged on the past delay.

Instead of Hypothesis (A), assume now that the following holds:

Hypotheses (A’): The payoff function @ : M> — R is convex, bounded from below
and globally Lipschitz continuous with Lipschitz constant L.

Moreover, consider the Moreau-Yosida approximations @,, : M — R given by
n

B, (x) = inf (@ ~5l3s). 24

n() = inf (@0 + 5 v =y, (24)

The following lemma summarizes some well-known properties of the Moreau-
Yosida approximations in our setup.

Lemma 6 For ® and @, as above, the following holds
(i) @n(x) =@ (x)) +5llx — Jn(x)||%,12, X € M, where J,, is given by

o\ !
nx — Jy(x)) € 0@ (J,(x)) or, equivalently J, = (z’d~|— ) ,
n

where 0@ (x) denotes the subdifferential of ® in x and 0P := {(x,y) € M> x
My :yedd(x)}

(i) Forallx € M>, ,(x) + @(x) and J,(x) — x, asn — oo.

(iii) D, is Fréchet differentiable and, for all x € M>, it holds

D®,(x) = n(x — Ju(x)) € 3P (Jn(x))

and D®,, is Lipschitz.
(iv) For each point x € dom(0®),

D®,(x) — "D (x),
where 3°® (x) denotes the element y € 0@ (x) with minimal norm.
(v) Foreachx € My, it holds |D®, (x)|| < Lo.

Proof

(i) See [10, p. 58] or [7, Theorem 3.24, p. 301], .
(i) See Theorem 2.64 in [7, p. 229].
(iii) See [10, p. 58], and [7, Thm. 3.24].
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(iv) See [7, Proposition 3.56 (c), equation (3.136), p. 354].

(v) By (iii), it holds D&, (x) € d® (yo) for some yp € My (namely yo = J,,(x)).
By the definition of the subdifferential, it holds for every g € 3@ (yo) and every
h € Mj:

(g, h) < P(yo+h) —P(yo) < Lollhllm,-

In particular, D@, (x)[h] < Lollhllm, and DP,(x)[—h] < Lol|lhllm, and
thus

|D®y (x)[h]] < Lo |lhllar,, whichimplies || D@, (x)|| < Le. O

The following proposition shows that we can approximate p(n) by a sequence
pn(n) using the Moreau-Yosida approximations for the payoff functions.

Proposition 2 Let the payoff function @ : M> — R be of type (A’). Let @, be
given by (24). Set p,(n) := E[®, (X(% ()] for n € M. Then, for all n € Ma,
pn(n) = p(n) asn — oo.

Proof As @ is bounded from below, without loss of generality, we can assume
@ being nonnegative. Then it is immediately clear from (24) that also @, is
nonnegative for every n. Since @, (x) 1 @ (x) from Lemma 6 item (ii), we have that
D, (X(} n, w)) 1 dﬁ(X(} (n, w)), for a.e. w € £2, and, therefore, by the monotone
convergence theorem

Jim py () = lim E[@,(X7.01)] = EL@(X7.01)] = p(n). 0

Definition 2 Let .2 and #'be Banach spaces. We call a function F : 2" — #LC
directional differentiable at x € 2 if the directional derivative oy F (x) exists for
each direction i1 € 2 and defines a bounded linear operator from 2 "to #.

Lemma 7 For each point x € M, at which @ is LC directional differentiable, it
holds

D®,(x) —> 0.D(x).

Proof Since @ is directional differentiable in x in each direction 7 € M>, we have
that 0 (x) is a singleton. In fact, by the definitions of the subdifferential and of the
directional derivative, we have for all 4 € M, on the one side we have

(o + eh) — D(v0)
0,0 (x) = lim Y0 . Y0 (e h),
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for all g € @ (x), and on the other side
P (x) = —0_p®(x) < —(g, —h) = (g, h),

for all g € 0@ (x). Namely, 0&(x) = {0.€(x)}. By Lemma 6(iv) we have that
D®,(x) — %P (x) = 3.0 (x). O

The following lemma, which is directly taken out of [31], shows that the set of
points where @ is not LC directional differentiable, is a Gaussian null set. Recall that
a measure p on a Banach space 4 is called Gaussian if for any nonzero b € %*,

the image measure by (1) := p o b~! is a Gaussian measure on R. It is called
nondegenerate, if for any b € %*, the variance of b, () is nonzero.

Lemma 8 Ler 2 be a real separable Banach space, % be a real Banach space
such that every function [0, 1] — % of bounded variation is a.e. differentiable,
B+ G C Zopen. Moreover, let T : G — % 'be a locally Lipschitz mapping. Then
T is LC directional differentiable outside a Gaussian null subset of G, i.e. for every
nondegenerate Gaussian measure . on G,

u({x € G : T is not LC directional differentiable in x}) = 0.

Proof See Theorem 1, Chapter 2 of [4] and Theorem 6 in [31]. O
This motivates the following assumption:

Hypothesis (G): The distribution of X (} (n) is absolutely continuous with respect to

some nondegenerate Gaussian measure, namely it holds PX% m = X (% (n)(P) =

Po(X (% (m)~! « u for some nondegenerate Gaussian measure .

The following lemma provides a chain rule for @ o X (%

Lemma 9 Letn € My and h € M»>. Under Hypotheses (EU), (Flow), (H), (A’) and
(G) it holds that the directional derivative oy (® o X (%)(n) exists a.s. and we have

O (P 0 X3 (1) = 8y (1 @ X7(1).
Proof By definition of the directional derivative, we have

D (X3 (n +eh)) — (X2 (1))

(P o X3)(n) = lim
e—0 £

X9 (n+eh)—X?
l. el T(")> — ®(X%.(n) + eDX%(Ih])
= l1mm

e—>0 &

(@(X(}(n) +¢€

N @ (X9.() + e DX} ()[h]) — @(X%(n)))
&
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Remark that, by Hypothesis (A’), @ is Lipschitz, and, by Hypotheses (EU), (Flow)
and (H), X (% is Fréchet differentiable. Then we have for the first summand in this
limit

X3 (n+eh)—X%.(m)
£

‘@‘D(X‘%(n) +e )~ X% +8DX(%(77)[/1])‘

e
X9 (n+eh)—X9.(n)
&

X

‘X%(n)ﬂ
¢ I

— X%(n) — eDXY(n)[h] ‘

X9 +eh) — X9.(n)

) - DX(%(n)[h]‘ -0, ase— 0.

As for the second summand in the above limit, by Hypothesis (G) and Lemma 8, we
immediately have that
P({w € £2 : @ isnot LC directional differentiable in X (% n,w)}) =0

and thus,

D (X%(n) + eDXY()[h]) — (X% (1))

0 L
aDX(%(ri)Ih]q)(XT('?)) = gg% )

exists almost surely. This ends the proof. O

Proposition 3 Under Hypotheses (EU), (Flow), (H), (A’) and (G) it holds

O pn(n) = O p(n). (25)

Proof By Lemma 8 and Hypothesis (G), we have that
P({w € £2 : @ is not LC directional differentiable in X(% (n, w)}) =0,
and thus, by Lemma 7,

D@, (X%() — 8.2(X% (), as.

Therefore, applying the Fréchet differentiability of the mapping n +— X(} ),
the chain rule from Lemma 9 and the fact that the LC directional derivative is a
continuous linear mapping (as a function of the direction), we obtain

ID(@y 0 XP)()A] = (P 0 X7) ()] = | DLy (X5 () DXF(DIR] = 850 53 @ (X7 ()]

= [(D®, (X% () — 8.2 (XX (MNIDX% (AN
< IDD, (X% () — 8.2 X0 ) - IDXS ()| - 1R

—> 0, a.s.,
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as n — oco. Moreover, by Lemma 6 item (v) and Lemma 2, it holds
|D(®, 0 XP))[R]| < DD, (XF (M) - IDXF (K] < Lo DX (IR € L' (£2).
Furthermore, similarly to the proof of Lemma 4, it can be shown that

O p(n) = E[0,(® 0 X3)())] and (26)

I pn(n) = E[D(®, o X3)()[A]], (27)

where, as for (26), we used that the LC directional derivative of @ o X (% is defined
for a.e. w € £2 (rather than the Fréchet derivative). It now follows by dominated
convergence that

O pa(n) = E[D(®, 0 X3) (1] — E[9u(® o X7) ()] = 3, p().

By this we end the proof. O

Our final theorem summarizes the results of this section and shows that our
representation formula (23) can be used in an approximation scheme for the
directional derivatives of p in this more general setup:

Theorem 6 Let Hypotheses (EU), (Flow), (H), (A’) and (G) be fulfilled. Let @,
denote the nth Moreau-Yosida approximation of @. Then, for § = exp(B(1{—r.01)),

0p(n) = — lim E [{6(@(}(‘%@ + xsh»a(-))} L_l} : 28)
&

Proof As we have shown so far, 0y p(n) = limy— o0 E[D(®,, X(%)(n)[h]] from
Proposition 3. It follows from Lemma 6 items (iii) and (v) that &, satisfies
Hypothesis (A). Therefore, we can apply Theorem 5. O

Remark 2 Making use of the linearity of the derivative operator and the expectation,
this result can easily be generalised to @ being given by the difference of two
convex, bounded from below and globally Lipschitz continuous functions @V and
@,

To conclude this section, we provide an example, where the Hypothesis (G)
holds.

Example 2 Letd =m, T > r, f be bounded and g(s, ¢) = Idgxa, 1.e.

Tx(r) =n(0)+ [y f(s, "x(s), "x)ds + W), t € [0, T

"x0 =.
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Then, the application of Girsanov’s theorem (Novikov’s condition is satisfied) yields
that

t
TW (1) :=[ £(s, "x(s), "xs)ds + W (1)
0

is an m-dimensional Brownian motion under a measure 7Q equivalent to P. Since
T > r, we have

X9(m) = (©0) + "W (T), n(0) + "Wr).

Now, since P <« 7(Q, it holds also

n — N - -
Pyo oy K 1Qx0.0y = " Q)41 (1).n(0)£1Wr) -

0 ) . .
But Q(n(0)+'7W(T),n(O)+'7WT) is a Gaussian measure on M», as for every e € M»> and
every A € B(R)

Q@) W Ty Oy 1.0 (A) = TQUMO) + "W(T), n(0) + "Wr), €) € A)

= ”Q(n(O)(e(0)+/

—r

0 0

e(u)du) + "W(T)e(0) +/

—r

"W(T + u)e(u)du € A)

and "W is a Gaussian process under 7 Q.

Appendix

Proof of Lemma 5:
@:

E[|X5 (7 + MER) — X3 + MaER)|I3y,]

5 . T
=E (| TERMER(T) — THREh (T 2, + f

T—r

2
| TERER (1) — ﬁ**ﬁ”x(r)@ddt)

Now splitting up the integral into an integral on [T — r, T — r Vv 0] and an integral
on [T —r v 0, T] as we have done already in the proof of Lemma 2, we get

T - ~ T
/ | 77+)Ll§hx(t) _ VH‘AZth(t)'?Rddt g r|)\1 _ )\2|2|$|2”h“121/[2 +/ | 77+)Ll§hx(t)
T—r 0

n+A2&h 2
_ R x(0)[54dt,
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and therefore,
EQIXY.Gi + MER) — X9.Gi + AER) [},]

< ﬁ(l)(E (174418 (T) = TR (T | 4+ 21 = Aol

T ~ ~
+E [[ | THMEhy (1) — '7+A25’1x(t)|ﬁRddt] )
0

Now consider the term E || 71 x(z) — ’7+)‘25hx(t)|?Rd]. Similarly to the steps

in the proof of Lemma 2 (applying Jensen’s inequality, Burkholder-Davis-Gundy’s
inequality and the Lipschitzianity of f and g), we show that

E[1748x(r) = THREx (),
T
< ﬁ(l)(m -l + @)+ LY fo E[IIX)Gi + M&h) — X + Azéh)llﬁ/lz]du).
Finally, we can plug this into the inequality from before and get
E[IXY @+ M&h) — XG4 g |13,]

T
< ﬁ(l)(m — Mt + L+ L;bfo E[N X (i + MER) — X + 2aEh) [, 1du
T T
+ f M= At (L) + Ly) / E[|1X) G+ MER) — X (7 + Azsmnﬁh]dudr)
0 0
T
< ﬁ(1)<|x1 - Jol* +/0 E[IX)G + h&h) — X0 + Azéh)||i42]du).

Since we already know from Lemma 2 that t +— E[||X?(ﬁ + AMEh) — X?(ﬁ +
Agéh)”i,[z] is integrable on [0, T'], the result follows directly by application of
Gronwall’s inequality and taking the square root.

(i) and (iii): The proofs follow from the same considerations that we
made in (i) and in the proof of Lemma 2, by applying Gronwall’s inequality
and making use of the fact that we have integrability of the functions ¢ +

EUDXY i+ MEMMERIY, )2 and 1 > E[IDXYGi+ 2150151 — DX+
Azgh)[)\zgh]u@] by Lemma 2. o
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Grassmannian Flows and Applications )
to Nonlinear Partial Differential s
Equations

Margaret Beck, Anastasia Doikou, Simon J. A. Malham,
and Ioannis Stylianidis

Abstract We show how solutions to a large class of partial differential equations
with nonlocal Riccati-type nonlinearities can be generated from the corresponding
linearized equations, from arbitrary initial data. It is well known that evolutionary
matrix Riccati equations can be generated by projecting linear evolutionary flows on
a Stiefel manifold onto a coordinate chart of the underlying Grassmann manifold.
Our method relies on extending this idea to the infinite dimensional case. The key
is an integral equation analogous to the Marchenko equation in integrable systems,
that represents the coodinate chart map. We show explicitly how to generate such
solutions to scalar partial differential equations of arbitrary order with nonlocal
quadratic nonlinearities using our approach. We provide numerical simulations
that demonstrate the generation of solutions to Fisher—Kolmogorov—Petrovskii—
Piskunov equations with nonlocal nonlinearities. We also indicate how the method
might extend to more general classes of nonlinear partial differential systems.

1 Introduction

It is well known that solutions to many integrable nonlinear partial differential
equations can be generated from solutions to a linear integrable equation namely
the Gel fand-Levitan—-Marchenko equation. It is an example of a generic dressing
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transformation which we shall express in the form

g(x,y) =p(x,y)—/ g(x,2)q'(z, y; x) dz, (1)

for y > x. See Zakharov and Shabat [49] or Dodd, Eilbeck, Gibbon and Morris [17]
for more details. Here all the functions shown may depend explicitly on time ¢, and
we suppose that ¢” and p represent given data and g is the solution. Typically p
represents the scattering data and takes the form p = p(x + y) while ¢’ depends
on p, for example ¢’ = —p in the case of the Korteweg de Vries equation. See
Ablowitz, Ramani and Segur [2] for more details. Typically given a nonlinear
integrable partial differential equation, the function p is the solution to an associated
linear system and the solution to the nonlinear integrable equation is given by
u = —2(d/dx)g(x, x). See for example Drazin and Johnson [19, p. 86] for the case
of the Korteweg de Vries equation. The notion that the solution to a corresponding
linear partial differential equation can be used to generate solutions to nonlinear
integrable partial differential equations is addressed in the review by Miura [33]. An
explicit formula was provided by Dyson [20] who showed that for the Korteweg de
Vries equation the solution to the Gel fand-Levitan—Marchenko equation along the
diagonal g = g(x, x) can be expressed in terms of the derivative of the logarithm of
a tau-function or Fredholm determinant. In a series of papers Poppe [36—38], Poppe
and Sattinger [39], Bauhardt and Poppe [5], and Tracy and Widom [47] expressed
the solutions to further nonlinear integrable partial differential equations in terms of
Fredholm determinants. Importantly Poppe [36] explicitly states the idea that:
For every soliton equation, there exists a linear PDE (called a base equation) such that a
map can be defined mapping a solution p of the base equation to a solution u of the soliton
equation. The properties of the soliton equation may be deduced from the corresponding
properties of the base equation which in turn are quite simple due to linearity. The map

p — u essentially consists of constructing a set of linear integral operators using p and
computing their Fredholm determinants.

From our perspective, the solution g to the dressing transformation represents
an element of a Fredholm Grassmann manifold, expressed in a given coordinate
patch. Let us briefly explain this perspective here. This will also help motivate the
structures we introduce herein. Our original interest in Grassmann manifolds arose
in spectral problems associated with nth order linear operators on the real line which
can be expressed in the form

9q = Aq+ Bp (2a)
dp = Cq+ Dp, (2b)
where q = q() € CFand p = p(r) € C"*, with natural numbers 1 < k < n.
In these equations A = A(r) € CK*kK, B = B(1) e C*0=0 ¢ = C@) e

Cr=kxk and D = D(1r) € CP—0*xn=k are linear matrix operators. We assume
as given that the matrix consisting of the blocks A, B, C and D has rank n for
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all + € R. For example, in the case of elliptical eigenvalue problems, we have
(mn—%k) = kand A = O, B = I; and C contains the potential function.
Then, with ¢+ € R representing a spatial coordinate, the equations above are
the corresponding first order representation of such an eigenvalue problem and
the first equation corresponds to simply setting the variable p to be the spatial
derivative of q. The goal is to solve such eigenvalue problems by shooting. In
such an approach the far-field boundary conditions, let’s focus on the left far-field
for the moment, naturally determine a subspace of solutions which decay to zero
exponentially fast, though in general at different exponential rates. The choice of k
above hitherto was arbitrary, now we retrospectively choose it to be the dimension of
this subspace of solutions decaying exponentially in the left far-field. We emphasize
it is the data, in this case the far-field data, that determines the dimension k of the
subspace we consider. In principle we can integrate k solutions from the left far-field
forward in ¢ thus generating a continuous set of k-frames evolving with ¢ € R. If
(q1, p0)T, ..., (qx, px) T represent the solutions to the linear system (2) above that
make up the components of the k-frame, we can represent them by

(7))

where Q € C**K and P € C"~*k_ From the linear system (2) for q and p above,
the matrices Q = Q(¢) and P = P(¢) naturally satisfy the linear matrix system

%0 =AQ+BP (3a)
%P =CQ+ DP. (3b)

To determine eigenvalues, by matching with the right far-field boundary conditions,
the minimal information required is that for the subspace only and not the complete
frame information. The Grassmann manifold Gr(C", CF) is the set of k-dimensional
subpsaces in C". It is thus the natural context for the subspace evolution and then
matching. See Alexander, Gardner and Jones [3] for a comprehensive account; they
used the Pliicker coordinate representation for the Grassmannian Gr(C”, (Ck). In
Ledoux, Malham and Thiimmler [31], Ledoux, Malham, Niesen and Thiimmler [30]
and Beck and Malham [7] we chose instead to directly project onto a coordinate
patch of the Grassmannian Gr(C", C¥). Assuming that the matrix Q € Ck*¥
has rank k, we can achieve this as follows. We consider the transformation of
coordinates here given by Q~! that renders the first k < n coordinates as
orthonormal thus generating the matrix

(o)
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where G(t) = P(t) Q’1 (¢) forall t € R. Note this includes the data, i.e. G(—00) =
P(—00)Q ™' (—00). The key point which underlies the ideas in this paper is that
G = G(r) € C"~0*k eyolves according to the evolutionary Riccati equation

3G =C+ DG —G(A+ BG), 4)

where A, B, C and D are the block matrices from the linear evolutionary system (2)
above. This equation for G is straightforwardly derived by direct computation. The
Grassmannian Gr(C", C¥) is a homogeneous manifold. As such there are many
numerical advantages to integrating along it, here this corresponds to computing
G = G(t). For instance, the aforementioned differing far-field exponential growth
rates are projected out and G provides a useful succinct paramaterization of the
subspace. It provides the natural extension of shooting methods to higher order
linear spectral problems on the real line; also see Deng and Jones [16]. Let us call
the procedure of deriving the Riccati equation (4) from the linear equations (3) the
forward problem.

However in this finite dimensional context let us now turn this question around.
Suppose our goal now is to solve the quadratically nonlinear evolution equation (4)
above for some given data G(—o0) = G¢. We assume of course the block matrices
A, B, C and D have the properties described above. Let us call this the inverse
problem. With the forward problem described above in mind, given such a nonlinear
evolution equation to solve, we might naturally assume the nonlinear evolution
equation (4) resulted from the projection of a linear Stiefel manifold flow onto
a coordinate patch of the underlying Grassmann manifold. From this perspective,
since all we are given is G or indeed just the data G, we can naturally assume G
was the result of such a Stiefel to Grassmann manifold projection. In particular we
are free to assume that the transformation Q underlying the projection had rank &,
and indeed Q(—o0), was simply I itself. Thus if we suppose we were given data
Q(—00) = Iy and P(—o0) = G and that Q € CF*K and P € C*~ Rk satisfied
the linear evolutionary equations (3) above then indeed G = PO~ would solve
the nonlinear evolution equation (4) above. Note that in this process there is nothing
special about the data being prescribed at 1 = —o0, it could be prescribed at any
finite value of ¢, for example + = 0. In summary, suppose we want to solve the
nonlinear Riccati equation (4) for some given data G(0) = Gg € CO=0xk Then if
we suppose the matrices Q € CK*F and P € C"K>k satisfy the linear system of
equations (3) with Q(0) = I; and P(0) = Gy, then the solution G € C"~0*k to
the linear relation P = G Q solves the Riccati equation (4) on some possibly small
but non-zero interval of existence.

Our goal herein is to extend the idea just outlined to the infinite dimensional
setting. Hereafter we always think of ¢ € [0, c0) as an evolutionary time variable.
The natural extension of the finite rank (matrix) operator setting above to the
infinite dimensional case is to pass over to the corresponding setting with compact
operators. Thus formally, now suppose Q = Q(¢) and P = P(¢) are linear operators
satisfying the linear system of evolution equations (3) for # > 0. We assume that A
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and C are bounded operators, while the operators B and D may be bounded or
unbounded. We suppose the solution operators Q = Q(t) and P = P(t) are such
that for some 7 > 0, we have Q(¢) —id and P (¢) are Hilbert—Schmidt operators for
t € [0, T']. Thus over this time interval Q(¢) is a Fredholm operator. If the operators
B and D are bounded then we require that P lies in the subset of the class of Hilbert—
Schmidt operators characterized by their domains. In addition we now suppose that
P = P(t) and Q = Q(t) are related through a Hilbert—Schmidt operator G = G (¢)
as follows

P=GoO. 5)

We suppose herein this is a Fredholm equation for G and not of Volterra type like the
dressing transformation above. We will return to this issue in our concluding section.
As in the matrix case above, if we differentiate this Fredholm relation with respect
to time using the product rule, insert the evolution equations (3) for O = Q(¢) and
P = P(t), and then post-compose by Q~!, then we obtain the Riccati evolution
equation (4) for the Hilbert—Schmidt operator G = G (¢). We emphasize that, as for
the matrix case above, for some time interval of existence [0, 7] with T > 0, we can
generate the solution to the Riccati equation (4) with given initial data G(0) = Gy
by solving the two linear evolution equations (3) with the initial data Q(0) = id and
P (0) = G and then solving the third linear integral equation (5). This is the inverse
problem in the infinite dimensional setting.

We now address how these operator equations are related to evolutionary
partial differential equations. Can we use the approach above to find solutions to
evolutionary partial differential equations with nonlocal quadratic nonlinearities in
terms of solutions to the corresponding linearized evolutionary partial differential
equations? Suppose that V is a closed linear subspace of H := L?(R; R) x Lﬁ(]R; R).
Here Lﬁ(R; R) C L2(R; R) represents the subspace of L?*(R; R) corresponding to
the intersection of the domains of the operators B and D. Suppose further that we
have the direct sum decomposition H = V @ V-, where V= represents the closed
subspace of H orthogonal to V. As already intimated, suppose for some 7" > 0 that
fort € [0, T] we know: (i) QO = Q(¢) is a Fredholm operator from V to V of the
form Q = id + Q' where Q' = Q’(¢) is a Hilbert—Schmidt operator on V; and (ii)
P = P(¢) is a Hilbert—Schmidt operator from V to VL. As such for ¢ € [0, T'] there
exist integral kernels ¢’ = ¢’(x, y; ) and p = p(x, y; t) with x, y € R representing
the action of the operators Q’(r) and P(¢), respectively. Let us define the following
nonlocal product for any two functions g, ¢’ € L?(R?; R) by

(g*g)(x.y) = /R g(x,2) g (z, y)dz.

Suppose now that the unbounded operators B and D are now explicitly constant
coefficient polynomial functions of d,; let us denote them by b = b(d,) and
d = d(0y). Further suppose A and C are bounded Hilbert—Schmidt operators which
can be represented via their integral kernels, say a = a(x, y; t) and ¢ = c(x, y; 1),
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respectively. If g = g(x, y;r) represents the integral kernel corresponding to
the Hilbert—Schmidt operator G = G(¢) then we observe that the two linear
evolutionary equations (3) and linear integral equation (5) can be expressed as
follows. We have

1. Base equation: 3;p = c* (§ +q') + d p;
2. Aux. equation: 3;q = ax (8 +¢q') + b p;
3. Riccati relation: p = g x (§ +q').

Here § is the Dirac delta function representing the identity at the level of integral
kernels. The evolutionary equation for g = g(x, y; t) corresponding to the Riccati
evolution equation (4) takes the form

ohg=c+dg—gx@+byg).

This is an evolutionary partial differential equation for g = g(x,y;¢) with a
nonlocal quadratic nonlinearity ‘g » (b g)’. Explicitly it has the form

0rg(x, y; 1) =C(x,y;t)+d(8x)g(x,y;t)—ng(x,z;t)(a(z,y;t)+b(3z)g(z,y;t)) dz.

The reason underlying the nomination of the base and auxiliary equations above is
that in most of our examples we have a = ¢ = 0—Ilet us assume this for the sake
of our present argument. We have outlined the forward problem identified earlier
at the partial differential equation level. However our goal is to solve the inverse
problem at this level: given a nonlinear evolutionary partial differential equation
of the form above with some arbitrary initial data g(x, y; 0) = go(x, y), can we
re-engineer solutions to it from solutions to the corresponding base and auxiliary
equations? The answer is yes. Given the nonlinear evolutionary partial differential
equation d;g =d g — g » (b g) with b = b(d,) and d = d(9y) as described above,
suppose we solve the corresponding linear base equation for p = p(x, y; t), which
is the linearized version of the given equation and consequently solve the auxiliary
equation for ¢’ = ¢q’(x, y; t). Then solutions g = g(x, y; ) to the nonlinear
evolutionary partial differential equation are re-engineered/generated by solving the
Riccati relation for p and ¢’ which is a linear Fredholm integral equation.

We explicitly demonstrate this procedure through two examples. We consider
two Fisher—Kolmogorov—Petrovskii—Piskunov type equations with nonlocal non-
linearities. The first has a nonlocal nonlinear term of the form ‘g x g” where the
product ‘*’ represents the special case of convolution. The second has a nonlocal
nonlinear term of the form ‘g x (b g)’ where b = b(x) is a multiplicative function
corresponding to a correlation in the nonlinearity. In this latter case the product ‘x’
has the general form as originally defined above. In both these cases we show how
solutions can be generated using the approach we propose from arbitrary initial data.
We provide numerical simulations to confirm this. From these examples we also
see how our procedure extends straightforwardly to any higher order diffusion. We
additionally show how Burgers’ equation and its solution using the corresponding
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base equation via the Cole—Hopf transformation fits into the context we have
described here.

We emphasize that, as is well known for the Gel fand-Levitan-Marchenko
equation above which is of Volterra type, the procedure we have outlined works for
most integrable systems, as demonstrated in Ablowitz, Ramani and Segur [2] who
assume p = p(x + y) is a Hankel kernel. For example, we can generate solutions
to the Korteweg de Vries equation from the Gel’fand—Levitan—-Marchenko equation
by setting ¢’ = — p. As another example, we can generate solutions to the nonlinear
Schrodinger equation by assuming ¢'(z, y; x) = + fxoo p(z,¢) p(¢, y)d¢ where p
represents the complex conjugate of p. In this case it is also well known that such
solutions can be generated from a 2 x 2 matrix-valued dressing transformation. See
Zakharov and Shabat [49], Dodd, Eilbeck, Gibbon and Morris [17] or Drazin and
Johnson [19] for more details. Further, the connection between integrable systems
and infinite dimensional Grassmann manifolds was first made by Sato [42, 43].
Lastly Riccati systems are a central feature of optimal control systems. The solution
to a matrix Riccati equation provides the optimal continuous feedback in optimal
linear-quadratic control theory. See for example Bittanti, Laub and Willems [10],
Brockett and Byrnes [14], Hermann [25, 26], Hermann and Martin [27], Martin and
Hermann [32] and Zelikin [50] for more details. A comprehensive list of the related
control literature can also be found in Ledoux, Malham and Thiimmler [31].

Our paper is structured as follows. In Sect. 2 we define and outline the Grassmann
manifolds in finite and infinite dimensions that we require to give the appropriate
context to our procedure. Then in Sect. 3 we show how linear subspace flows induce
Riccati flows in coordinate patches of the corresponding Fredholm Grassmannian.
We derive the equation for the evolution of the integral kernel associated with the
Riccati flow. We then consider two pertinent examples in Sect. 4. Their solutions
can be derived by solving the linear base and auxiliary partial differential equations
(the subspace flow) and then solving the linear Fredholm equation representing the
projection of the subspace flow onto a coordinate patch of the Fredholm Grassman-
nian. Then finally in Sect. 5 we discuss possible extensions of our approach to other
nonlinear partial differential equations.

2 Grassmann Manifolds

Grassmann manifolds underlie the structure, development and solution of the
differential equations we consider herein. Hence we introduce them here first in
the finite dimensional, and then second in the infinite dimensional, setting. There
are many perspectives and prescriptions, we choose the prescriptive path that takes
us most efficiently to the infinite dimensional setting we require herein.

Suppose we have a finite dimensional vector space say H = C" of dimension
n € N. Given an integer k with 1 < k < n, the Grassmann manifold Gr(C", (Ck)
is defined to be the set of k-dimensional linear subspaces of C". Let {e;}jeq1,....n)
denote the canonical basis for C", where ¢ is the C"-valued vector with one in the
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Jjth entry and zeros in all the other entries. Suppose we are given a set of k linearly
independent vectors in C" and we record them in the following n x k matrix:

wi,1 - Wik
W =

Wp,1 * - Wik

Each column is one of the linear independent vectors in C". This matrix has rank k.
Naturally the columns of W span a k-dimensional subspace or k-plane W in C”. Let
us denote by V the canonical subspace given by spanf{eq, .. ., e}, i.e. the subspace
prescribed by the first k canonical basis vectors which has the representation

Wo = (5)) .

Here I is the k x k identity matrix. The span of the vectors {ex1, . . . , €,} represents
the subspace Vi, the (n—k)-dimensional subspace of C" orthogonal to V. Suppose
we are able to project W onto V. Then the projections pr: W — Vg and pr: W —
V(} respectively give

Wi - Wk O --- 0
Wil w 0O ... 0
W” — k,1 k,k and WJ_ —
o --- 0 Wk+1,1 *** Wk+1,k
0O --- 0 Wpl - Wak

The existence of this projection presupposes that the rank of the matrix W/ on the
left above is k, i.e. the determinant of the upper k x k block say Wy, is non-zero.
This is not always true, we account for this momentarily. The subspace given by the
span of the columns of W naturally coincides with V. Indeed since W/ has rank

k, there exists a rank k transformation from Vo — Vj, given by Wu_pl e GL(Ch),
that transforms W to W. Thus what distinguishes W from V) is the form of w.
Under the same transformation of coordinates Wu’pl, the lower (n — k) x k matrix
say Wiow of W+ becomes the (n —k) x k matrix G .= Wiow Wu_pl. Or in other words
if we perform this transformation of coordinates, the matrix W as a whole becomes

I
(G) | ©
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Thus any k-dimensional subspace W of C" which can be projected onto Vo can be
represented by this matrix. Conversely any n x k matrix of this form represents a
k-dimensional subspace W of C” that can be projected onto V. The matrix G thus
paramaterizes all the k-dimensional subspaces W that can be projected onto V. As
G varies, the orientation of the subspace W within C" varies.

What about the k-dimensional subspaces in C" that cannot be projected onto
Vo? This occurs when one or more of the column vectors of W are parallel to
one or more of the orthogonal basis vectors {ex+1, ..., €,}. Such subspaces cannot
be represented in the form (6) above. Any such matrices W are rank k matrices
by choice, their columns span a k-dimensional subspace W in C", it’s just that
they have a special orientation in the sense just described. We simply need to
choose a better representation. Given a multi-index S = {iy, ..., i} C {1,...,n}
of cardinality k, let V((S) denote the subspace given by spanf{e;,, ..., e;}. The
vectors {e; };csospan the subspace V(J)- (S), the (n — k)-dimensional subspace of C”
orthogonal to V(S). Since W has rank k, there exists a multi-index S such that the
projection pr: W — V(S) exists. The arguments above apply with Vo (S) replacing
Vo = Vo({l,...,k}). The projections pr: W — V,(S) and pr: W — V(J)‘(S)

respectively give
I_ (Ws 1_[0Os
Wy = ( OSo) and Wy = (Wgo) .

Here Ws represents the k x k matrix consisting of the S rows of W and so forth, and,
for example, the form for Wg shown is meant to represent the n x k matrix whose S
rows are occupied by Wg while the remaining rows contain zeros. We can perform
arank k transformation of coordinates Vo(S) — Vo (S) via Wy’ le GL(C*) under
which the matrix W becomes
)
Gso

Thus Ggso parameterizes all k-dimensional subspaces W that can be projected onto
Vo(S). Each possible choice of S generates a coordinate patch of the Grassmann
manifold Gr(C", C¥). For more details on establishing Gr(C", C¥) as a compact
and connected manifold, see Griffiths and Harris [23, p. 193-4].

Let us now consider the infinite dimensional extension to Fredholm Grassmann
manifolds. They are also known as Sato Grassmannians, Segal-Wilson Grassman-
nians, Hilbert—-Schmidt Grassmannians and restricted Grassmannians, as well as
simply Hilbert Grassmannians. See Sato [42, 43], Miwa, Jimbo and Date [34], Segal
and Wilson [45, Section 2] and Pressley and Segal [40, Chapters 6,7] for more
details. In the infinite dimensional setting we suppose the underlying vector space
is a separable Hilbert space H = H(C). Any separable Hilbert space is isomorphic
to the sequence space £> = ¢*(C) of square summable complex sequences; see
Reed and Simon [41, p. 47]. We will parameterize the C-valued components of
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the sequences in > = ¢%(C) by N. This is sufficient as any sequence space £ =
£2(F; C), where F denotes a countable field isomorphic to N that parameterizes the
sequences therein, is isomorphic to 2 = EZ(N; C). We recall any a € Ez(C) has
the form a = {a(1), a(2), a(3), ...} where a(n) € C for each n € N. Hereafter
we represent such sequences by column vectors a = (a(l), a(2), a(3), .. )T, Since
we require square summability, we must have afa = ZneN a*(n)a(n) < oo,
where § denotes complex conjugate transpose and * denotes complex conjugate
only. We define the inner product (-, -): £2(C) ® £2(C) — R by (a, b) = a'b
for any a,b € £2(C). A natural complete orthonormal basis for 62((C) is the
canonical basis {e,},eN Where e, is the sequence whose nth component is one and
all other components are zero. We have the following corresponding definition for
the Grassmannian of all subspaces comparable in size to a given closed subspace
V C H; see Segal and Wilson [45] and Pressley and Segal [40].

Definition 1 (Fredholm Grassmannian) Let IH be a separable Hilbert space with
a given decomposition H = V @ V-, where V and V+ are infinite dimensional
closed subspaces. The Grassmannian Gr(H, V) is the set of all subspaces W of H
such that:

1. The orthogonal projection pr: W — V is a Fredholm operator, indeed it is a
Hilbert—Schmidt perturbation of the identity; and
2. The orthogonal projection pr: W — V- is a Hilbert—Schmidt operator.

Herein we exclusively assume that our underlying separable Hilbert space H and
closed subspace V are of the form

H:=¢*C) x £3(C) and  V:=¢*0),

where Eé((C) is a closed subspace of Ez((C). We thus assume a special form for H.
This form is the setting for our applications discussed in our Introduction. We use
it to motivate the definition of the Fredholm Grassmannian above and its relation to
our applications. Suppose we are given a set of independent sequences in £2(C) x
Eﬁ((C) which span Ez((C) and we record them as columns in the infinite matrix

W:(g).

Here each column of Q lies in Ez(C) and each column of P lies in Ez(C) We denote
by W the subspace of ¢2(C) x £3 4(C) spanned by the columns of W. Let us denote
by Vg the canonical subspace Wthh has the corresponding representation

id
e (2)
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where id = idy ). As above, suppose we are able to project W on Vj. The
projections pr: W — Vg and pr: W — V(J)- respectively give

Wi (g) md W (g)

The existence of this projection presupposes that the determinant of the upper block
Q is non-zero. We must now choose in which sense we want this to hold. The
columns of Q are £2(C)-valued. We now retrospectively assume that we constructed
Q so that, not only do its columns span £2(C), it is also a Fredholm operator on
£%(C) of the form Q = id+ Q' where Q' € J2(¢*(C); £2(C)) and id = idy2(c. Here
J2 (EZ(C); EZ(C)) is the class of Hilbert—Schmidt operators from £2(C) — ¢2(C),
equipped with the norm

T

” Q/”‘%jz(fz((:);fz((:)) =1 (Q/) (Q/)s

where ‘tr’ represents the trace operator. For such Hilbert-Schmidt operators Q" we
can define the regularized Fredholm determinant

L =Dt
det2(1d+ (0] ) = exp Z ¢ tr(Q)" ).

02

The operator @ = id + Q’ is invertible if and only if detp (id + 0 ) # 0. For
more details see Simon [46]. Hence, assuming that Q' € J2(¢*(C); £2(C)), we
can assert that the subspace given by the span of the columns of W/ coincides
with the subspace spanned by W), i.e. with V(. Indeed the transformation given
by 0! ¢ GL(€2((C)) transforms W/ to Wp. Let us now focus on Wt. We
now also retrospectively assume that we constructed P so that, not only do its
columns span Kﬁ((C), it is a Hilbert-Schmidt operator from £?(C) to Kﬁ((C), ie.
P € 32(£2((C); Eﬁ(@)). Hence under the transformation of coordinates Q_l €
GL(EZ((C)) the matrix for W becomes

id

G b
where G := PQ~'. Thus any subspace W that can be projected onto V can
be represented in this way, and conversely. The operator G € 2 (Ez(C); Eﬁ((C))
thus parameterizes all subspaces W that can be projected onto Vy. We call the

Fredholm index of the Fredholm operator Q the virtual dimension of W; see Segal
and Wilson [45] and Pressley and Segal [40] for more details.
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Remark 1 (Canonical coordinate patch) In our applications we consider evolu-
tionary flows in which the operators Q = Q(¢) and P = P(t) above evolve, as
functions of time ¢+ > 0, as solutions to linear differential equations. The initial
data in all cases is taken to be Q(0) = id and P(0) = Gy for some given data
Goedn (Ez(C); Eﬁ((C)). By assumption in general and by demonstration in practice,
the flows are well-posed and smooth in time for ¢ € [0, T] for some 7' > 0. Hence
there exists a time 7 > O such that for r € [0, T] we know, by continuity, that
Q = Q(#) is an invertible Hilbert-Schmidt operator of virtual dimension zero and
of the form Q(#) = id + Q'(r) where Q'(t) € J2(€*(C); £*(C)). For this time
the flow for Q = Q(r) and P = P(t) prescibes a flow for G = G(¢), with
G(t) = P(1)Q~'(¢). In addition, for this time, whilst the orientation of the subspace
prescribed by O = Q(¢) and P = P(¢) evolves, the flow remains within the same
coordinate patch of the Grassmannian Gr(HH, V) prescribed by the initial data as just
described and explicitly outlined above.

Remark 2 (Frames) More details on “frames” in the infinite dimensional context
can be found in Christensen [15] and Balazs [4].

There are three possible obstructions to the construction of the class of subspaces
above as follows, the: (i) Virtual dimension of W, i.e. the Fredholm index of Q, may
differ by an integer value; (ii) Operator Q' may not be Hilbert—Schmidt valued—
it could belong to a ‘higher’ Schatten—von Neumann class; or (iii) Determinant
of O may be zero. The consequences of these issues for connected components,
submanifolds and coordinate patches of Gr(IH, V) are covered in detail in general in
Pressley and Segal [40, Chap. 7]. These have important implications for regularity of
the flows mentioned in Remark 1 above, i.e. for our applications. However we leave
these questions for further investigation, see Sect. 5. Suffice to say for the moment,
from Pressley and Segal [40, Prop. 7.1.6], we know that given any subspace W of H
there exists a representation analogous to the general coordinate patch form (7) with
S a suitable countable set. In other words there exists a subspace cover. More details
on infinite dimensional Grassmannians can be found in Sato [42, 43], Abbondandolo
and Majer [1] and Furitani [21].

We have introduced the Fredholm Grassmannian here in the context where the
underlying Hilbert space is H = ¢>(C) x Eﬁ((C) and the subspace V = ¢2(C). In our
applications the context will be H = L*(I; C) x Lﬁ(]l; C) and V = L2(I; C) where
the continuous interval I € R. We include here the cases when I is finite, semi-
infinite of the form [a, c0) for some real constant a or the whole real line. As above,
here Lﬁ(]l; C) denotes a closed subspace of L2(T; C)—corresponding to intersection
of the domains of the unbounded operators D and B in our applications. All such
spaces L’ (I; C) are separable and isomorphic to £2(C), and correspondingly for the
closed subspaces. See for example Christensen [15] or Blanchard and Briining [11]
for more details. It is straightforward to transfer statements we have made thusfar for
the Fredholm Grassmannian in the square-summable sequence space context across
to the square integrable function space context. When H = L*(I; C) x L?l(]l; C) and
V & L%(I; C) the operators Q' and P are Hilbert-Schmidt operators in the sense
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that Q' € 3(L*(IL; C); L3(I; €)) and P € Jo(L*(L; C); L3(L; C)). By standard
theory such Hilbert—Schmidt operators can be parameterized via integral kernel
functions, say, ¢’ € L?(I%; C) and pE L2(T; Lﬁ(]l; C)) and their actions represented
by

0'(fHx) = /Hq’(x, y) f(y)dy,
P(f)(x) = /Hp(x,y)f(y) dy,

for any f € L*(I;C) and where x € I. Furthermore we know we have the
isometries ||Q/||32(L2(]I;(C);L2(]I;C)) = ”f]/”LZ(]IZ;(C) and ||P||32(L2(]1;(C);L§(JI;C)) =
”1’”L2(H~L§(H~(C)); see Reed and Simon [41, p. 210]. Hence the subspace W above
and its representation in the canonical coordinate patch are given by

) - )

Here we suppose g(x,y) = §(x — y) + ¢'(x, y) with §(x — y) representing the
identity operator in L?(Il; C) at the integral kernel level. The function g = g(x, y)
is the L2(T; Lﬁ(]l; C))-valued kernel associated with the Hilbert—Schmidt operator
G. It is explicitly obtained by solving the Fredholm equation given by

plx,y) = /Hg(X,Z)q(Z,y) dz.

Solving this equation for g is equivalent to solving the operator relation P = G Q
for G by postcomposing by Q.

3 Fredholm Grassmannian Flows

We show how linear evolutionary flows on subspaces of an abstract separable
Hilbert space H generate a quadratically nonlinear flow on a coordinate patch of
an associated Fredholm Grassmann manifold. The setting is similar to that outlined
at the beginning of the last section. Assume for the moment that H admits a
direct sum orthogonal decomposition H = V @ V+, where V and V* are closed
subspaces of H. The subspace V is fixed. Now suppose there exists a time 7" > 0
such that for each time ¢ € [0, T] there exists a continuous path of subspaces
W = W(r) of H such that the projections pr: W(r) — V and pr: W(r) — V+
can be respectively parameterised by the operators Q(¢) = id + Q’(z) and P(¢).
We in fact assume the path of subspaces W(z) is smooth in time and Q’(¢) and
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P (1) are Hilbert-Schmidt operators so that indeed Q" € C*([0, T']; J2(V; V)) and
P € C*([0, T]; Dom(D) N Dom(B)). Here D and B are in general unbounded
operators for which, as we see presently, for each ¢ € [0, T] we require DP(t) €
J2(V; V1) and BP(t) € Jo(V; V). The subspaces Dom(D) € Ja(V; V4) and
Dom(B) C J2(V; V) are their respective domains. Our analysis also involves two
bounded operators A € C*([0, T1; J2(V; V)) and C € C*([0, TT; J2(V; Vl)).
The evolution of Q = Q(¢) and P = P(t) is prescribed by the following system of
differential equations.

Definition 2 (Linear Base and Auxiliary Equations) We assume there exists a
T > 0 such that, for the linear operators A, B, C and D described above, the linear
operators Q' € C*([0, TT; J2(V; V)) and P € C*°([0, T]; Dom(D) N Dom(B))
satisfy the linear system of operator equations

%0 =AQ+ BP,
%P =CQ+ DP,

where Q = id+ Q’. We assume at time ¢ = 0 that Q’(0) = O so that Q(0) = id and
P(0) = Py for some given Py € Dom(D)NDom(B). We call the evolution equation
for P = P(t) the base equation and that for Q = Q(¢) the auxiliary equation.

Remark 3 The initial condition Q(0) = id and P(0) = Py means that the
corresponding subspace W(0) is represented in the canonical coordinate chart of
Gr(H, V). Hereafter we will assume that for t € [0, T] the subspace W(¢) is
representable in the canonical coordinate chart and in particular that det, Q(¢) # 0.

The base and auxiliary equations represent two essential ingredients in our prescrip-
tion, which to be complete, requires a third crucial ingredient. This is to propose a
relation between P and Q as follows.

Definition 3 (Riccati Relation) We assume there exists a 7 > 0 such that for P €
Cc>® ([0, T]; Dom(D) N Dom(B)) and Q' € C°°([0, T1; 32(V; V)) there exists a
linear operator G € C* ([0, T]; Dom(D) ﬂDom(B)) satisfying the linear Fredholm
equation

P=GO,

where Q = id + Q’. We call this the Riccati Relation.

Given solution linear operators P = P(t) and Q = Q(t) to the linear base and
auxiliary equations we can prove the existence of a suitable solution G = G(¢) to
the linear Fredholm equation constituting the Riccati relation. This result is proved
in Beck et al. [8]. The result is as follows.

Lemma 1 (Existence and Uniqueness: Riccati relation) Assume there exists a
T > Osuchthat P € C*([0, T]; Dom(D)NDom(B)), Q' € C*([0, T]; J2(V; V))
and Q'(0) = O. Then there exists a T' > O with T' < T such that fort € [0, T'] we
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have detz(Q(t)) # 0and |Q () 3,cv:vy < 1. In particular, there exists a unique
solution G € C°°([0, T'1; Dom(D) N Dom(B)) to the Riccati relation.

The proof utilizes the fact that we assume the solutions P () € Dom(D) N Dom(B)
and Q(1) € J2(V; V) are smooth in time and at time 7 = 0 we have detz(Q(0)) = 1
and [|Q’(0)||3,¢v:v) = 0. Hence for a short time we are guaranteed that detz(Q(t))
is non-zero and || Q' (?) || 3,(v:v) is sufficiently small to provide suitable bounds on
G(t) = P(1)Q~'(¢). Our main result now is that the solution G = G(¢) to the
Riccati relation satisfies a quadratically nonlinear evolution equation as follows.

Theorem 1 (Riccati evolution equation) Suppose we are given the initial data
Go € Dom(D) NDom(B) and that Q'(0) = O and P(0) = Gy. Assume for some
T > 0 that P € C*([0, T]; Dom(D) N Dom(B)), Q' € C™([0, T]; J2(V; V))
satisfy the linear base and auxiliary equations and that G € C* ([O, T]; Dom(D)N
Dom(B)) solves the Riccati relation. Then this solution G to the Riccati relation
necessarily satisfies G(0) = G and for t € [0, T] solves the Riccati evolution
equation

%G =C+ DG — G (A + BG).

Proof By direct computation, if we differentiate the Riccati relation P = G Q with
respect to time using the product rule and use that P and Q satisfy the linear base
and auxiliary equations we find (0;G) Q = 0;P—G 30,0 = DP—-G (AQ+BP) =
(DG) Q — G (A + BG) Q. Postcomposing by Q_1 establishes the result. |

We now consider the abstract development above at the partial differential equation
level with an eye towards our applications. All our assumptions hitherto in this
section apply here as well. As hinted in our Introduction and indicated more
explicitly at the end of Sect. 2, suppose our underlying separable Hilbert space is
H = LYXI:R) x Lﬁ(]l; R), where the continuous interval I C R. The function
space L?l(]l; R) C L2(]1; R) is a subspace of L2(]I; R) which we will explicitly
define presently. We assume the closed subspace V of H to be V = L%(I; R).
By assumption we know for some T > 0 the operators Q' and P are Hilbert—
Schmidt operators with Q' € C*([0, T]; 32(L*([; R); L*(; R))) and P €
C*>([0, T1; J2(L*(I; R); L3(I; R))). By standard theory the actions Q' and P can
be represented by the integral kernel functions ¢’ = ¢(x, y; 1) and p = p(x, y; 1),
respectively where

g’ € C®([0,T1; L*(@*;R))  and  pe C®([0,T]; L*(I; Li([; B))).

Henceforth we assume that the operator B is multiplicative corresponding to
multiplication by the smooth, bounded, square-integrable and real-valued function
b = b(x). We also assume the operator D is the unbounded operator d =
d(9y) which is a polynomial in d; with constant real-valued coefficients. We
can now specify Lg(]l; R) € L3[R, it corresponds to the domain of the
operator d = d(dy). Also by assumption A and C are Hilbert—Schmidt valued
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operators and can thus be represented by integral kernel functions a = a(x, y; )
and ¢ = c(x,y;1), respectively, where a € C*([0, T]; L*(I* R)) and ¢ €
Cc® ([0, T]; Lz(]l; L?l(]l; R))) The linear base and auxiliary equations, since Q(t) =
id + Q’(t), thus have the form

0q' (x,y;0) =a(x,y; 1)+ /a(x, z:0q' (2, y; ) dz + b(x) p(x, y; 1), (8a)
I

O p(x,y; 1) =c(x,y; t)+/c(x,z; 1q'(z, y; t)dz + d(x) p(x, y; 1). (8b)
I

Remark 4 To be consistent with our assumptions on the properties of P = P(¢) and
its corresponding integral kernel p = p(x, y; t) for ¢t € [0, T'] as outlined above,
we must suitably restrict the choice of the class of operator d = d(9,) appearing in
the base equation. In addition to the class properties outlined just above, we assume
henceforth, and in particular for all our applications in Sect. 4, that d = d(9y) is
diffusive or dispersive as a polynomial operator in d;. Hence for example we could
assume that d is a polynomial in only even degree terms in d, with the 2Nth degree
term having a real coefficient of sign (—1)¥*+!. Alternatively for example d could
have a dispersive form such as d = —83.

We are now in a position to prove our main result for evolutionary partial differential
equations with nonlocal quadratic nonlinearities.

Corollary 1 (Grassmannian evolution equation) Given the initial data go €
C*®(I*; R) N L*(I; Lﬁ(]l; R)) suppose q' = q'(x,y;1) and p = p(x,y;1) are
the solutions to the linear evolutionary base and auxiliary equations (8) with
p(x,y;0) = go(x, y) and q'(x, y; 0) = 0. Suppose the operator d = d(dy,) is of
the diffusive or dispersive form described in Remark 4. Then there is a T > 0 such
that the solution g € C°°([0, T, Lz(]I; Lﬁ(]l; R))) to the linear Fredholm equation

p(x,y; 1) =g(x,y; 1) +/Hg(x,z; Nq'(z, y; 1) dz, )

solves the evolutionary partial differential equation with quadratic nonlocal nonlin-
earities of the form

dg(x, ;1) = c(x, y; 1) +d(dy) g(x, y; 1) —/Hg(x, z0)(az, y; ) +b(2) gz, y; 1)) dz.

Proof That for some T > 0 there exists a solution g € C*® ([0, T]; Lz(]I; Lﬁ(]l; R)))
to the linear Fredholm equation (9), i.e. the Riccati relation, follows from Lemma 1
and our assumptions on ¢’ = ¢'(x,y;t) and p = p(x,y;t) outlined above.
That this solution g also solves the evolutionary partial differential equation with
quadratic nonlocal nonlinearity shown follows from Theorem 1. O
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It is instructive to see the proof of the second of the results from Corollary 1 at
the integral kernel level, i.e. the proof that the solution g to the linear Fredholm
equation (9) also solves the evolutionary partial differential equation with quadratic
nonlocal nonlinearity shown. We present this here. First we differentiate the linear
Fredholm equation (9) with respect to time. This generates the relation

drg(x,y;t) +/8tg(x,z; Nq'(z,y;)dz = 3 p(x,y; t) — /g(x,z; 1) 8q'(z,y; 1) dz.
I I

Second we substitute for d,¢” and d; p using their evolution equations. Let us
consider the first term on the right above. We find that

dplx,y;it) = /Hc(x, ) (8 =) +4¢' yi0)dz+d@)plx, y: 1)
= /Hc(x, 0 (8z—y) +4'(z, ;) dz
+d(8x)<g(x,y;t)+/ﬂg(x,z; N4q'(z y;1) dz)
= /HC(x, 0 (@ =y +4q'(zy;0)dz
+d(8x)/ﬂg(x,z; 0 (8z—y)+4'(z y;1)dz

= /H(c(x, ) +d(@)gx, z:1))(8(z — y) +¢'(z, y; 1)) dz.

Now consider the second term on the right above. We observe
/Hg(x, z0) dq'(z, y; ) dz
= fﬂg(x,z; 1) (/Ha(z, 50 (6C—y+4q'€.y: t))dé“) dz
+ /Hg(x, z0) (b(@)p(z, y; 1) dz
= /Hg(x,z; 1) (/Ha(z,é; 08¢ —y)+4'E. y; t))d§> dz
+ /Hg(x,z; 1) (b(z)/ﬂg(z, o0 (8¢ =y +4'@.y; t))d§> dz
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Putting these results together and post-composing by the operator Q! generates
the required result. Another way to enact this last step is to postmultiply the final
combined result by ‘§(y — 1) + ¢'(y, n; t)’ for some n € L. This is the kernel
associated with the inverse operator 0! =id+ Q/ to Q = id+Q’. Then integrating
over y € I gives the result for g = g(x, n; t).

Remark 5 (Nonlocal nonlinearities with derivatives) In the linear base and auxil-
iary equations (8) we could take b to be a constant coefficient polynomial in 9.
With minor modifications the results we derive above still apply.

We now need to demonstrate as a practical procedure, how linear evolutionary
partial differential equations for p and ¢’ generate solutions to the evolutionary
partial differential equation with quadratic nonlocal nonlinearities at hand. We show
this explicitly through two examples in the next section.

4 Examples

We now consider some evolutionary partial differential equations with nonlocal
quadratic nonlinearities and explicitly show how to generate solutions to them from
the linear base and auxiliary equations and linear Riccati relation. In both examples
we take I := R. Note that throughout we define the Fourier transform for any given
function f = f(x) and its inverse as

f(k) ::/ f(x)ebrikx dx and f(x) ;:/ f(k)e—Znikx dk.
R R

Example 1 (Nonlocal convolution nonlinearity) In this case the target evolutionary
partial differential equation has a quadratic nonlinearity in the form of a convolution
and is given by

dhg=dg—g*g,

where d = d(d,) and the * operation here does indeed represent convolution. In
other words for this example we suppose

(g*g)(x;0) =/Rg(x—z; 1) g(z; 1) dz.

We assume smooth and square-integrable initial data go = go(x).

To find solutions via our approach, we begin by assuming the kernel g of the
operator G has the convolution form g = g(x — y; ¢). We further assume the linear
base and auxiliary equations have the form

Orp(x,y;t) =d(@x) plx,y; 1),
3q'(x,y;1) = b(x) p(x, y; 1),
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with in fact b = 1. In addition we suppose d = d(9,) is of diffusive or dispersive
form as described in Remark 4. In this case the Grassmannian evolution equation in
Corollary 1 has the form

0g(x —y;t) =d(0y) gx —y;t) — /Rg(x —z;1) g(z —y; 1)dz,

which by setting y = 0 matches the system under consideration. We verify the
sufficient conditions for Corollary 1 to apply presently. In Fourier space our example
partial differential equation naturally takes the form

88 =dQ2nik) § — 8°. (10

We generate solutions to the given partial differential equation for g from the
linear base and auxiliary equations, for the given initial data g, as follows. Note the
base equation has the following equivalent form and solution in Fourier space:

Pk, y; 1) =dQ@mik) ptk, y; 1) & plk,yi1) = e?FO1 5ok, y).

Here po is the Fourier transform of the initial data for p. In Fourier space the
auxiliary equation has the form and solution:

ed@mikyr _

3:6"(k,y:t) = pk, y: t q'(k, v t) — gk, y) = po(k, ).
iq (k,y;t) =pk,y; 1) & q'(k,y;1) —qgplk,y) dQik) polk, y)

Here g (k, y) is the Fourier transform of the initial data for ¢’. As per the general
theory, we suppose g (k, y) = 0. This means if we set # = 0 in the Riccati relation
we find

pox, ) =gox —y) & polk,y) =" g(k).

where gy is the initial data for the partial differential equation for g. Hence explicitly
we have

ed @mikyr _

2miky 4 k
doniy S &®:

plk, ys 1) = edCTTAT go(k) and GGk, yi1) =

Note by taking the inverse Fourier transform, we deduce that p = p(x — y; t) and
q' = q'(x — y; r). From these explicit forms for their Fourier transforms, we deduce
there exists a T > 0 such that on the time interval [0, T] we know p and ¢’ have the
regularity required so that Corollary 1 applies. Further, the Riccati relation in this
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case is

PG, yit) =glx —yit) + ng(x —20q'(z, y;1)dz
& Pk, ;i) = gk (™ +§'k, y; 1))
Thus using the expressions for p and ¢’ above we find that

ed(27‘rik) t §0 (k)

8kt = , .
1+ ((ed(2mk>t —1) /d(2nik)) B0 k)

Direct substitution into the Fourier form (10) of our example partial differential
equation verifies it is indeed the solution for the initial data gg.

In Fig. 1 we show the solution to the nonlocal quadratically nonlinear partial
differential equation above, for d = 83 + 1 and a given generic initial profile
go. The left panel shows the evolution of the solution profile computed using a
direct integration approach. By this we mean we approximated 8)% by the central
difference formula and computed the nonlinear convolution by computing the

inverse Fourier transform of (g (k))z. We used the inbuilt Matlab integrator ode23s
to integrate in time. Similar direct integration could be achieved by integrating
the differential equation (10) for ¢ using ode23s and then computing the inverse
Fourier transform. The right panel in Fig. 1 shows the solution evolution computed
using our Riccati approach. As expected, the solutions look identical (up to

Direct method Riccati method
2, 2
1
| 1
0] 0
o 1 o |
1 1
-2 |
8| -2
01 0.1
0.08 —"-_ 0,08
0.06 _.-_ 0.06 &
004 7\ 0.04 7Y
0.02 o 002\ —
t " 5 t \__— 50
0 [ 0T 0
50 x -50 X

Fig. 1 We plot the solution to the nonlocal quadratically nonlinear partial differential equation
from Example 1. We used a generic initial profile gy as shown. The left panel shows the solution
computed using a direct integration approach while the right panel shows the solution computed
using our Riccati approach
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numerical precision), even when we continue the solution past the time when the
diffusion has reached the boundaries of the finite domain of integration in x, roughly
half way along the interval of evolution shown.

Remark 6 (Multi-dimensions) This last example extends to the case where x, y €
R" for any n > 1 when d is a scalar operator such as a power of the Laplacian, with
p, q’ and g all scalar.

Example 2 (Nonlocal quadratic nonlinearity with correlation) In this case the
target evolutionary partial differential equation has a nonlocal quadratic nonlinearity
involving a correlation function and has the form

Org(x,y;t) =d(0y) glx,y; 1) — /Rg(x, 21 b(z) g(z, y; 1) dz.

This corresponds to the evolutionary partial differential equation with nonlocal
quadratic nonlinearity in Corollary 1, witha = ¢ = 0 and b = b(x) the scalar
smooth, bounded square-integrable function described in the paragraphs preceding
it. We also assume that d = d(9y) is of the diffusive or dispersive form described in
Remark 4. We assume smooth and square-integrable initial data go = go(x, y).

To find solutions to the evolutionary partial differential equation just above using
our approach we assume the linear base and auxiliary equations have the form

0 p(x,y;t) =d(0x) p(x, y; 1),
B,q/(x, yit) =b(x) p(x, y;t).

In Fourier space the solution of the base equation has the form
Bk, yi1) = e/ po(k, y),

where pg is the Fourier transform of the initial data for p. The auxiliary equation
solution in Fourier space has the form,

gk, y;t) = /Ré(k — i) Lk, 1) polic, y) di,

where we set
ed@mik)t _

[k, 1) = _

d(2mik)
As in the last example we took the initial data for ¢’ to be zero and thus the
initial data for ¢’ is also zero. We also set the initial data for p = p(x, y; 1) to
be po(x, y) = go(x, y). In Fourier space this is equivalent to po(k, y) = go(k, y).
We now derive an explicit form for ¢’ = q'(x, y; t) from ¢’ = ¢'(k, y; t) above.
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Taking the inverse Fourier transform of §’, we find that
q'(x,y; 1) = /R(/R ek hk — k) dk)i(/(, 1) golk, y) di
- /R (727 b)), 1) fo i, y) di
= b() A e 2 [ (e, 1) o (k. y) di
= b0 [ 16— e 0 0c ) k.

Lastly, the Riccati relation here has the form
plx,y; 1) = g(x,y; 1) + f g(x,z:1)q'(z, y; 1) dz.
R

Since we have an explicit expression for ¢’ = ¢'(x, y; t), and we can obtain
one for p = p(x,y;t) by taking the inverse Fourier transform of the explicit
expression for p = p(k, y; r) above, we can solve this linear Fredholm equation
for g = g(x,y;t). The solution, by Corollary 1, will be the solution to the
evolutionary partial differential equation with the nonlocal quadratic nonlinearity
above corresponding to the initial data go(x, y).

We solved the Fredholm equation for g = g(x, y; t) numerically. The results
are shown in Fig.2. We set the operator d = 83 + 1 and took as the generic
initial profile go(x, y) := sech(x + y)sech(y). We set b = b(x) to be a mean-
zero Gaussian density function with standard deviation 0.01. The top panel in Fig. 2
shows the initial data. The middle panel in the figure shows the solution profile
computed at time ¢+ = 2 using a direct spectral integration approach. By this we
mean we solved the equation for g (k, y; t) generated by taking the Fourier transform
of the equation for g = g(x, y; ). We used the inbuilt Matlab integrator ode23s
to integrate in time. The bottom panel in Fig.2 shows the solution computed with
the time parameter ¢ = 2 using our Riccati approach, i.e. by numerically solving the
Fredholm equation for g = g(x, y; ¢) above by standard methods for such integral
equations. As expected, the solutions in the middle and bottom panels look identical
(up to numerical precision).

Remark 7 We emphasize that, when we can explicitly solve for p = p(x, y; t) and
q' = q'(x, y; t) in our Riccati approach, then time ¢ plays the role of a parameter.
One decides the time at which one wants to compute the solution and we then solve
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Fig. 2 We plot the solution
to the nonlocal quadratically
nonlinear partial differential
equation with correlation
from Example 2. We used a
generic initial profile go as
shown in the top panel. For
time ¢ = 2, the middle panel
shows the solution computed
using a direct integration
approach while the bottom
panel shows the solution
computed using our Riccati
approach
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the Fredholm equation to generate the solution g = g(x, y; t) for that time . This
is one of the advantages of our method over standard numerical schemes.

Remark 8 (Burgers’ equation) Burgers’ equation can be considered as a special
case of our Riccati approach in the following sense. Suppose the linear base and
auxiliary equations are d;p(x;t) = 8§p(x; t) and 0;q(x;t) = 0yp(x;t) for
the real valued functions p and ¢. Further suppose the Riccati relation takes the
form p(x;t) = g(x;t)q(x;t) where g is also real valued. Note this represents
a rank one relation between p and ¢ in the sense that we obtain p from g by a
simple multiplication of ¢ by the function g. From the linear base and auxiliary
equations, assuming smooth solutions, we deduce that ;g = dyp = 9, 183 p =
a;latp = at(a;lp), where B;Iw represents the operation ffoo w(z) dz for any
smooth integrable function w = w(x) on R. From the above equalities we deduce
p(x;t) = 0vq(x; t)+ f(x) where f = f(x) is an arbitrary function of x only. If we
take the special case f = 0, then we deduce p(x;t) = d,q(x; t). This also implies
0rq = afq. If we insert the relation p(x; ) = d,q(x; t) into the Riccati relation we
find

Oxq(x; 1)

glx;t) = gt

This is almost the Cole—Hopf transformation, it’s just missing the usual ‘-2’ factor
on the right-hand side. However carrying through our Riccati approach by direct
computation, differentiating the Riccati relation with respect to time, we observe

(0:8)q = 0:p — 8 g
=0;p—gdq
=097(3q) — g dig
= (078)q +2(3:8) 9xq + g (379) — g g
= (3;8)q +2(:8) p
= (978)q +2(0:8) g4

If we divide through by the function ¢ = g(x;t) we conclude that g = g(x; 1)
satisfies the nonlinear partial differential equation

08 = 3fg +2g0g.

However we now observe that ‘—2 g’ indeed satisfies Burgers’ equation.

IWe quote from the referee: “numerical integration in time will usually become inaccurate for
large time ¢, but the nature of the exact solution gives you a precise answer for arbitrary ¢, and
maybe allows access to information about long time behaviour which is inaccessible via standard
numerical schemes.”
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5 Conclusions

There are many extensions of our approach to more general nonlinear partial
differential equations. One immediate extension to consider is to multi-dimensions,
i.e. where the underlying spatial domain lies in R” for some n > 1. This
should be straightforward as indicated in Remark 6 above. Another immediate
extension is to systems of nonlinear partial differential equations with nonlocal
nonlinearites. Indeed we explicitly consider this extension in Beck, Doikou, Malham
and Stylianidis [8] where we demonstrate how to generate solutions to certain
classes of reaction-diffusion systems with nonlocal quadratic nonlinearities. We
also demonstrate therein, how to extend our approach to generate solutions to evo-
lutionary partial differential equations with higher degree nonlocal nonlinearities,
including the nonlocal nonlinear Schrédinger equation. Further therein, for arbitrary
initial data gop = go(x), we use our Riccati approach to generate solutions to the
nonlocal Fisher—Kolmogorov—Petrovskii—Piskunov equation for scalar g = g(x;¢)
of the form

0rg(x; 1) =d(0x) glx; 1) — g(x; t)/Rg(z; t)dz.

This has recently received some attention; see Britton [13] and Bian, Chen and
Latos [9]. We would also like to consider the extension of our approach to the
full range of possible choices of the operators d and b both as unbounded and
bounded operators, for example to fractional and nonlocal diffusion cases. We
have already considered the extension of our approach to evolutionary stochastic
partial differential equations with nonlocal nonlinearities in Doikou, Malham and
Wiese [18]. Therein we consider the separate cases when the driving space-
time Wiener field appears as a nonhomogeneous additive source term or as a
multiplicative but linear source term. Of course, another natural extension is to
determine whether we can include the generation of solutions to evolutionary
partial differential equations with local nonlinearities within the context of our
Riccati approach. One potential approach is to suppose the Riccati relation is of
Volterra type. This is an ongoing investigation. Lastly we remark that for the classes
of nonlinear partial differential equations we can consider, solution singularities
correspond to poor choices of coordinate patches which are related to function space
regularity. In principle solutions can be continued by changing coordinate patches;
see Schiff and Shnider [44] and Ledoux et al. [31]. This is achieved by pulling
back the flow to the relevant general linear group and then projecting down to a
more appropriate coordinate patch of the Fredholm Grassmannian. Alternatively,
we could continue the flow in the appropriate general linear group via the base and
auxiliary equations, and then monitor the relevant projection(s).
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Philippe Biane

Abstract We survey the problem of finding an explicit bijection between Gog and
Magog triangles, a combinatorial problem which has been open since the 1980s.
We give some of the ideas behind a recent approach to this question and also prove
some properties of the distribution of inversions and coinversions in Gog triangles.

1 Introduction

An alternating sign matrix is a square matrix having coefficients in {—1, 0, 1} so
that, in each row and in each column, if one forgets the zeros, the 1 and —1 entries
alternate and the sum s 1, e.g.

0010
10-11
0100
0010

ey

These matrices were investigated by Robbins and Rumsey [24] in 1986 as a gener-
alization of permutation matrices, after they discovered some startling properties of
the A-determinant, a deformation of usual determinants of matrices.

Around the same time interest in the enumeration of plane partitions led to
the question of enumerating several symmetry classes of plane partitions. Among
these classes the so-called totally symmetric self complementary plane partitions
(TSSCPP in short), as the one below,
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stood as the most symmetric ones. Empirical data showed that both the enumer-
ation of ASM and of TSSCPP according to their size started with the numbers
1,2,7,42,429,7436, 218348, 10850216 . .. which could be put into the closed
form A, = ]_[;'-;(1) ((3;:;.1))!!. There was then two main problems: prove the enu-
meration formula and find a bijective proof of the coincidence, if it exists. As we
explain below, the enumeration problems were finally solved around 1994/5, but
the proofs gave no hint as to the existence of a natural bijection between these
objects. It turns out that both classes of objects, the ASM and the TSSCPP, can
be encoded as triangles of positive integers whose rows interlace, like the following
(such triangles are usually called Gelfand-Tsetlin triangles in representation theory
where they occur as labels for bases of irreducible representations)

1 1 3 5 5
1 2 45

Thus one can reformulate the problem as finding a bijection between two species of
such Gelfand-Tsetlin triangles, which makes this problem completely elementary.

The purpose of this paper is to present a recent approach to this question which
has led to some progress towards the solution of the bijection problem. In particular
we will introduce a new class of objects, the GOGAm triangles and present some
new conjectures. We also study the distribution of inversions and coinversions in
Gog triangles. In particular we determine the pairs (p, g) for which there exists
Gog triangles of a given size with p inversions and g coinversions.

The paper is organized as follows. In the first part we present a short survey of
plane partitions and their enumeration, in particular the TSSCPP and the Magog
triangles. In the second part we present the other combinatorial objects in which
we are interested, the alternating sign matrices. As we briefly explain, these objects
arise in many places of algebra, representation theory and statistical physics. Much
more information about these two parts can be found for example in the book by D.
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Bressoud [11]. Then we present the approach to the bijection problem. Finally we
give some results on the joint enumeration of inversions and coinversions in Gog
triangles.

I thank both referees for their useful remarks and comments which lead to
improvements in the presentation of this paper, in particular for correcting the
statement of Proposition 2.

2 Plane Partitions

2.1 Partitions, Tableaux and Triangles

A partition of n is a nonincreasing sequence of nonnegative integers with sum n
n=AM4+r+..., AM>A>. .., Ai > 0.

This is a fundamental notion in mathematics which occurs in algebra, representation

theory, combinatorics, number theory etc. See e.g. Andrews [1], Fulton [15],

Macdonald [21], Ramanujan [23]. The usual way to depict a partition is by drawing
superposed rows of squares with ; squares in row i from above:

HEEE

8=4+3+1

It is easy to derive the following generating series for the set of all partitions, where

[A] = Zi Ai

e¢]

. 1
2 =1Tg -

n=1

which is closely related to Dedekind’s eta function.
A semi-standard tableau is obtained by putting positive integers in the boxes of
a partition which are

(i) weakly increasing from left to right
(i1) strictly increasing from top to bottom
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as below.

[=[e]-
)
~

The shape of the tableau is the underlying partition A.
The semi-standard tableaux themselves can be encoded by Gelfand-Tsetlin
triangles.

Definition 1 A Gelfand-Tsetlin triangle of size n is a triangular array X =
(Xi,j)n>i>j>1 of nonnegative integers

Xn,l Xn,2 ce Xn,n—l Xn,n
Xn-1,1 Xn-12 Xn—1,n-1

such that
Xit1,j < Xij < Xiq1,j+1 forn—12i2j2>1

Given a semi-standard tableau filled with numbers from 1 to »n, one can construct a
Gelfand-Tsetlin triangle of size n whose row k, as counted from below, consists of
the partition, read backwards, formed by the boxes containing numbers from 1 to
k in the semi-standard tableau. In the case of the semi-standard tableau above this
gives

Let (x;);>1 be a family of indeterminates. For a semi-standard tableau ¢, let #; be
the number of i occurring in the tableau and x* = [7, xl.ti. The generating function
of semi-standard tableaux with shape A, filled with numbers from 1 to n, is a Schur
function

Sa(X1, .., X)) = Z x'.

t tableau of shape A
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These are symmetric functions, which occur as characters of irreducible representa-
tions of the group GL, (see e.g. Macdonald [21]).

2.2 Plane Partitions

A plane partition is a stack of cubes in a corner. Putting the stack on a square basis
and collecting the heights of the piles of cubes, one gets an array of integers:

Splitting the array into its left and right parts yields two Gelfand-Tsetlin triangles
sharing the same upper row (which is the vertical diagonal of the square array):

0 0 2 5 0 0 2 5
0 1 4 0 2 3
0 2 1 2
1 2

From this one can infer that the generating series of plane partitions & according to
their size (i.e. the number of cubes in the stack) is equal to

qu = st(q,qz, gl )R
m A

Using Cauchy’s formula

1
Dosnxa, o xg, sy g ) =] ] 2
x

pj LT
one obtains Mac Mahon’s formula which gives the generating function for plane
partitions according to their size
= 1

Izl —
Zﬂ:q _H(l_qn)n'

n=1
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Choosing a large cube that contains a plane partition, one can also encode it as a
lozenge tiling of an hexagon.

The symmetry group of the hexagon is a dihedral group. For each subgroup of
this group, one can consider the class of plane partitions which are invariant under
these symmetries of the hexagon. Various enumeration formulas have been derived
for such symmetry classes. We will be interested in one of them.

2.3 Totally Symmetric Self-Complementary Plane Partitions

A Totally Symmetric Self-Complementary Plane Partition (TSSCPP in short), of
size n, is a plane partition, inside a cube of side 2n, such that the lozenge tiling has
all the dihedral symmetries of the hexagon, as in the picture below, where n = 3.
Remarkably, a plane partition with all these symmetries can be superposed with its
complement in the cube [22].
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TSSCPPs can be encoded by non-intersecting paths as below, where the paths go
through the yellow and blue tiles of a fundamental domain for the action of the
dihedral group:

The paths can be drawn on a lattice using vertical steps to record blue tiles and
diagonal steps for yellow tiles:

This correspondence has allowed J. Stembridge [26], building upon the
Lindstrom-Gessel-Viennot technique, to express the number of these paths as a
Pfaffian

In = pf(aij)en§i<j§n—l

aij =250 (’ t1> . e =0ifniseven, 1ifitis odd
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It is not an easy task however to evaluate this Pfaffian explicitly, but this was done
by G. Andrews [2], who proved that

n—1

@i+ D!
tn_,ll o+ ) 3)

t, =1 2 7 42 429 7436 218348

2.4 Magog Triangles

Definition 2 A Magog triangle of size n is a Gelfand-Tsetlin triangle of positive
integers such that X j; < jforall1 < j <n.

Reading the heights of the cubes of a TSSCPP in a fundamental domain of the
dihedral group gives a Magog triangle e.g. for the example above, with the heights
starting at 1

This gives a bijection between Magog triangles of size n and TSSCPPs of size n.
Thus the rather complicated objects which are TSSCPPs can be encoded by these
triangles, satisfying a very simple condition.

3 Alternating Sign Matrices

3.1 Jacobi-Desnanot Identity and Dodgson Algorithm

There are many polynomial identities relating the different minors of a matrix. One
of them is the Jacobi-Desnanot identity which we now explain. For a square n x n

matrix M let M;i ']’r be the matrix obtained by deleting rows iy, .. ., i, and columns
J1s .., jr- Then one has

det(M) det(M ") = det(M}) det(M") — det(M,)) det(M").
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For a 2 x 2 matrix (the empty determinant is 1) this is just

ab

cd =ad — bc.

Using this identity Charles Dodgson (better known under the name of Lewis Carroll)
devised an algorithm for computing the determinant of a matrix which uses only
the computation of 2 x 2 determinants. For example, if you want to compute the
determinant of the matrix

1460
21-31
3215
3220

start with two matrices, A and another matrix B, of size (n — 1) x (n — 1), with
all its entries equal to one, then inside A insert a (red) matrix formed with the two
by two minors of A divided by the corresponding entries of B; inside B insert the
(blue) values of A in the inner columns and rows

1 4 6 0
-7 —18 6 1 1 1
2 1 -3 1 1 -3
1 7 —16 1 1 1
3 2 1 5 2 1
0 2 —10 1 1 1
3 2 2 0

then iterate with the new pair of matrices

-7-18 6
A=]l1 7 —16 B’:(;_f)
0 2 -10
to get
-7 —-18 6
—31 —82 1 -3
1 7 -16 7
1 38 2 1
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finally

—31 82
1 -38

det(A) = ‘ — 180.

3.2 The A-Determinant

In 1983 David Robbins had the idea of replacing, in the above algorithm, every

occurrence of | ¢ 2 = ad — bc by ab = ad + Abc, for some indeterminate
c c

X. This defines the A-determinant. The re)éult is surprising, indeed although the
algorithm implies taking a lot of quotients of rational fractions the result is always
a Laurent polynomial in the coefficients of the matrix. Namely one has, forad x d
matrix A,

Theorem 1 (D. Robbins, H. Rumsey [24])

(M) i(M Mij
detn(A)= > 1+ MU T] A )
MeASM(d) ij

The sum is over the set of alternating sign matrices, defined at the beginning of the
introduction while i (M) is the number of inversions of M (to be defined later) and
s(M) is the number of —1 coefficients.

This is an example of the “Laurent phenomenon” which is at the heart of the deep
theory of cluster algebras, see e.g. [14].

3.3 Alternating Sign Matrices

For the convenience of the reader we remind the definition of alternating sign
matrices.

Definition 3 An alternating sign matrix is a square matrix having coefficients in
{—1,0, 1} so that, in each row and in each column, if one forgets the zeros, the 1
and —1 entries alternate and the sum is 1.
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Here is an example where we show an alternating sign matrix and the alternance of
+1 and —1 in each row and column, once the zeros are removed:

000 10 1
001 —-11 1 —11
10-110 1 —11
010 0O 1

001 00O 1

In particular, the alternating sign matrices without —1 are exactly the permutation
matrices and (4) for A = —1 gives the classical formula for the usual determinant.

It turns out that alternating sign matrices occur in a number of different contexts,
in statistical physics, representation theory, or combinatorics. We shall give a few
examples now.

3.3.1 The Six-Vertex Model

An entry of an alternating sign matrix can take at most three values {—1, 0, 1}. For
each entry with value zero consider the sum of entries lying respectively, on the right
and on the left of this entry, then one of these sums is equal to O and the other is
equal to 1. A similar property holds for the sum of entries lying above and the sum
of entries lying below. It follows that one can divide the entries of the matrix into
six groups, two corresponding to entries with the value 1 and —1 and four groups
corresponding to the configurations of an entry with value 0. There are thus six
possible configurations of each entry of an alternating sign matrix, listed below

0 1 0 1
1 -1 100 001 001 100 (5)
1 0 1 0

The configurations so obtained form an instance of a famous statistical physic
model, known as the six-vertex model, which is one of the most studied models
in statistical mechanics (see e.g. [4]). In order to study this model it is convenient
to weigh the configurations as follows. Introduce indeterminates ¢, x; and y;, the
indices ranging from 1 to n and corresponding to the rows and columns of the
matrix. Endow each entry of an alternating sign matrix with a weight w(i, j) (where
i, j are the row and column of the entry) given by the following value, according to
the configuration of the entry, as in (5)

Xi/yj yj/Xxi lgxi/y;] [gxi/y;] [xi/yj] [xi/y/] (6)
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The convention used here is that [a] = Z:Z:i . One can then put on every alternating
sign matrix the product of the weights of its entries. It turns out that the particular
form of the weights (6) allows one to use the Yang-Baxter equation to compute
the partition function of this model, i.e. the sum over all alternating sign matrices
of the weights, under the form of a remarkable determinant, the Izergin-Korepin
determinant [16]

S [wi. ) = [T i /yi) T j[xi/y1[g i/ y,)] det[ 1 }

i i [T, [xi/x10yi /)] [xi/yjllgxi/y;]

Using appropriate specializations of the variables x;, y; and the parameter ¢, G.
Kuperberg [17] was able to deduce from this that the number of alternating sign
matrices of size n is again, as in (3)

n—1

Bj+ D!
A, = . 7
/1:!)(114—1)! @)

This result had been obtained earlier by D. Zeilberger [28] in an indirect way,
by showing that the alternating sign matrices of sign n are equinumerous with
TSSCPPs of the same size and using (3). Recently a new proof of this result and
related enumerations has been given by I. Fischer [13].

3.3.2 Fully Packed Loops

Another way to encode the six-vertex model is to replace each of the possible six
configurations by one of the following

+1 +1 0 0 0 0
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After fixing boundary conditions, there is a unique way to complete the diagram in
a fully packed loop as in the picture below, which corresponds to the matrix (1).

Observe that in each configuration the 4n vertices on the boundary are related by
noncrossing paths. This observation has lead to the famous Razumov-Stroganov
conjecture [25], relating alternating sign matrices and the O(n) model, which has
been solved recently [12].

3.3.3 Alternating Sign Matrices, the Bruhat Order and Gog Triangles

Recall that almost all invertible matrices can be factorized as X = LU into a product
of a lower and an upper triangular matrix (the LU-factorization). This can be refined
into the Bruhat decomposition, expressing the general linear group as a disjoint
union of cells indexed by the symmetric group

GLy = Uyes, BwB

where B is the Borel subgroup of upper triangular matrices. For example, the
matrices X having LU factorization are those such that woX € BwgB where wyg
is the permutation of [1, d] such that wo(i) = d + 1 — i. They form the cell of
largest dimension. This decomposition induces an order relation (the Bruhat order)
on the symmetric group by declaring foro, 7 € S, :

o<t iff BoB C BtB
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e.g. for S3 we get the order relation with Hasse diagram

001
010
/100\

001 010
100 001
010 100
100 010
001 100
010\ /001

100

010

001
The Bruhat order on S3

As we are going to explain, alternating sign matrices can be used to complete
this order into a lattice order as in the following diagram

—c o
o=o

1
0
0

SN

1
0 0
1

N0

I =10

0/010\0

- o o
oo -

1 1

0\ /OO

o=
—o o
o=
—o o

c o~
=0
==

The lattice of 3 x 3 alternating sign matrices

For this we need to introduce a new species of Gelfand-Tsetlin triangles.
Definition 4 A Gog triangle of size n is a Gelfand-Tsetlin triangle such that

() Xij < Xijy1, j<i<n-—1
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in other words, such that its rows are strictly increasing, and such that
(ii) Xnj=], 1<j<n

There is a simple bijection between the sets of Gog triangles and of Alternating
sign matrices of the same size, which goes as follows: If (M;;)1<;, j<n is an ASM
of size n, then the matrix I\;Iij = Zzzi My has exactly i — 1 entriesOand n —i + 1
entries 1 on row i. Let (X;;);=1,...; be the columns (in increasing order) with a 1
entry of M onrow n — i + 1. The triangle X = (X;j)n>i>;>1 is the Gog triangle
corresponding to M.

For example, below are an alternating sign matrix of size 5 and its associated
Gog triangle

01 000 1 2 3 45
00 100 1 3 45
1-1 001 1 4 5
01 —-110 2 4
00 100 3

There is an order relation on Gog triangles obtained by entrywise comparison:
for triangles X, Y of the same size, X < Y if and only if each entry of X is smaller
than the corresponding entry of Y. Clearly the Gog triangles of fixed size form a
lattice for this order. It turns out that the restriction of this order relation to Gog
triangles corresponding to permutations is exactly the reversed Bruhat order. The
set of alternating sign matrices thus appears as the lattice completion of the set
of permutations endowed with the Bruhat order, as first proved by Lascoux and
Schiitzenberger [19].

4 The Gog-Magog Problem

4.1 The Question

Since the sets of Gog and Magog triangles of size n have the same number of
elements it is sensible to ask, in view of their very similar definitions, if there exists a
natural bijection between these two sets. This problem is at the time of this writing
still largely open. Observe that, although in our discussion we have encountered
rather sophisticated mathematical objects, the actual definitions of the Gog and
Magog triangles are completely elementary. One needs only to know what are the
positive integers and how to compare two positive integers, it is not even necessary
to know how to add or multiply them! Also many results have been obtained on
the refined enumeration of Gog and Magog triangles according to different statistics
and it has been observed that some of these refined enumerations coincide cf. [5].
All these facts point towards the existence of a mathematical structure which would
explain all these coincidences by showing that Gog and Magog triangles give two
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different ways of parametrizing the same mathematical objects, however for the
moment the nature of this mathematical structure remains elusive.

Here are the seven Gog and Magog triangles of size 3. Already finding a “natural”
bijection between them does not seem so obvious.

Gog triangles of size 3

4.2 Gog and Magog Trapezoids

Definition 5 An (n, k) right (resp. left) Gog trapezoid (for k < n) is an array of
positive integers formed from the k rightmost SW-NE diagonals (resp. leftmost NW-
SE diagonals) of some Gog triangle of size n.

Below are two (5, 2) Gog trapezoids.

left trapezoid right trapezoid
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Analogously there is a notion of right and left Magog trapezoids. We will use
only the right ones, of which below is a (5, 2) example

There is no known simple formula for enumerating Gog or Magog trapezoids of
a fixed shape, however the following holds

Theorem 2 (Zeilberger [28]) For all k < n, the (n, k) right Gog and Magog
trapezoids are equinumerous.

The proof of Zeilberger uses transformations of generating series for these objects
and it does not seem possible to transform it into a bijective proof. Some conjectures
on the enumeration of Gog and Magog trapezoids refined by some further statistics
have been formulated by Krattenthaler [18]. A bijection between permutation
matrices and a subset of Magog triangles has been proposed by J. Striker [27]. In
the case of (n, 2) right trapezoids a bijective proof incorporating a further statistic
has been obtained in [9]. This proof is based on the Schiitzenberger involution, to be
defined below, and uses the inversions of a Gog triangle. Bettinelli [8] found another,
simpler bijection which however does not seem to preserve any of the statistics
considered by Krattenthaler.

4.3 An Approach to the Bijection Problem

In this section we will describe an approach to the bijection problem which has led
to some recent progress. For this approach we need to introduce some statistics on
Gog and Magog triangles.

For a Gog triangle X we define

ﬁGog(X) = Xl,l

For a Magog triangle of size n we let

n n—1
ﬁMagog(X) = ZXn,i - Z anl,i
i=1 i=1
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Remark that if we identify a Gog triangle with an alternating sign matrix, then
the statistics BGog(X) corresponds to the position of the 1 in the bottom line. Some
recent results on the joint enumeration of this and other similar statistics can be
found in [3, 5]. In particular, it is known that the number of Gog triangles of size
n with BGeg(X) = k is equal to the number of Magog triangles of size n with
IBMagug(X) =k.

Consider now the bottom triangle

a b

Cc

made of the two lowest rows of some Gog triangle of size n > 2. Thus a, b, c are
integers satisfying the inequalities

l<a<c<b<n, a<hb.

Consider now a triangle

extracted from the two rightmost NW-SE diagonals of Magog triangle of size n,
such as this one:

These triangles are characterized by the inequalities
ad<cd<b<n d<n-1.

It is now easy to find a bijection between these two sets of triangles, mapping the
statistics BGog t0 Bumagog i-€. c toa’ + b’ — ¢’ as follows:

. . a b .
start from a triangle extracted from a Gog triangle withl <a<c<b<
c

n; a < bandthen

e if t
if a < ¢ map . o atb—ec

. a
e ifa =cmap to
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We leave to the reader the task of verifying that this is a bijection. Observe that
it can be obtained in two steps: first we make the transformation

— ifa <c

ifa=c

then a symmetry

a b a b
%
c a+b-—c

This idea was generalized in [9]. The first step leads to considering inversions of
Gog triangles while the second leads to the Schiitzenberger involution. We shall
explain these two ideas now.

4.3.1 Inversions

An inversion in a Gog triangle X is a pair (i, j) such that X; ; = X; 11 ;.
For example the triangle below has 5 inversions.

1 2 3 5 6
AN AN
1 2 5 6
AN
2 4 5
AN
2 5
N
2

4.3.2 Schiitzenberger Involution

The Schiitzenberger involution is a fundamental tool in the theory of Young
tableaux, which has a nice geometric interpretation [20]. Its simplest descrip-
tion uses the RSK transformation, which is a bijection between the set of two-
dimensional arrays of nonnegative integers, (M;;); j>1 and pairs (S, T) of semi-
standard Young tableaux of the same shape A. This bijection allows to give a
bijective proof of Cauchy’s identity (2). Using the bijection between semi-standard
tableaux and Gelfand-Tsetlin triangles the Schiitzenberger involution can be trans-
ported to Gelfand-Tsetlin triangles. The following description of this involution has
been given by Berenstein and Kirillov [7].
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First define involutions s, for k < n — 1, acting on the set of Gelfand-Tsetlin
triangles of size n. If X = (x;,j)n>i>j>1 is such a triangle the action of 53 on X is
given by sy X = (Xi,j)n>i2j21 with

)?,'J:X,',j, ifi #£k

Xk,j = max(Xpy1,j, Xk—1,j—1) +min(Xpy 1,11, Xk—1,7) — Xi,j

It is understood that max(a, b)) = max(b,a) = a and min(a, b) = min(b,a) =
a if the entry b of the triangle is not defined. The geometric meaning of the
transformation of an entry is the following: on row k, any entry Xy ; is surrounded
by four (or less if it is on the boundary) numbers, increasing from left to right.

Xi+1,j Xk1,j+1
Xk,j

Xi—1,j-1 Xi—1,j
These four numbers determine a smallest interval containing Xy ;, namely

[max(Xe+1,j, Xk—1,j—1), min(Xgq1, j+1. Xk—1,7)]

and the transformation maps Xy ; to its mirror image with respect to the center of
this interval.
Define wWj =5j5j—1...525]1.

Theorem 3 (Berenstein and Kirillov [7]) The Schiitzenberger involution, acting
on Gelfand-Tsetlin triangles of size n, is given by the formula

S=wiw...0p_1

Using inversions and the Schiitzenberger involution a bijection between (n, 2)
Gog and Magog trapezoids was given in [9].

4.3.3 GOGAm Triangles and Trapezoids

Definition 6 A GOGAm triangle of size n is a Gelfand-Tsetlin triangle which is
the image by the Schiitzenberger involution of a Magog triangle (of size n).

Remark 1 The name GOGAm is obtained from Magog by reading backwards and
changing the case as a reminder of the description of the Schiitzenberger involution
on words (cf. [15]).

It is shown in [9] that the GOGAm triangles of size n are the Gelfand-Tsetlin
triangles X = (Xj j)u>i>j>1 such that X, < nand, foralll < k < n—1,
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andalln = jo > j1 > j2...> ju—k > 1, one has

n—k—1
D X — Xjiotiviinn |+ Xiusbntojus <k (®)
e

The problem of finding an explicit bijection between Gog and Magog triangles
can therefore be reduced to that of finding an explicit bijection between Gog and
GOGAm triangles. Again one can define right or left GOGAm trapezoids.

Conjecture 1 For all k < n, the (n, k) left Gog and GOGAm trapezoids are
equinumerous.

In [10] it was shown that the ideas of [9] could be used to provide a simple bijec-
tion between (n, 2) Gog and GOGAm left trapezoids. These bijections suggested
some further conjectures which we describe in the next section.

4.3.4 Pentagons

Definition 7 For (n, k, [, m), withn > k, 1, m, an (n, k, [, m) Gog (resp. GOGAm)
pentagon is an array of positive integers X = (X, j)n>i>j>1;k>; j+/>i+1 formed
from the intersection of the k leftmost NW-SE diagonals, the / rightmost SW-NE
diagonals and the m bottom lines of a Gog (resp. GOGAm) triangle of size n.

3 5
2 5 6
2 4 5
2 5
2

A (6,4,3,5) Gog pentagon
Remark that if m > k 4 [ — 1 then the pentagon is a rectangle, whereas if m < k, [
then it is a Gelfand-Tsetlin triangle of size m.

Conjecture 2 For any n, k,l, m the (n, k,[, m) Gog and GOGAm pentagons are
equinumerous.

This conjecture can even be refined into

Conjecture 3 For each n, k,l the (n, k) left Gog and GOGAm trapezoids with
bottom entry X ; = [ are equinumerous.

Some numerical evidence for these conjectures has been given in [10].
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5 On the Distribution of Inversions and Coinversions

5.1 Inversions and Coinversions

We recall the definition of inversions and introduce the dual notion of coinversion.

Definition 8 An inversion in a Gog triangle X is a pair (i, j) such that X; ; =
Xit1,j-

A coinversion is a pair (i, j) such that X; ; = X; 1 j41.

For example, the Gog triangle in (9) contains three inversions, (2, 2), (3, 1), (4, 1)
and five coinversions, (3, 2), (3, 3), (4, 2), (4, 3), (4, 4).

1 2 4
R
N

234 N

We denote by w(X) (resp. v(X)) the number of inversions (resp. coinversions)
of a Gog triangle X. Since a pair (i, j) cannot be an inversion and a coinversion at
the same time in a Gog triangle and the top row does not contain any inversion or
coinversion, one has

nin—1)

v(X) + pn(X) < )

Actually one can easily see that "(";1) — v(X) — u(X) is the number of —1’s in
the alternating sign matrix associated to the Gog triangle X. Also inversions and
coinversions correspond to different types of vertices in the six vertex model, see

e.g. [6].
Let us denote by Z(n, x, y) the generating function of Gog triangles of size n
according to v and p.

Zn,x,y)= Y x"®yr®, (10)
XeGogy,

where the sum is over the set Gog, of Gog triangles of size n.

The following formula has been proved in [6], using properties of the six vertex
model.

Proposition 1

min(i, j+1) ; 1 J +1
Zn,x,y) = det —yis; B k. 11
(nx.y)= det | =y'8iju1+ kzo (i_k)( L )x (11)
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For example, for Gog triangles of size 3, we have

1 1 1
Z3,x,y)=det| —y+x 2x 3x :x3+xy+y3+2x2y+2xy2.
X —y2 4 2x + x?% 3x + 3x2
(12)

which matches part (a) of Table 1.
It is however not so easy to use this formula in order to prove results on the
distribution of inversion and coinversions.

5.2 Distribution of Inversions and Coinversions

Table 1 below shows the joint distribution of i and v, forn =3 and n = 4.

We remark that the numbers on the antidiagonal are the Mahonian numbers
counting permutations according to the number of their inversions.

Let us denote by A, x the set of pairs of nonnegative integers (i, j) such that

. _k(k+1) . (m—k=Dm -k ... _nm—=1)
> > <
1= 2 ) J = 2 ) 1+ =< ’
and let

A= U2} Auke

We will give a simple combinatorial proof of the following.

Theorem 4 There exists a Gog triangle of size n, with i inversions and j coinver-
sions, if and only if (i, j) belongs to the set A,. If i = k(k;'l) and j = (n_k_;)(n_k)
for some k € [0, n — 1] then this triangle is unique, furthermore its bottom value is
n—k.

Remark 2 Note, for future reference, that if (I, m) belongs to the set A, and if

p(p+1) (n—p)(n—p+1)
I < 75" thenm > 2 .
Table 1 The number of Gog 0123456
triangles of size 3 (a) and 4 0123 0 1
(b) with k inversions 1 123
(horizontal values) and / B ) ! 2 65
coinversions (vertical values) 1 3] 166
21 2
31 4| 25
50 3
6[1
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5.3 Proof of Theorem 4

5.3.1 Existence

First we show that there exists a triangle of size n with k(k;r Y inversions and
(”_k_é)(”_k) coinversions. Indeed the triangle is defined by
Xijj=j for j<i—n+k (13)
Xijj=n+j—i for j>k+1 (14)
Xijj=n—k+2j—i—1 for i—n+k+1<j<k (15)

The bottom entry of this triangle is n — k, as expected.
We give an example below: for n = 6 and k = 3, the triangle has 6 inversions

and 3 coinversions:
1 4
AN
\1 4 6/6
AN
1 3 5

2 4

Observe that the entries which are neither inversions nor coinversions form a
rectangle of size k x (n — k — 1) at the bottom of the triangle.
The ASM corresponding to such a triangle has a diamond shape:

00 0 1 0O
00 1 -110
01 —-11-11
1-11 -110
01 -11 00
00 1 0 0O

Starting from this triangle, it is not difficult, for a pair of integers (/, m) such
that [ > k(k2+1) ,m > ("_k_é)("_k), and ! +m < ”(”2_1), to construct (at least) one
triangle with [ inversions and m coinversions, for example one can add inversions
by decreasing some entries, starting from the westmost corner of the rectangle, and
add coinversions by increasing entries, starting from the eastmost corner. Here is an

example withn = 6,1 = 9, m =5, details of the general case are left to the reader.
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5.3.2 Standardization of Gog Triangles

In order to prove the only if part of the Theorem, as well as the uniqueness statement,
we now introduce two standardization operations. These operations build a Gog
triangle of size n — 1 from a Gog triangle of size n.

5.3.3 Left Standardization

Let X be a Gog triangle of size n then its (n — 1)th row (counted from bottom to
top) has the form 1,2, ..., k,k+2,...,nforsome k € [1,n]. For j < k,letm; be
the smallest integer such that X, j = X, j = Jj.

The left standardization of X is the triangle L X of size n — 1 obtained as follows:

LXi,jZXi’ij for jfk and n—lzizmj. (16)
LX;;=X;;—1 forother values of i, j. (17

5.3.4 Right Standardization

Let X be a Gog triangle of size n with (n — 1)th row of the form 1,2, ..., k, k +
2,...,n,and for j > k + 1let p; > 1 be the largest integer such that X, ; =

Xn—pj.j+1-p; = J + 1.
The right standardization of X is the triangle R X of size n—1 obtained as follows:
RXn i, jy1-1 = Xpu—t,jy1— —1=j for j>k+1 and 1=<I<p;. (18)
RX; ;= X;; forother values of i,j. (19)
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Below are a Gog triangle of size 6, together with its left and right standardiza-
tions:

1 3 5 6
1 4 6 >
35
4
X
12 3 4 5 1 2 3 4 5
1 2 4 5 1 3 4 5
13 5 1 4 5
2 4 35
3 4
LX RX

5.3.5 An Intermediate Result

Proposition 2! Let X be a Gog triangle of size n, with | inversions and m
coinversions with (n — Nthrow 1,2,3, ...k, k+2,...n.

Then LX is a Gog triangle of size n — 1 with at most m —n + k + 1 coinversions
and at most [ inversions.

Similarly, RX is a Gog triangle of size n — 1 with at most | — k inversions and at
most m coinversions.

Proof We prove the proposition only for the left standardization. The case of right
standardization can be proven in an analogous way, or by noticing that the mapping
X = (n+1— X;;t1-j)ij is an involution, which exchanges inversions and
coinversions.

Observe that there are exactly k inversions and n — k — 1 coinversions on row
n — 1 of X. It follows that X has / — k inversions and m — n + k 4 1 coinversions
onrows1,...,n—2.

We first prove that LX is a Gog triangle. For any i, j we have to prove that

LX;;>LXi—1j-1, LX;j>LXiy1j, LX;;>LX;j.

n the first version of this paper the statement of this proposition was incorrect. I would like to
thank the referees for pointing out the mistake.
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Since X is a Gog triangle one has X; ; > X;_1 j_1, therefore the first inequality
may fail only if LX; ; = X;; —1and LX; 1 j—1 = X;_1,j—1. If this is the case
then X; ; > jand X;_1 j—1 = j — 1, therefore LX; ; > LX;_1 j_1. This shows
also that L X cannot have more coinversions than X on its first n — 2 rows, therefore
the number of coinversions of LX is at most m —n+k+1. A similar reasoning yields
the other two inequalities, moreover the number of inversions of LX can increase
at most by k with respect to that of X in its first n — 2 rows, more precisely by at
most one in each of the k leftmost NW-SE diagonals. It follows that L X has at most
! inversions.

5.3.6 End of the Proof

We can now finish the proof of Theorem 4 by induction on n. For n = 3 or 4, the
claim follows by inspection of Table 1. Let X be a Gog triangle of size n, with [
inversions and m coinversions. We have to prove that (I, m) belongs to some A, ,.
We have seen that LX is a Gog triangle of size n — 1 with atmostm —n + k + 1
coinversions and at most / inversions, whereas RX is a Gog triangle of size n — 1
with at most / — k inversions at most m coinversions. By the induction hypothesis
there exists some p such that

>p(p+1) m—p—-2)(n—p-1)

m—-n+k+1> (20)

l ’
2 2

and there exists g such that

m> n—g=2n—-q-1)

[_psd@tD
-2 2

ey

If p > ¢, then (20) implies / > “TD* andsince m > ~472"~47V py (21)
one has (I,m) € Ap g+1.

Similarly if ¢ > p then (21) implies / > ?*DP*2 and (20) implies m >
("7”72)2("7”71) so that (I, m) € Ap p41.

If now p = g then either k > p and then! — k > q(q; Y implies I >
and (I,m) € Appy1,0rk < pthenm —n+k+1 > (”_”_2)2("_”_1) implies
m > TP and (1,m) € Ap,p.

Suppose now that | = p(p2+1) ,m = ("7”7%)("717). We wish to prove that there
exists a unique Gog triangle with these numbers of inversions and coinversions.
Let X be such a triangle and consider RX, which has at most / — k inversions. If

k> pthenl —k < (p_zl)p, therefore, by Remark 2, RX has at least (”_”)(g_”"’l)
(n—p—é)(n—p)

(p+D(p+2)
2

coinversions, which contradicts the fact that RX has at most m =
coinversions; it follows that k < p. A similar reasoning with LX shows that in fact
k = p, and RX has at most (pzl)p inversions, and at most m = ("7”7%)("717)
coinversions. By the induction hypothesis RX is the unique Gog triangle with
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1= _21)” inversions, and "' ~? _é)("_p ) coinversions. The triangle X is completely
determined by RX and k and we have k = p therefore X is unique. Comparing with
the formula (13), (14), and (15) for this RX, we check that X is the unique triangle
of size n with [ = p(p;l), m= ("71’7;)("7‘”). ]
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The Clebsch Representation in Optimal )
Control and Low Rank Integrable e
Systems

Anthony M. Bloch, Francois Gay-Balmaz, and Tudor S. Ratiu

Abstract Certain kinematic optimal control problems (the Clebsch problems) and
their connection to classical integrable systems are considered. In particular, the
rigid body problem and its rank 2k counterparts, the geodesic flows on Stiefel
manifolds and their connection with the work of Moser, flows on symmetric
matrices, and the Toda flows are studied.

1 Introduction

We study a class of kinematic optimal control problems and their relationship
with certain integrable systems. In particular, we consider the so-called Clebsch
optimal control problem, as analyzed in [8, 21]. We discuss geometrical aspects of
the optimal dynamics and their relationship to some classical integrable systems.
In particular, we examine the formulation of integrable systems discussed in [32]
which includes the free rigid body, their low rank counterparts, flows on Stiefel
manifolds, the geodesic spray on the ellipsoid, and the Neumann problem. We
also consider the flows on symmetric matrices [4, 12, 13] and the full Toda flows
[5, 14, 15] which generalize the classical Toda lattice [18, 19]. We show in this paper
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how the Clebsch approach leads naturally to generalizations of the flows considered
by Moser both to higher rank systems and other integrable Hamiltonian systems
of interest. We also interpret the Moser formulation geometrically in terms of the
momentum map.

More details on the integrability of low rank systems using this approach will
appear in [11], extending the work of, e.g., [1] and, in the Stiefel case, that of [17].

In several examples, including the rigid body equations, the Toda lattice,
the Bloch-Iserles system, and optimal control on Stiefel manifolds, the Clebsch
formulation allows one to naturally formulate the evolution equations on a Cartesian
product, rather than on a tangent or cotangent space. This is referred to as
the symmetric representation and offers a direct link with the discrete evolution
equation obtained by variational discretization, as both the continuous equations in
the Clebsch formulation and the discrete equations evolve on the same Cartesian
product.

2 The Clebsch Optimal Control Problem

2.1 Review of the Clebsch Optimal Control Problem

We recall from [21] some facts concerning the Clebsch optimal control problem.
Let® : O x G — Q be aright action of a Lie group G on a smooth manifold Q.
We denote by gg := ®(q, g) the actionof g € G ong € Q. Given u € g, where
g is the Lie algebra of G, we denote by ugp € X(Q) the infinitesimal generator of
the action. Recall that u g is the vector field on Q defined at ¢ € Q by up(q) =

jt o1 exp(tu), where exp : g — G is the exponential map.
Given a cost function £ : g x O — R, also called here a Lagrangian, the Clebsch

optimal control problem is

T
min/ L(u(t), q(t))dt (1)
0

u(t)

subject to the following conditions:

A g =u@®q®));
B) ¢ =goand g(T) = gr.

In order to formulate the main properties of this optimal control problem, we
need to recall some definitions. The partial functional derivative of ¢ relative to
u € g is the function gﬁ (u, q) € g* defined by

<8€ > d
(u,q),du):=
Su

dr L(u + sdu, q)

s=0
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for any u € g, where (-,-) : g* x g — R denotes the (a weakly, for infinite
dimensional g) non-degenerate duality pairing. If g is infinite dimensional, we
assume that gﬁ exists. Usually, we just write g’f , the dependence on (u,g) € g x QO
being understood.

The partial functional derivative of € relative to g € Q is the function gs (u,q) €
T, Q defined by

Y4 d
8q )=
<8q (u, q), q> dr

for any 8q € T, O, where q(s) € Q is a curve with ¢(0) = g, g(0) = ég and (., -) :
Tq*Q x Ty 0 — R, for all ¢ € Q denotes the (a weakly, for infinite dimensional

€, q(s))
0

§=

Q) non-degenerate duality pairing. If Q is infinite dimensional, we assume that gg

exists. As before, the dependence of gﬁ on (u,q) € g x Q is understood, without
being explicitly written.

The Legendre transformation of £ at g € Q is definedby g > u — u(u, q) :=
gﬁ (u,q) € g*. We say that ¢ is hyperregular if this map is a diffeomorphism, for
every ¢ € Q. Under this hypothesis, we denote by g* > p +— u(u,q) € gits
inverse, and let & : g* x Q — R be the associated Hamiltonian given by h(u, q) =
(s up, @)y — Lu(p, q), q).

The momentum map for the cotangent lifted G-action on T*(Q is the map J :
T*Q — g*, defined by (J(aq), u> = (qu, uQ(q)>, forany oy € T*Q, u € g.
This map is equivariant relative to the cotangent lifted G-action on 7*Q and the
coadjoint G-action on g*.

Finally, given o, 8 € Tq* 0, the vertical lift of B relative to « is defined by

Very p 1= js (@ +sB) € Tu(T*Q).
s=0

The main geometric properties of the Clebsch optimal control problem and its
link with Lagrangian and Hamiltonian dynamics are summarized in the following
theorem.

Theorem 1 Let the Lie group G act on the right on Q andlet€ : g x Q — Rbea
cost function. Then:

o Ift — (u(t),q(t)) € gx Q is an extremal solution of the Clebsch optimal control
problem (1), then there is a curve t — «a(t) € T*Q satisfying w(a(t)) = q (),
where w : T*Q — Q is the cotangent bundle projection, such that the following
equations hold:

M—J() v = (o) + Vi o 2
S = a), o =urg(x era&].
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* Equations (2) imply (a generalization of) the Euler-Poincaré equations for the
control u, given by

d &t ¥4 8¢
= ad* . 3
dr Su a”8u+J<8q> )
o If € is hyperregular, then the second equation in (2), in which the first equation is
used, is Hamiltonian on T* Q for the Hamiltonian

H(ag) = h(J(g), q), “)

where h : g* x Q — R is the Hamiltonian obtained from ¢ by Legendre
transformation.

e If € is hyperregular, then equations (3) together with condition (A) can be
equivalently written in terms of the Hamiltonian h as follows:

d o <6h>
n=adgs U —
dt S 8q (5)

Equations (5) are Hamiltonian with respect to the Poisson bracket

_ 5f oh 5f\ oh Sh\ Sf
ong* x Q.

We refer to [21] for a proof of this theorem.

Remark 1 Equations (3), with initial condition gp € Q for the curve ¢(t), can be
obtained by Lagrangian reduction of the Euler-Lagrange equations associated to a
Lagrangian L : TG — R invariant under the action of the isotropy group G4, :=
{g € G| gq0g = q0} C G of go. From this point of view, the cost function £ emerges
as the reduced Lagrangian associated to L via the relation L(g, ) = £(g~'¢. q0g);
see [22]. This explains why we alternatively called the cost function a Lagrangian.
A similar comment applies, on the Hamiltonian side, to equations (5). Equations (3),
resp., (5), are generalization of the Euler-Poincaré, resp., Lie-Poisson, equations for
semidirect products (see [26]) and of the affine Euler-Poincaré, resp., affine Lie-
Poisson, equations (see [20]).

Equations (3), together with ¢ = u g(q) can be interpreted as the Euler-Lagrange
equations (in the Lie algebroid sense) on the transformation Lie algebroid E =
gx Q — Qwithanchormap p : E — TQ, p(u,q) = ug(q), see [38] and [29].
In this formalism, the condition ¢ = u g (q) expresses the condition of admissibility
for a curve (u(t), g(¢)) in the algebroid E.
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2.2 Restriction to G-Orbits

Note that, due to condition (A), the solution g (#) of the Clebsch optimal control
problem (1) necessarily preserves the G-orbit & of the initial condition gg.
Therefore, we always assume that gp and and gr belong to the same G-orbit, in
order to have a well posed problem. As a consequence, the Clebsch optimal control
problem (1) on g x Q with go,gr € O has the same solutions as the restricted
Clebsch optimal control problem on g x € given by

T
min / 0y, g(t))dr ©)
u(t) Jo

subject to the following conditions:

A g@®) =u®)elg®));
B) ¢0) =goand g(T) = qr.

In (6), the cost function 07 . g x 0 — R is defined by Eﬁ(u, q) = Uu,i(g)),
wherei : & < Q is the inclusion, and u ; denotes the infinitesimal generator of the
G-action on 0. We have the relation Ti(ug(q)) = up(i(g)),forallg € 0.

Let us comment on the link between the stationarity conditions of both problems.
We denote by J Y. T*¢ — g*, the momentum map associated to the cotangent
lifted G-action on T*&. We have Jﬁ(T*i(aq)) = J(ay), for all o, € T*Ql|g,
where T*i : T*Q|s — T*0 is cotangent map defined by i. Using these relations,
one observes that if a(f) € T*Q is a solution of (2) with 7w («x(0)) = ¢o, then
a(t) e T*Qlg and B(t) := T*i(a(t)) € T*O is a solution of

¢, , sef
P J°(B), B =ur«g(B)+ Verg ; (7
u 8q

which is the stationarity condition of problem (6).

Note that if ¢ is hyperregular with associated Hamiltonian /4, then 07 is
hyperregular, with Hamiltonian ho - g* x 0 — R given by h(u, q) = h(u,i(g)).
Let H? . T*0 — R be the collective Hamiltonian associated to hﬁ, ie.,
HOBy) = h? (Jﬁ(ﬁq),q), for all B; € T, 0. Then we have the relation

HY o T*i = H on T*Q|gp, where H : T*Q — R is the collective Hamiltonian
of h. This relation completely characterizes H Y 1f a(¢) is a solution of Hamilton’s
equations for H on T*Q, with 7 («(0)) = qo, then necessarily a(t) € T*Q|» and
the curve B(¢) := T*i(x(t)) is a solution of the Hamilton equations for H 7 on
T*0.
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2.3 Quadratic Cost Functions and the Normal Metric

In this paragraph, we study the Clebsch optimal control problem in the special case
where its cost function is given by the kinetic energy of a given inner product on the
Lie algebra. We then show that the extremals are geodesics relative to an induced
Riemannian metric on orbits. Let y be the inner product on g and consider

1
tu, q) =,y u). ®)

b

Defining the flat operator g > u — u” € g* by u’ = y(u,_), we have the

functional derivatives

The stationarity conditions (2) and the Euler-Poincaré equations (3) read

d
&y = ur+g(a), u’ = J(ay), and dtub = ad u’.

The Hamiltonian Since the Lagrangian ¢ is hyperregular we can consider its
associated Hamiltonian

I _ bt
(s q) 2V(u,u),

where the sharp operator g* > u + u® € g is defined as the inverse of the flat
operator. The Hamiltonian H : T*Q — R defined in (4) is thus

1 1
Hiag) = )y (Je)  J@p)?) =t k(@) (e, ay).
where we defined the symmetric positive 2-contravariant tensor k on Q by

k@) (g, Be) = v (J@ . 3B forall ag, By € T*Q.

Note that « is not a co-metric, in general, since it has the kernel [go (¢)]° = [T, 01°,
where 0 is the G-orbit containing g and gg(q) = {up(g) | u € g}. It is a co-metric
if and only if the G-action is infinitesimally transitive, i.e., gg(q) = T, Q for all
q € 0.

We shall show below that the tensor «, and hence the Hamiltonian H, are closely
related to a particular Riemannian metric on the G-orbits, called the normal metric.
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The normal metric on orbits We now recall from [21] the definition of the normal
metric on G-orbits. Given g € Q, let g, := {§ € g | £o(g) = 0} denote the
isotropy Lie algebra of ¢. Using the inner product y on g, orthogonally decompose
g=209q gfj', and denote by u = u, + u? the associated splitting of # € g in this
direct sum. With these notations, the normal metric on a G-orbit ¢ is defined by

vo(@)(uo(q),vo(q) == y?, v?), forallg € Qandu,v € g. ©)
For infinite dimensional g and a weak inner product y, the existence of the relevant
objects is either postulated or verified in concrete cases.

Theorem 2 Let G be a Lie group acting on the right on the smooth manifold Q
and let y be an inner product on g. Define the following symmetric positive 2-
contravariant tensor on Q:

K@) g B =y (J@)? JB) . g By € THQ. (10)

Then:

* k is non-degenerate if and only if the G-action on Q is infinitesimally transitive.
e « induces a well-defined co-metric kg on each G-orbit O of Q, through the
following relation

ko(q) (T*i (i) . T (ﬁuq))) = k(@) (i), Biw) - (11)

forq € Oand a;y), Big) € Ti’Eq) Q. The co-metric kg is explicitly given by

ko@ @ B =7 (1@ J7B)?). for aq. By eT*0.  (12)
* kg Is the co-metric associated to the normal metric on O, i.e.,

(@) (g, Bg) = vol@) (el B2). forall g € 6 andall ag, py € T} O,
(13)

where Tq*ﬁ Say (xg € T, 0 is the sharp operator associated to y¢.

Proof Since the kernel of « is [go(g)]1°, « is non-degenerate if and only if go(q) =
T, 0, i.e., the action is infinitesimally transitive.

Let us show that ks in (11) is well-defined. If o; (), a;(q) € Tl.’:q) Q are such that
T*i(a,’(q)) = T*i(az{(q))’ then Ui(q) —Oll{(q) S [Tq ﬁ]o. Hence K(i (q))(ot,'(q), ﬁ,’(q)) =
k(i (q))(ozlf(q), Bi(g))» and similarly for B;,). Since the kernel of k (¢), forg € 0, is
[go(@)]° = ker(T;i ), it follows that k is non-degenerate and hence a co-metric.
Formula (12) follows from the relations (11) and J o T*i = J on T* Olg.
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To prove (13), we first note that for o, € Tq*ﬁ andu € g,

ah =ug(q) & (g, v0(@)) = yo(@)(ug(q), vo(@)), Yveg

N <J‘7(aq), v> — ywi ), Vueg
& (1), v) =y, v), Yveg

& yJ%ag)t v) =y, v), Yveg,

so, we get J‘ﬁ(aq,)t = u9, where f is associated to y. Similarly, ,35 =vp(q) &
Jﬁ(ﬂq)t = v9. We can thus write

c@@g: ) = v (37" 37 (B)7) = y W, v
= 70(@)0(q), vo(@)) = vo(q@) (@, B])

as requested. |

As we have seen in Sect. 2.2, we can restrict the Clebsch optimal control problem
to the G-orbit & containing go. In this case, by using Theorem 2, the collective
Hamiltonian turns out to be the kinetic energy of the normal metric, i.e.,

HO@) = k0@ aq) = L vo(ed, o) (14)
Qag) = 2/(@ q)(ag, oq) = 2)/@ Oy, 0y ).

We thus obtain the following instance of Theorem 1 which allows to interpret the
solution g (¢) of the Clebsch optimal control problem for (8) as geodesics on G-obits.

Corollary 1 (Clebsch optimal control and geodesics of the normal metric) Let
the Lie group G act on the right on Q, let y be an inner product, suppose qo, qr €
O, and consider the cost function £(u, q) = éy(u, u). Then:

e Ift — (u(1),q(t)) € gx O is an extremal solution of the Clebsch optimal control
problem (1), then there is a curve t — a(t) € T*O covering q(t), such that the
following equations holds:

W =J@, @=urg). 15)

* Equations (15) imply the Euler-Poincaré equations for the control u

d
d;”b =ad’u’. (16)
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e The second equation in (15), in which the first equation is used, is Hamiltonian
on T* O for the Hamiltonian (14). Therefore, q(t) is a geodesic on € with respect
to the normal metric y .

The previous discussion can be easily adapted to the case with a potential, i.e.,

1
L(u,q) = 27/(u,u) - Nq).

Equations (15) and (16) then become
. 3V d 8
u’ = J(@), &=ur+g(a)—Ver, 5 and dtub =ad'u’—]J (55) .3
The Hamiltonian H? : T*€ — R takes the standard kinetic plus potential form

1
H () =, volaf, of) + 1q).

2.4 Optimal Control Associated to Geodesics

Suppose that (Q, g) is a Riemannian manifold and consider the minimization of the
Riemannian distance

T
mm/ , a1 dt (18)
0

subject to the condition ¢(0) = ¢go and g(T) = gr. Suppose that there is a
transitive action of the Lie group G on Q. Then this minimization problem can
be reformulated as a Clebsch optimal control problem, namely,

T
. 1
min / 2||ug(q)||2dr (19)
0

u(t)

subject to the following conditions:

A g =u®)o(q®));
B) ¢q0)=goand q(T) =qr.

We can thus write the cost function as

1 1
tu,q) = 2||uQ(q)||2 =, (L(q)u, u),
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where for each ¢ € Q, I(q) is the locked inertia tensor I(g) : g — g* defined by

(I@)u, v) == g(@)(uo(q), vo(q)),
for any u, v € g. The functional derivatives are

8¢

5¢ 1
sy~ M@u gy and = gluo(9), Vug(g) = , (dl(@)()u, u) € T; 0,

dq

where V is the covariant derivative corresponding to the Riemannian metric. We
note that ker(I(¢)) = g4 and im(I(g)) = g;, therefore, £ is hyperregular if and only
if the action is infinitesimally free, i.e., g; = {0}.

In the hyperregular case, we obtain the Hamiltonian % : g* x Q — R, given by

h I 20
(n,q) = ) (M, (q) M>, (20)
and the Hamiltonian H : T*Q — R defined in (4) reads
1
Hiag) = h(Jay). ) = , (Veg) @)~ T(ety))

We extend now the definition of these Hamiltonians to the non-regular case. Let
us fix an inner product y on g. We write

I(g) : g =0, ®0; — g & (g9)" =095 & (g;)°

relative to the orthogonal decomposition with respect to ¥ and y*. Decomposing
— 71
megtasu=p+u€g;d (gj)", we define I(g) :g* — gas

— -1
@ +u2) = (1@l ) () g

where we note that [[(g)]4 L gé‘ — g; is an isomorphism. We can thus define the
Hamiltonians

1 —
highx Q— R, hnq) = 2<M,H(q) 'w)
1
H:T"Q >R, Hag) = ,8@)e], o).

Clearly, h extends (20) to the non-regular case. Concerning H, we have the
following result.
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Theorem 3 Assume that the G action is transitive (but not necessarily free). Then,
we have the relation

H(og) = h(J(eg), q). 21

Moreover, similarly with the hyperregular case, the second equation in (2) (for the
problem (19)), in which the first equation is used, is Hamiltonian on T*Q for the
Hamiltonian (21).

Proof 1If the action is transitive, we have (]I/(\q)flJ (oeq)) Q(q) = oeg. Indeed, for all

u € g, since J(og) € g, we have

¢((M@ ™ 3@) @, uo@) = (1) (@)~ Jey)). u)
= (J(th), u> = (g, uo(q)) = g(txg, ug(q))-

Using this identity, we can check (21) as follows

1 — 1 1
heg).q) = (Jg) 1@ Oeg)) = o o) = Hay).

To show the second result we note that in our case the first equation in (2) is
J(ey) = lg)u € g;. This relation is not invertible, but it tells us that u is equal

to ]@71(J (@g)) modulo an element in g,. In the second equation in (2), we thus
— 1
have uz+g () = (I(g) (J(O{q)))T*Q.
To check that this coincides with the Hamiltonian equation for H, we note that
the Hamiltonian vector field of H in (21) is X (a) = ( ;;;; Jg). D) s 0@ —

Very ‘gz (J(ag), q). Using the expression of h, we have (‘;Z Jy),q) =

]@_1 (J(ag)). This proves the result. [ |

3 Optimal Control on Stiefel Manifolds

An optimal control problem on Stiefel manifolds is introduced and studied in [9], as
a generalization of the geodesic flow on the sphere (case n = 1) and the motion
of the free N-dimensional rigid body (case n = N). In [21] this problem was
generalized to arbitrary Lagrangians and formulated as a Clebsch optimal control
problem of the form (1).

In this section, we show that the Clebsch optimal control problem on Stiefel
manifolds offers a unified point of view for the formulation of several integrable
systems. These systems turn out to be associated to two classes of cost functions,
corresponding to the two situations studied in Sects. 2.3 and 2.4. From this setting,
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we also deduce a geodesic interpretation of the solution of some of these integrable
systems.

3.1 Stiefel Manifolds

Forn < N, define the Stiefel manifold V,, (RN ) to be the set of orthonormal n-frames
in RY (i.e., an ordered set of n orthonormal vectors) (see, e.g., [25, page 301], [24,
Chapter 5, §4,5]). So, V,, (RN ) is the set of linear isometric embeddings of R” into

n
RV, Let SV~ denoted the unit sphere in RY . Since V,,(RY) c (SN _1> is closed,

it follows that V,,(RV) is compact. Collect the n vectors of an orthonormal frame in
RY as columns of a N x n matrix QeV, (RN). If Mat(N x n) denotes the vector
space of matrices having N rows and n columns, then the Stiefel manifold can be
described as

Va(RY) = {Q e Mat(N x n) | Q0 = I,,}, (22)

where [, is the n x n identity matrix. The dimension of V,, (RN)is Nn—(n+ Dn /2.

The characterization (22) of V,(RY) immediately shows that if n = 1, then
ViRN) = SN=landif n = N, then Vy (RV) = O(N), the group of orthogonal
isomorphisms of RV . If n = 2, then V5(R") is the unit tangent bundle of SV~
Indeed, if {u;, up} C R¥ is an orthonormal frame, think of u; as a point in gN-1
and of uy as a unit vector in the tangent space Ty, S N ’1, and vice versa. Ifn = N—1
and Q € Vy_ (RN ) has orthonormal columns {uy, ..., uy_;} there is a unique unit
vectorug € RV, orthogonal to the vector subspace spanned by {uy, ..., uy_1}, such
that {ug, uy,...,uy_1} is positively oriented, i.e., the determinant of the matrix
é whose columns are these basis vectors is > 0. Therefore, é € SO(N), the
orthogonal orientation preserving isomorphisms of R¥ | i.e., the special orthogonal
group. Conversely, given an element of SO (N), the N x (N —1) matrix Q formed by
the last N — 1 columns is an element of Vy_; (RY). This shows that Vy_; (RY) =
SO(N).

This last construction generalizes to give another characterization of V,,(RV).
Let {ef,...,en} be the standard orthonormal basis of RN and R € O(N).
Then the ith column of R is Re;. Define 7 : O(N) — V,(RY), by n(R) =
[Rey—n+t1 ..., Rey], where [u; ... u;],i < j, denotes the matrix whose columns
(inRYyarew;, ..., u;. Thus 7 maps R € O(N) (a rotation matrix in RM) to the
orthonormal frame formed by its last n columns. This map is clearly surjective,
since any orthonormal frame formed by n < N vectors can be completed to an
orthonormal basis and the matrix whose columns are the elements of such a basis
is in O(N). The rotation group O(N) acts on V, [RM) by multiplication on the
left. This action is transitive. Indeed, given two orthonormal frames of n vectors,
i.e., Q1,02 €V, (RN ), complete each to an orthonormal basis of R i.e., obtain
01 =1[04101], 02 = [05|02] € O(N), where Q', Q have N —n columns which
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are orthonormal vectors in RY. Then @2 @I € O(N) and, since (Q’l)TQl =0,
Q-{Ql = I, we have

— INT
0,001 = [0} 02110, 011701 = [0} Q2] [(%IT)Q?I] — [0} 0] [10} — 0,
1 n

The isotropy of the element [exy_;+1 ... ex] = [Olln]T € V,(R") consists of

matrices R € O(N) satisfying

[0 OREN,,H,l ReN] = R[O OeN,n+1 eN] = [0 OeN,nH eN],

r=|R1 O]
Ry I,
Since R € O(N), we must have

T pT T T
In_, O Iy = RRT = R O Rl R2 _ RlRl R1R2
0 I R, || 0 I RoR RRT + 1,

and hence Ry € O(N —n), R R-zr = 0. Taking the trace of the second relation gives
the sum of squares of all entries of R, which implies that Ry = 0. This shows that
the O (N)-isotropy of the element [ey_+1 ... ey]is O(N —n) embeddedin O (N)
as the upper left (N —n) x (N — n) diagonal block and the lower right n x n block
equal to I,.

i.€., the matrix R is of the form

Conclusion: V,,(RY) is diffeomorphic to O(N)/O(N — n) and the quotient map
ismt : O(N) > [Re; ... Rey] — [Rey_n+1 ... Rey] € V,,(]RN) (as an easy
verification shows).

Note that O (N —n) acts on O (N) by multiplication on the right, where O (N —n)
is regarded as a subgroup of O(N) when viewed as a 2 x 2 block matrix with
O (N — n) embedded as the upper left block, I, the lower right block and the off-
diagonal blocks equal to zero.

If n < N, all considerations above work with O(N) and O (N — n) replaced
by SO(N) and SO (N — n), respectively; in constructing orthonormal bases in RY,
always choose positively oriented ones, by changing the sign, if necessary, of one of
the vectors used to complete the basis. Therefore, the conclusion above holds with
O(N) and O(N — n) replaced by SO(N) and SO(N — n), respectively. Note that
for n = N, these statements are false.

The tangent space at Q € V;,(R") to the Stiefel manifold V,,(RY) is given by

ToVu(RY) = {V e Mat(N xn) | VIO + QTV =0}. (23)
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We identify T*V,, (RY) with T V,,(R") using the pairing T4 Va RV x TV, (RN) >
(Pg. Vo) > Trace (Pg VQ) € R forevery Q € Vu(RV).

Remark 2 1t is also known that
Vn(RN) =SO(N)/SO(N —n) - SO(N)/(SO(n) x SO(N —n)) =: Ern(RN)

is a principal SO (n)-bundle, where 6?,, (RVN) is the Grassmannian of oriented
n-planes in RN. The notation Gr,(R") is reserved for the Grassmannian of n-
planes in RY (regardless of orientation). We will not use these bundles in our
considerations.

Note that for N > 1, Vi[RY) = SV~ = Gri(RV), while Gri([RY) =
RPN, O

3.2 Clebsch Optimal Control on Stiefel Manifolds

From now on, we assume that n < N. We consider the right SO (N)-action on
V(RN given by Q R~'Q for R € SO(N). The infinitesimal generator of this
actionis Uy, gnvy(Q) = —UQ € TQVn(RN), U € so(N).

Given Qq, Or € V, (RN ), the Clebsch optimal control problem (1) reads

T
min / LU @), O))dt (24)
U Jo

subject to the following conditions:
A) QM =-Um®ow);
(B)  Q(0) = Qoand Q(T) = Q7.

We identify the dual so(N)* with itself using the non-degenerate pairing so(N) x
s0(N) > (U1, Up) — Trace(UIrUg) € R. The cotangent bundle momentum map
J: T*V,(RY) — so(N)* is easily verified to be

ye.m = (er - roT).

The optimal control is thus given by §¢/6U = (QPT — PQT) /2 (see (2)).

The cotangent lifted action on T*V,, (RN) reads (Q, P)— (RTQ, RTP) and hence
Hamilton’s equations (2) become

. . Y2
0=-UQ, PZ_UP+8Q’ (25)
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in this particular case. Recall that here §¢/6Q € Té V,(RN) denotes the functional
derivative of ¢ relative to the above defined pairing. The optimal control U, given

algebraically by §¢/6U = (QPT — PQT) /2, is necessarily the solution of the
Euler-Poincaré equation (3) given in this particular case by

dse _roe 1 AN T -
dtaU_[SU’ ]+2 Q(ag) _SQQ ' (26)

3.2.1 Example 1: N-Dimensional Free Rigid Body

We consider as a cost function the free rigid body Lagrangian £(U) = ; (U ,JWU )),

where J(U) = AU +UA, A = diag(Ay, ... Ay), Aj + Aj > 0fori # j. The

corresponding Clebsch optimal control falls into the setting studied in Sect. 2.3.
Since

ot ot

M = =JU), =0,
sU 50
equations (25) and (26) become
0=-UQ, P=-UP (27)

and
M =[M,U], where M=JU)= ; (QPT _ PQT),

From Corollary 1, the solution Q(¢) is a geodesic on the SO (N)-orbit of Q(0)
in V,,(RN), relative to the normal metric induced by the inner product y (U, V) :=
(U, J(V)) on this orbit.

It is a remarkable fact that the free rigid body equations M = [M,U], M =
J(U) = AU + U A on so(N), and indeed their generalization on any semisimple
Lie algebra, are integrable [30]. A key observation in this regard, pointed out for the
first time in [28], was that one can write the generalized rigid body equations as a
Lax equation with parameter:

d
i (M 4+ 1A% = [M + 1A%, U + 1A]. (28)

The nontrivial coefficients of A in the traces of the powers of M + A A? then yield
the right number of independent integrals in involution to prove integrability of the
flow on the generic coadjoint orbits of SO (n) (see also [35]).
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Equation (28) is of the form L = [L, B] with L expressed in terms of the
canonical variables as L(Q, P) = é (QPT — PQT) + A%

Example 1A: symmetric representation of the N-dimensional free rigid body
Consider the special case n = N — 1, i.e. Vy_1(RY) = SO(N). Note that if the
initial condition P(0) € SO (N), then the solution (Q(t), P(t)) of (27) preserves
SO(N) x SO(N). Since in this case the formulation (27) of the free rigid body
equation is symmetric in Q and P, it is called the symmetric representation of
the rigid body on SO(N) x SO(N). As before, if (Q, P) is a solution of (27),
then (Q, M), where M = J(U) and U = —QQ~!, satisfies the rigid body
equations Q = -UQ, M = [M, U] (see [6, 7] for a study of this system and
its discretization).

Example 1B: n = 1, the rank 2 free rigid body We compute equations (25)
and (26) for the case n = 1, i.e., Vi(RY) = S¥=1. For (q, p) € T*SV~! we get

q=-Uq, p=-Up

and
) 1
M =[M,U], where M:J(U)=2(q®p—p®q). (29)

Note that, generically, M has rank 2. Associated to the Manakov equation (28),
Moser [32, page 155] introduces the Lax pair matrices L and B given by

L@p =A"4+aq®@q+bq@p+cp®q+dpQp, G0,

Bg,p)=J '(q®p—p®q) + 214,

witha=d =0,b=—c= 21)\. For these values of the parameters, the expression
of the matrix L in (30) is reminiscent of the expression of the momentum map (29)
arising from the Clebsch optimal control formulation. We have

-1 qiPj —4;Pi
JTq@ep-p®Q 2N+ Ay
The geometric structures underlying definitions (30) will be given in [11].

Recall that the equations for the rank 2 free rigid body arise from an opti-
mal control problem on SV~!, rather than on the orthogonal group: minimize
;fOT (U, J(U))dt, where U is a skew symmetric control, subject to q = —Uq
asin (1).

From the result of Corollary 1, the curve q(¢) € S¥~! (there is only one orbit for
n = 1) is a geodesic on SV ~! relative to the normal metric induced from the inner
product y (U, V) := (U, J(V)).
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3.2.2 Example 2

We consider as a cost function the expression

1
tu, Q)= (AUQ,UQ) - NQ), €19

where A is a given symmetric positive definite N x N matrix and ¥'€ C*°(V, (RM)).
The case ¥ = 0 is the geodesic problem studied in [9]. The first term in (31) is the
kinetic energy associated to the Riemannian metric g on V,,(R") defined by

go(V. W) = (AV, W) =Tr(VTAW) V. W e ToV,(RY).

The corresponding Clebsch optimal control falls into the setting studied in Sect. 2.4.
In each of the examples mentioned below, the Clebsch optimal control formulation
allows us to efficiently derive the explicit form of geodesic equations; see (37) and
(41). This approach also yields a natural setting for generalizing certain integrable
systems from the sphere to the Stiefel manifold, such as the C. Neumann problem.

Before analyzing this formulation for various examples, we first compute,
in general, the stationarity conditions associated to the Clebsch optimal control
problem.

The functional derivative of ¢ with respect to U is 6¢/5U = é(QQTU A+

AUQQT). The relationship 6¢/6U = J(Q, P), which is equivalent to
QQ'UA+AUQQT = 0P - PQT, (32)
cannot be inverted in order to get U as a function of (Q, P) because the associated

locked inertia tensor is not invertible since the S O (N)-action is not free.
Next, we calculate §¢/6 Q. Denoting S := U AU (a symmetric matrix), we have

se \ 5V N\ e ot 8V
<8Q’8Q>__<SQ+8Q’8Q>_ <SQ e SQ+6Q’5Q>

because (QQTSQ, 8Q> = 0.Since SQ — QQTSQ € T Vu(RY) (see (23)), we get

Y2 T 8V
=-S5 SO — . 33
50 Q+00 S0 50 (33)
Thus, Hamilton’s equations (2) become in this case
. . T 3V
0=-U0Q, P=-UP+[0Q",UAU]Q — . (34)

sQ
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The corresponding Euler-Poincaré equations (26) are

- 1 o1 ST 8V 1
M—[M,U]+2[UAU,QQ]—2(Q<5Q) —5QQ), (35

where M = 8 = | (QQTUA 4 AUQQT) @1 (QPT _ PQT).

Example 2A: n = 1, ¥ = 0, geodesics on the ellipsoid Let us consider the
case n = 1, ie, Vi(RY) = SN¥~!. The geodesic flow on S¥~! for the metric
g(q)(u,v) := (u, Av), forq € SN, u, v € T,SV~! is equivalent to the geodesic
flow on the ellipsoid §' A~'g = 1, with ¢ = A~'/2§. Equations (34) and (35) yield

G=-Uq, p=-Up+igq . UAUlG, M =IM,UI+ [UAU,4q"]
(36)
where M = §¢/5U = ! (quUA + AquT) @1 (qu - qu>.
We now deduce from (36) the geodesic equations for the ellipsoid (see Theo-
rem 1, (2)). Using the equality M = é (quUA + AquT), we get

. 1 . _ _ _
MA g = 2<quUzq+AUq(qTA '9) — AU%q(¢" A7) + AUq(q"U A lq))
from where we solve for Ug, which inserted in § = —Uq + U?q yields
. —1py 4—1 -1 T2 Ty -1 T4—1 \—1
q_<—2A MA™'q+ A" qq"U%q + Uqq"UA q)(q Al

Now, we replace in this formula M by its expression in (36) and we get the geodesic
equations
" 1>
G=— . ATg. 37
qTA g
The geodesic equations on the triaxial ellipsoid were solved by Jacobi. The
complete solution is found in his course notes [27].

Remark 3 As a particular case, the geodesic equations on the sphere (A = Iy), are
q=-lqlq. 0
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Example 2B: 7 = 0, geodesics on the Stiefel manifolds When ¥ = 0, (34)
and (35) yield

0=-UQ, P=-UP+[QQ",UAUIQ, M=[M,U]+ ;[UAU, 007,

(38)

where M = 80/8U = | (QQTUA + AUQQT) @1 (QPT - PQT).

We now deduce from (38) the geodesic equations for the Stiefel manifolds (see
Theorem 1, (2)). A direct computation yields

MA~'Q = ; (-veQTuo+ 00?0+ LW Q) - AU?0(QTAT'0)
+AUQ(QTUAT'0)), (39)
where the linear operator L on the vector space of N x n matrices is defined by
L(X):=00"X+AXx0"a710. (40)
Note that if A = Iy, then L(X) = (Iy + 00N X.

We study the properties of the operator L : Mat(N x n) — Mat(N x n), where
Mat(N x n) denotes the real vector space of matrices with N rows and n columns.

Recall that Mat(N x n) has the natural inner product (A, B)) := Tr (ATB). A

direct computation shows that L is a linear symmetric operator relative to the inner
product:

<<L(X), Y>> - <<X L(Y))> = Tr (XTQQTY) +Tr (XTAYQTA—1 Q) .
In particular,
((L(X), X)> = (QTX, QTX) T Tr (XTAX oA Q) .

Note that QT A~1Q is a symmetric positive definite matrix because A is a sym-
metric positive definite matrix and Q € V,,(RY). Therefore, there is a symmetric
positive definite n x n matrix R such that R”2 = QT A~!Q. Hence the previous
expression becomes

((L(X), X)> = (QTX, QTX) T Tr ((XR)TA(XR))
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and we note that each summand is > 0. Hence <<L(X),X)> = 0 =

Tr ((XR)TA(XR)) = 0. Since A is positive definite, we conclude that

XR = 0 which implies that X = 0 because R is invertible. We conclude that
L : Mat(N x n) — Mat(N x n) is a symmetric positive definite operator and hence
invertible.

Returning to (39), we isolate (U Q), replace in this formula M by (38), and we
get

38)

L(0) =1 (-U0+U?0)=200TU%0 'F ~20070, (1)

which are the geodesic equations on the Stiefel manifold.

Remark 4 When n = 1, (41) coincide with (37). Indeed, in this case (41) becomes
q (qTii) +AG (qTA_lq) =-294"¢. qes".

Since ¢'q = 1 we have ¢’ +¢'¢ = 0, which then implies the geodesic equations
on the ellipsoid (37). O

Example 2C: n =1, A = Iy, Nq) = ;Aq -q, A := diag(ay, ..., an), the C.
Neumann problem We now study the motion of a point on the sphere S¥~! under
the influence of the quadratic potential ;Aq -g.For N = 3 the associated Hamilton
equations were shown to be completely integrable by Carl Neumann (see [34]); for
general N and a study of various geometric and dynamic aspects of this problem
see [2, 3, 16, 31, 32, 36, 37].

Since ¢ = —Ugq, the Lagrangian of this system is

L.r. 1 1
(.= ,q"— q"Ag=—_q" (U*+4)q 42)
2 2 2
and hence
se 1 5
=, (44"U +Uqq"). = —(U+ A)g +q(q" (U + A)g).
U 2 5q
Since M := 2§, (26) implies
' L2 T
M=[MU]+ [U"+4.4q') (43)

On the other hand, using the definition of M, we get Mg = é (quUzq +Uq—U?%q)
which yields the equations of motion for the Neumann system

. - @3) :
§=-2Mq+qq'U’q = —Aq + (Aq q— Iqlz) q. (44)
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Example 2D: A = Iy, /(@) = | ((A 0, Q)), A := diag(ay, ..., ay), the

C. Neumann problem on Stiefel manifolds We now consider the motion of a

point on the Stiefel manifold V,,(R") under the influence of the quadratic potential

Q) = é ((AQ, Q)), where we can assume, without loss of generality, that A =

diag(ai, ..., ay). We work in the generic case whena; # Oforalli =1,..., N.
Since Q = —U Q, the Lagrangian of this system is

1 Lo 1 1
(, 0=, (070) - , T (0TAQ) = -, Tr (QT(U* + A) Q) (45)

and hence
o _ 1(QQTU+UQQT) O W4 )0+ 00T W + 4)0)
sU 2 ’ Y0)

by (33). Since M := gf,, (26) implies

- L. T
M:[M,U]+2[U +A,00'] (46)

On the other hand, using the definition of M, we get
o T2 Yoy 172
MQ= QU Q+LUQ)-UQ), (47)

where L(X) := (Iy + Q0" X, for X € Mat(N x n) (see (40)). Using (47), (46),
and2M = QQTU +UQQT, we get L (Q) —L (—UQ 4 UZQ) - 200T0-

AQ + QQTA 0, which yield the equations of motion for the Neumann system on
Va(RY)

O=Uy+00") 1 (-200"0-40+00740). (48)

These equations for A = 0 coincide with (41) and for n = 1 with (44).

4 Clebsch Optimal Control Formulation
for the Bloch-Iserles System

Given N € so(n), the Bloch-Iserles system [4, 12] is the ordinary differential
equation on the space sym(n) of n X n symmetric matrices given by

X =[X2, N], X(@) € sym(n). (49)
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Assume that N is invertible, n = 2k, and consider the symplectic group
Spk, N1y := ’Q €GLC2kR)| QTN"'Q = N—l} (50)

with Lie algebra sp(2k, N™!) = {U € gl2k) | UTN~' + N~'U = 0}. The
system (49) can be written as the Euler-Poincaré equation on sp(2k, N =1 for the
Lagrangian

1 —177y2
tU) =, Tr(N"U)7); (5L

see [4]. Indeed, using the identification sp(2k, N “hyx = sym(2k) with duality
pairing (X, U)) = Tr(XN~'U) for X € sym(2k) and U € sp(2k, N7!), we
have §¢/8U = N~'U and adj; X = XN 'UN — UX, so the Euler-Poincaré
equation jt(% = adyj % becomes N~'U = NT'UN“'UN — UN~'U. Setting
X = N7'U, we recover (49). As a consequence, (49) describes left invariant
geodesics on the Lie group (50).

When N is not invertible, then (49) describes left invariant geodesics on the
Jacobi group and its generalizations; see [23].

4.1 Clebsch Optimal Control Formulation

Assume that N is invertible and consider the right action of the group Sp(2k, N~1)
by multiplication on GL(2k, R). Consider the cost function ¢ : sp(2k, N -y 5 R
given in (51). The associated Clebsch optimal control problem is

T
min/ £(U)dt, subjectto 0 =0U, 00)= Qo O) =0r.
0
Conditions (2) read
Y2 1 T T . . T
sU =J(Q,P) = 2(P ON+(QN)' P), 0=QU, P=-PU, (52)

with respect to the duality pairing (P, V) := Te(PTV), for V e ToGL(2k,R) and
P € T*GL(2k,R). This optimal control problem falls into the setting studied in
Sect. 2.3.
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By Theorem 1, if Q, P satisfy the last two equations in (52), then X = ;LK,

verifies the Bloch-Iserles equations (49). Let’s check this directly. We compute

2X = 2N = i (PTQN _ NQTP)

' _UPTON + PTQUN —~NUTQTP + NQTPUT

— U (PTQN - NQTP> n (PTQN - NQTP) NTIUN
—2 (XN’IUN - UX) =2 [X2, N]

since U = N X, as stated.

This approach generalizes to the right action of Sp(2k, N~!) on gl(2k, R) or,
more generally, on the space Mat(n x 2k) of rectangular n x 2k matrices.

Note that (49) is equivalent to the following Lax equation with parameter

d
XA AN) = [X LN, NX + XN + ANZ] . (53)

In this case, the Lax equation with parameter L = [L, B] has L(Q, P) :=
PTQN — NQTP + NA. For example, if n = 1, ie., q € R2k (seen as a row),
then we have

Y4

1
= N +gN ®p).
sy =, POAN +aN®p)

4.2 Symmetric Representation of the Bloch-Iserles System

Since U € sp(2k, N™1), the last two equations in system (52) are equivalent to
0=0U. PN'=(NHU,

which shows that if U € sp(2k, N~!) and the initial conditions (Q(0), P(O)N~!) €
SpQRk, N1y x Sp(2k,N~1), then (Q@), P()N™') € Spk,N~!) x
Sp(2k, N~ 1.

Since 8¢/8U = X = N~'U, the Hamiltonian / : sym(2k) — R has the
expression

1
h(X) = (X, U)—€U) = 5 Tr(X?).
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Therefore, using (52), the Hamiltonian H : T*gl(2k, R) — R is

1
H(Q.P)=h(J(Q.P) = Tt ((PTQN _ NQTP)Z). (54)

By Theorem 1, we get the following result.
Proposition 1 Consider the canonical Hamiltonian system on T*gl(2k, R) with the

symplectic structure

Qean((Q1, P1), (02, P2)) = Tr(Py Q1 — P 02) (55)

and Hamiltonian (54). Then its solutions are mapped by J : T*gl2k,R) —
sym(2k) to integral curves of the Bloch-Iserles system (49). The flow generated

by (54) preserves the submanifold [(Q, P) € gl(2k,R) x gl(2k,R) | 0, PN~ ! ¢
Sp(2k, N*I)].

S Clebsch Optimal Control Formulation for the Finite
Toda Lattice

Consider a complex semisimple Lie algebra g€, its split normal real form g, and the
decomposition g = b_ @ €, where £ is the compact normal Lie algebra and b_ a
Borel Lie subalgebra (we follow the notations of [10]).

Let us quickly recall how the full Toda equation can be viewed as the Euler-
Poincaré equation on the Lie algebra b_ for the Lagrangian £(U) = ;K(U ,U),
with « the Killing form. If we identify the dual Lie algebra as (b_)* = ¢! by using

Kk, we have §¢/8U = m,1 (U) and adj; p = —mpL ([U, ,u]), so the Euler-Poincaré
equation reads

T (U) = 71 ([U, neL(U)]) (56)

Note that (7p_)|er : tL — b_ is an isomorphism with inverse (e )|p_ 1 b — el
We can rewrite the right hand side as

TpL ([U, ﬂgL(U)]) = el ([TL’[LJTEL(U), JTEL(U)])
. ([nEL(U) — M (U), nBL(U)])

= —TpL ([neﬂeL(U% ”BL(U)])

=— [ﬂEﬂEL(U)s ﬂeL(U)] )
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so defining u := w1 (U), by using the isomorphism (7p_)[g1 : tL — b_, we can
rewrite (56) as

po= [me(), ul,

which is the full Toda equation.

5.1 Clebsch Optimal Control Formulation for A,-Toda Lattice

We first study to the A, -Toda system. In this case, B_ is the group of lower
triangular (r + 1) x (r + 1) matrices with determinant 1 and strictly positive
diagonal elements; b_ is the Lie algebra of lower triangular traceless matrices;
£ is the Lie algebra of skew-symmetric matrices; b- consists of strictly lower
triangular matrices; and £ consists of symmetric traceless matrices. Given U &
g =sl(r + 1, R), we have

we_(U) = U-+ U] + Uy, me(U)=Uys— U],

where the indices &= and 0 on the matrices denote the strictly upper, lower, and
diagonal part, respectively. For X € g* = sl(r + 1, R), we have

TpL(X) = X_ — X1, m(X) = X] + Xo+ X4
We consider the action of B_ by multiplication on the right on SL(r 41, R) and
use the duality pairing between TSL(r + 1, R) and T*SL(r + 1, R) given by the
bi-invariant extension of the Killing form. For P,V € ToSL(r + 1, R), we have
(P, V) :=Tr(Q~'PQ~'V). With respect to this pairing, the momentum map is
J:TSL(r+1,R) — ¢1,  J(Q,P) =7, (Q7!P).

The associated Clebsch optimal control problem, with cost function £(U) =
Sk (U, U), yields (see (2)),

Q=0QU, P=PU, 7uU)=mu(Q'P). (57)
The first two equations represent the symmetric representation of the A, - Toda

lattice. In particular, the solution curve (Q(¢), P(t)) preserves B_ x B_ similarly
to the rigid body case.
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5.2 Clebsch Optimal Control Formulation for the Toda Lattice
Associated to an Arbitrary Dynkin Diagram

For the general Toda system, we let B_ act on the right on G (the connected Lie
group underlying the split normal real form). We identify 7*G with TG by using
the bi-invariant duality pairing (, ), induced by «.

In this case, the momentum map is given by

J:T*G=TG—t", J(ag) =me(TLy10g),

where we have ag € TG = TSG. Indeed,

k@), U) = (g, TLoU), = (TLg1ag.U) =w(TLgag, U)
ZK(JTEL(TLQ—IO(Q), U)

For the non exceptional cases at least, the formulas can be written more explicitly
since G is given by matrix groups; for A,, B, C,, D, we have:

G=SLr-1,R), G=SO0Gr+1,r), G=Sp2rR), G=S0@r)

and the Killing form is given by a multiple of the trace: x (X, U) = ¢ Tr(XU). In
this case, the momentum map reads J(Q, P) = nEL(Q’lP). We note that since
P € TpG, we have 0 'Peg,so nEL(Q’lP) is well-defined.

The associated Clebsch optimal control problem with cost function £(U) =
é/c (U, U) yields the same equations as in (57), understood now in the general sense
of A, By, C,, D,. The first two equations being the symmetric representation of the
Toda equations. From these conditions, one directly obtains:

Zm(Q*P) =7 (071007 P+ 07 P) = (-UQT' P+ Q7' PU)
= e ([U, Q7' P]) = —7p1 (U, w1 (Q ' P) + 751 (Q7 ' P)])
= —mp ([U, NEL(Q_IP)] = —mpL ([U, e (U)],

which is the full Toda equation in Euler-Poincaré form (56).
As earlier, the solution curve (Q(t), P(t)) preserves the set B_ x B_.
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6 Discrete Models

6.1 The Symmetric Representation of the Discrete Rigid Body

The Clebsch approach leads to a natural symmetric representation of the discrete
rigid body equations of Moser and Veselov [33]. We now define the symmetric
representation of the discrete rigid body equations as follows (see [7]):

OQi+1 = — Ui Ok; Pry1 = U Py, (58)

where U, € SO(N) is defined by
AUy — Ul A = Pl - PO]. (59)

We will write this as

IpUr = QP — Pl O], (60)
where Jp : SO(N) — so(N) (the discrete version of J) is defined by JpU =
AU — UT A. Notice that the derivative of J. p at the identity is J and hence, since J
is invertible, Jp is a diffeomorphism from a neighborhood of the identity in SO (N)
to a neighborhood of 0 in so(N). Using these equations, we have the algorithm

(Qks Pr) = (Qk+1, Pry1) defined by: compute Uy from (59), compute Q41 and
Py+1 using (58). Note that the update map for Q and P is done in parallel.

6.2 The Discrete Variational Problem in the Stiefel Case

The discrete variational problem on the Stiefel manifold is given by (see [9, 33])

. 1
“ét“; 5 (40k+1, Qk), (61)

subject to QZ Or=1,,ie.,Qr eV, (RN ). The extremal trajectories for this discrete
variational problem are given by

AQry1+ AQk—1 = OBk, ke, (62)

where By = B,;r is a (symmetric) Lagrange multiplier matrix for the symmetric
constraint Qz Qr = I,,. Let us define Uy := — Qg Qz_l which implies that

Or = —UrQp—1,
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Then (as in [9]) the following proposition gives the discrete extremal trajectories in
terms of Uy and the discrete body momentum My := AUy — U ,;r A.

Proposition 2 The extremal trajectories of the discrete variational problem (61) on
the Stiefel manifold V,,(RN) in terms of (My, Uy) are given by:

My = UkMkU;;r + Ay, (63)
where

Ap = UeA(Iy — U = (Iy — U U] ) AU (64)

6.3 Discrete Variational Problem for the Bloch-Iserles Problem

The natural optimization problem in this case is

1
min (N"'Ue, N"'Up), (65)
Uk X 2

subject to Qk4+1 = QxUk.
Here, as in the smooth case

{ocecLekm | N oi=N""}. (66)
Thus we have
OIN7'Qry1 = N7l (67)

and hence the optimization problem may be reformulated as
. 1 _ _
min D | (QEN™' Qeers QN Qkt), (68)
k
k

subject to
OIN"lor=N"". (69)

Choosing a skew symmetric matrix By of Lagrange multipliers we see that the
relevant equations take the form

N 01 Okt N 'Ok + N 101 Ok N Qi + N kB = 0. (70)
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This gives a natural analogue of the Moser Veselov equations which we will analyze
further in a future publication.
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Abstract Character groups of Hopf algebras appear in a variety of mathematical
contexts. For example, they arise in non-commutative geometry, renormalisation
of quantum field theory, numerical analysis and the theory of regularity structures
for stochastic partial differential equations. A Hopf algebra is a structure that
is simultaneously a (unital, associative) algebra, and a (counital, coassociative)
coalgebra that is also equipped with an antiautomorphism known as the antipode,
satisfying a certain property. In the contexts of these applications, the Hopf algebras
often encode combinatorial structures and serve as a bookkeeping device. Several
species of “series expansions” can then be described as algebra morphisms from a
Hopf algebra to a commutative algebra. Examples include ordinary Taylor series,
B-series, arising in the study of ordinary differential equations, Fliess series, arising
from control theory and rough paths, arising in the theory of stochastic ordinary
equations and partial differential equations. These ideas are the fundamental link
connecting Hopf algebras and their character groups to the topics of the Abel-
symposium 2016 on “Computation and Combinatorics in Dynamics, Stochastics
and Control”. In this note we will explain some of these connections, review
constructions for Lie group and topological structures for character groups and
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for stochastic partial differential equations [25]. A Hopf algebra is a structure that
is simultaneously a (unital, associative) algebra, and a (counital, coassociative)
coalgebra that is also equipped with an antiautomorphism known as the antipode,
satisfying a certain property. In the contexts of these applications, the Hopf algebras
often encode combinatorial structures and serve as a bookkeeping device.

Several species of “series expansions” can then be described as algebra mor-
phisms from a Hopf algebra .7#to a commutative algebra B. Examples include
ordinary Taylor series, B-series, arising in the study of ordinary differential equa-
tions, Fliess series, arising from control theory and rough paths, arising in the theory
of stochastic ordinary equations and partial differential equations. An important
fact about such algebraic objects is that, if B is commutative, the set of algebra
morphisms Alg(s#, B), also called characters, forms a group with product given by
convolution

axb=mpo(a®b)o Ay

These ideas are the fundamental link connecting Hopf algebras and their character
groups to the topics of the Abelsymposium 2016 on “Computation and Combina-
torics in Dynamics, Stochastics and Control”. In this note we will explain some of
these connections, review constructions for Lie group and topological structures for
character groups and provide some new results for character groups.

Topological and manifold structures on these groups are important to appli-
cations in the various fields outlined above. In many places in the literature the
character group is viewed as “an infinite dimensional Lie group” and one is
interested in solving differential equations on these infinite-dimensional spaces (we
refer to [6] for a more detailed discussion and further references). This is due to the
fact that the character group admits an associated Lie algebra, the Lie algebra of
infinitesimal characters'

9(A, B) := {¢ € Homg (A B) | ¢p(xy) = ¢ (x)e,Ay)+e/x)P(y), Vx,y € A,

whose Lie bracket is given by the commutator bracket with respect to convolution.
As was shown in [5], character groups of a large class of Hopf algebras are infinite-
dimensional Lie groups. Note however, that in ibid. it was also shown that not every
character group can be endowed with an infinite-dimensional Lie group structure. In
this note we extend these results to a larger class Hopf algebras. To this end, recall
that a topological algebra is a continuous inverse algebra (or CIA for short) if the set
of invertible elements is open and inversion is continuous on this set (e.g. a Banach
algebra). Then we prove the following theorem.

Note that this Lie algebra is precisely the one appearing in the famous Milnor-Moore theorem in
Hopf algebra theory [41].
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Theorem A Let 7= @, eN, 5, be a graded Hopf algebra such that dim %) < oo
and B be a commutative CIA. Then Y, B) is an infinite-dimensional Lie group
whose Lie algebra is (% B).

As already mentioned, in applications one is interested in solving differential
equations on character groups (see e.g. [42] and compare [6]). These differen-
tial equations turn out to be a special class of equations appearing in infinite-
dimensional Lie theory in the guise of regularity for Lie groups. To understand this
and our results, we recall this concept now for the readers convenience.

Regularity (in the sense of Milnor) Let G be a Lie group modelled on a locally
convex space, with identity element e, and r € NoU {oo}. We use the tangent map of
the left translation A, : G — G, x — gx by g € G to define g.v := T, A, (v) € T, G
for v € T,(G) =: L(G). Following [20], G is called C" -semiregular if for each
C"-curve y : [0, 1] — L(G) the initial value problem

n'@ =n).y@)
n0) =e

has a (necessarily unique) C” *1_solution Evol(y) :=n: [0, 1] — G.If furthermore
the map

evol: C"([0,1],L(G)) — G, y +— Evol(y)(1)

is smooth, G is called C’-regular.2 If G is C"-regular and r < s, then G is also
C*-regular. A C*°-regular Lie group G is called regular (in the sense of Milnor) — a
property first defined in [40]. Every finite-dimensional Lie group is C%-regular (cf.
[43]). In the context of this paper our results on regularity for character groups of
Hopf algebras subsume the following theorem.

Theorem B Let = ®,cn, -7, be a graded Hopf algebra such that dim %) < oo
and B be a sequentially complete commutative CIA. Then 4. B) is C°-regular:

Recently, also an even stronger notion regularity called measurable regularity
has been considered [19]. For a Lie group this stronger condition induces many Lie
theoretic properties (e.g. validity of the Trotter product formula). In this setting, L -
regularity means that one can solve the above differential equations for absolutely
continuous functions (whose derivatives are L!-functions). A detailed discussion of
these properties can be found in [19]. However, we will sketch in Remark 19 a proof
for the following proposition.

2Here we consider C” ([0, 1], L(G)) as a locally convex vector space with the pointwise operations
and the topology of uniform convergence of the function and its derivatives on compact sets.
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Proposition C Let 7= ®,cN,5%, be a graded Hopf algebra with dim 74 < oo
which is of countable dimension, e.g. Fis of finite type. Then for any commutative
Banach algebra B, the group Y B) is L' -regular.

One example of a Hopf algebra whose group of characters represent a series
expansion is the Connes—Kreimer Hopf algebra or Hopf algebra of rooted trees
JEK.

Brouder [10] established a very concrete link between 7k and B-series.
B-series, due to Butcher [12], constitute an algebraic structure for the study
of integrators for ordinary differential equations. In this context, the group of
characters ¥(J#¢k, R) is known as the Butcher group. The original idea was to
isolate the numerical integrator from the concrete differential equation, and even
from the surrounding space (assuming only that it is affine), thus enabling a study
of the integrator an sich.

Another example connecting character groups to series expansions arises in the
theory of regularity structures for stochastic partial differential equations (SPDEs)
[11,25]. In this theory one studies singular SPDEs, such as the continuous parabolic
Anderson model (PAM, cf. the monograph [33]) formally given by

(aat — A) u(t,x) =u(t,x)¢(x) (t,x)€]0, oo[xR?, ¢ spatial white noise.

We remark that due to the distributional nature of the noise, the product and thus
the equation is ill-posed in the classical sense (see [25, p. 5]). To make sense of
the equation, one wants to describe a potential solution by “local Taylor expansion”
with respect to reference objects built from the noise terms. The analysis of this
“Taylor expansion” is quite involved, since products of noise terms are not defined.
However, it is possible to obtains Hopf algebras which describe the combinatorics
involved. Their R-valued character group ¢ is then part of a so called regularity
structure (7, 7, 9) ([11, Definition 5.1]) used in the renormalisation of the singular
SPDE. See Example 25 for a discussion of the Lie group structure for these groups.

1 Foundations: Character Groups and Graded Algebra

In this section we recall basic concepts and explain the notation used throughout
the article. Whenever in the following we talk about algebras (or coalgebras or
bialgebras) we will assume that the algebra (coalgebra, bialgebra) is unital (counital
or unital and counital in the bialgebra case). Further K € {R, C} will always denote
either the field of real or complex numbers (though many of the following concepts
make sense over general base fields).
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Definition 1 A Hopf algebra (over K) 7 is a K—bialgebra (€, m, 1,4 A, ¢)
equipped with an antiautomorphism S, called the antipode, such that the diagram

HoH—3%  HeH

_—
He®H id®s Hod

commutes.

In the diagram u: K — J# k +— k1 pis the unit map of 7 i.e. the map which
sends scalars to multiples of the unit 1 5 € 7 We refer to [13, 35, 37, 46] for basic
information on Hopf algebras.

Let B be a commutative algebra. The set of linear maps Homy (7, B) forms a
new algebra with the convolution product

¢y =mpo(p@VY)Au

and unit u g o € yz(where u g is the unit map of B).
Recall that the invertible elements or units of an algebra A form a group, which
we denote A™.

Definition 2 A linear map ¢: 5#— B is called

1. a (B-valued) character if ¢ (ab) = ¢(a)¢(b) for all a,b € 7 The set of all
characters is denoted 477, B).

2. a (B-valued) infinitesimal character if ¢ (ab) = € j/A(b)p(a) + € sAa)¢p (b) for all
a,b € 7 The set of all infinitesimal characters is denoted g(%, B).

Lemma 3 ([37, Proposition 21 and 22])

1. YU, B) is a subgroup of the group of units Homg (7, B)*. On Y 5¢, B), the
inverse is given by

¢*_1=¢OS

2. g(JZ, B) is a Lie subalgebra of the commutator Lie algebra Homg (7, B), [-, -],
where the bracket is given by

(. V]=¢pxd —Yx¢
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An algebraic property of characters and infinitesimal characters is that the
algebraic exponential

1
exp' @) =) o
n=0

is a map from g(J7, B) to Y%, B). [37, Proposition 22].

In order to study the topological aspects of characters and infinitesimal characters
of Hopf algebras, we need to assume at this step that B is a topological algebra, i.e.,
that B is topological vector space and that the product in B is a continuous bilinear
function

up:BxB— B

We can then endow the space Homg (7, B) with the topology of pointwise conver-
gence. The sets (7, B) and Y5, B) are then closed subsets of Homy (57, B), and
carry the induced topologies.

Proposition 4 Let 57 be a Hopf algebra, and B a commutative, topological
algebra. Endow Homy (¢, B) with the topology of pointwise convergence. Then

e (Homg (J# B), ) is a topological algebra,
o Y B) is a topological group,
e (S B) is a topological Lie algebra.

Proof 1t is sufficient to prove that x is continuous. Since Homg (%] B) is endowed
with the topology of pointwise convergence, it suffices to test convergence when
evaluating at an element # € J# Using Sweedler notation, we get ¢ * Y(h) =
Z(h)cj)(h(l)) x Y (h()) where the multiplication is carried out in B. As point
evaluations are continuous on Homg (%] B), and multiplication is continuous in
B, x is continuous. a

The definition of x does not depend on the algebra structure of J# only the
coalgebra structure. We therefore get as a corollary:

Corollary 5 Let C be a coalgebra, and B a commutative, topological algebra.
Then (Homg (C, B), x), equipped with the topology of pointwise convergence, is
a topological algebra.

In Sect.2 we will be able to state more about the topology and geometry of
groups of characters, under further assumptions on J# and B. In particular, we
are interested in cases where ¥(J%, B) is an (infinite dimensional) Lie group, or
a projective limit of finite dimensional Lie groups, i.e. a pro-Lie group. Both of
these classes of topological groups can to some extent claim to be the generalization
of finite dimensional Lie groups, and have been studied extensively for this reason
(seee.g. [27, 29, 43)).
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For many arguments later on gradings will be important. We recall the following
basic definitions

Definition 6 Recall that a graded Hopf algebra /= @, eN, Z% 1s a Hopf algebra
together with a grading as algebra and coalgebra (i.e. ¢, - 74, < S+, and
A(J) < Dy +i=n 7% ® ). In particular, %) becomes a Hopf subalgebra of 77

Note that for a graded Hopf algebra .77 identifying a mapping f: 5#— B with
its components on the grading induces a natural isomorphisms of topological vector
spaces (with respect to the topologies of pointwise convergence)

Homg (% B) = HomK(@ A, B) = ]—[ Homg (%, B).

neNy neNp

Hence A = Homg (7, B) becomes a densely graded topological vector space (see
[5, Appendix B]). We denote by A, := Homg(J%,, B) the parts of the dense
grading. Note that Ag becomes a locally convex subalgebra of A by definition of
the grading.

2  Geometry of Groups of Characters

In this section, we review results on geometry, topology and Lie theory for character
groups of Hopf algebras ¢(7#, B). Further, in Sect.2.1 we prove a new result
which establishes a Lie group structure for character groups of non-connected Hopf
algebras.

In general, the existence of a Lie group structure on the character group of a Hopf
algebra 77 depends on structural properties of the underlying Hopf algebra (e.g. we
need graded and connected Hopf algebras), the table below provides an overview of
the topological and differentiable structures related to these additional assumptions
(See Fig. 1).

In general, the character group need not admit a Lie group structure as was shown
in [5, Example 4.11]. There we exhibited a character group of the group algebra of
an abelian group of infinite rank which can not be a Lie group.

Remark 7 If the target algebra B is a weakly complete algebra, e.g. a finite
dimensional algebra, the character group ¥(JZ, B) is always a projective limit of
finite-dimensional Lie groups. In [5, Theorem 5.6] we have proved that for an
arbitrary Hopf algebra .7#and B a weakly complete algebra, (5, B) is a special

Hopf algebra .77 commutative algebra B Structure on (.7, B)
arbitrary weakly complete pro-Lie group (cf. Remark 7)
graded and dim .74 < eo|continuous inverse algebra|co-dim. Lie group (Section 2.1)
graded and connected | locally convex algebra |eo-dim. Lie group (Section 2.2)

Fig. 1 Overview of topological and Lie group structures on character groups of Hopf algebras
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kind of topological group, a so called pro-Lie group (see the survey [29]). A pro-Lie
group is closely connected to its pro-Lie algebra which turns out to be isomorphic to
9(J%, B) for the pro-Lie group (¢, B). Although pro-Lie groups do not in general
admit a differentiable structure, a surprising amount of Lie theoretic properties
carries over to pro-Lie groups (we refer to the monograph [27] for a detailed
account).

Often the character group of a Hopf algebra will have more structure than a
topological group. As we will see in the next example character groups often carry
Lie group structures.

Example 8 Let G be a compact Lie group. Then we consider the set Z(G) of
representative functions, i.e. continuous functions f: G — R such that the set of
right translates R, f: G — R, R, f(y) = f(yx) generates a finite-dimensional
subspace of C(G, R), cf. [28, Chapter 3] or [13, Section 3] for more information
and examples.

Using the group structure of G and the algebra structure induced by C(G, R)
(pointwise multiplication), Z(G) becomes a Hopf algebra (see [23, pp. 42-43]).
Following Remark 7, we know that A Z(G), R) becomes a topological group.

It follows from Tannaka-Krein duality that as compact groups 4(Z(G), R) = G,
whence AZ(G), R) inherits a posteriori a Lie group structure [23, Theorem 1.30
and 1.31].> Observe that the Lie group structure induced on 4Z(G),R) via
Tannaka-Krein duality coincides with the ones discussed in Sects. 2.1 and 2.2 (when
these results are applicable to the Hopf algebra of representative functions).

Example 9 (The Butcher group) Let .7 denote the set of rooted trees, and
ek = () the free commutative algebra generated by 7. The Grossman-Larson
coproduct is defined on trees as

A(r):t@l—l—Z(t\o)@a

where the sum goes over all connected subsets o of T containing the root. Together
with the algebra structure, The Grossman-Larson coproduct defines a graded,
connected bialgebra structure on ¢k, and therefore also a Hopf algebra structure.

The characters ¥(J%k,R) are the algebra morphisms Homaje (54K, R).
Clearly, we can identify

YAk, R) ~R7

3This is only a glimpse at Tannaka-Krein duality, which admits a generalisation to compact
topological groups (using complex representative functions, see [26, Chapter 7, §30] and cf. [23,
p. 46] for additional information in the Lie group case). Also we recommend [28, Chapter 6] for
more information on compact Lie groups.
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In numerical analysis, the character group (%K, R) is known as the Butcher
group [12, 24]. This group is closely connected to a class of numerical integrators
for ordinary differential equations. Namely, we let y = f(y) be an autonomous
ordinary differential equation on an affine space E. Many numerical integrators *
can be expanded in terms of the elementary differentials of the vector field f,i.e. as
a series

Yot = yn + a(@hf () +a@r>f f ) + - 0

The elementary differentials are in a natural one-to-one correlation with .7, and the
series (1) thus defines an element in 4%k, R). The crucial observation is that,
(after a suitable scaling,) the convolution product in Y7k, R) corresponds to the
composition of numerical integrators.

In the following, it will be established that Y7k, R) is a R-analytic, C O-regular
Fréchet Lie group as well as a pro-Lie group. See [5, 8] for further details on the Lie
group structure of Yk, R).

However, in some sense, the Butcher group ¢(.#¢tk, R) is too big to properly
analyze numerical integrators. For every numerical integrator, the coefficients
a: 7 — R satisfy a growth bound |a(r)] < CK!*l. Elements of A #¢k, R)
satisfying such growth bounds form a subgroup, and even a Lie subgroup. However,
the modelling space now becomes a Silva space.’ This group is studied in the
article [7].

In the next section we begin with establishing general results on the infinite-
dimensional Lie group structure of Hopf algebra character groups. These manifolds
will in general be modelled on spaces which are more general then Banach spaces.
Thus the usual differential calculus has to be replaced by the so called Bastiani
calculus (see [2], i.e. differentiability means existence and continuity of directional
derivatives). For the readers convenience, Appendix 3 contains a brief recollection
of this calculus.

2.1 Character Groups for 7 Graded with Finite Dimensional
74 and B a Continuous Inverse Algebra

In this section we consider graded but not necessarily connected Hopf algebras. In
general, character groups of non-connected Hopf algebras do not admit a Lie group
structure. Recall from example from [5, Example 4.11 (b)] that the character group

“To be exact: The class of integrators depending only on the affine structure (cf. [38]).

3Silva spaces arise as special inductive limits of Banach spaces, see [15] for more information.
They are also often called (DFS)-space in the literature, as they can be characterised as the duals
of Fréchet-Schwartz spaces.
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of the group algebra of an infinite-group does in general not admit a Lie group
structure. However, if the Hopf algebra is not too far removed from being connected
(i.e. the O-degree subspace %) is finite-dimensional) and the target algebra is at
least a continuous inverse algebra, we can prove that the character group (77, B)
is an infinite-dimensional Lie group. This result is new and generalises [5] where
only character groups of graded and connected Hopf algebras were treated (albeit
the target algebra in the graded connected case may be a locally convex algebra).

2.1 Let (A,-) be a (real or complex) locally convex algebra (i.e. the locally
convex topology of A makes the algebra product jointly continuous). We call (A, -)
continuous inverse algebra (or CIA for short) if its unit group A* is open and
inversion AX — A, a ~ a~!is continuous.

The class of locally convex algebras which are CIAs are of particular interest to
infinite-dimensional Lie theory as their unit groups are in a natural way (analytic)
Lie groups (see [16, 21]).

Before we establish the structural result, we have to construct an auxiliary
Lie group structure in which we can realise the character group as subgroup. To
construct the auxiliary Lie group, we can dispense with the Hopf algebra structure
and consider only (graded) coalgebras at the moment. The authors are indebted to
K.-H. Neeb for providing a key argument in the proof of the following Lemma.

Lemma 10 Let (C, A) be a finite-dimensional coalgebra and B be a CIA. Then
(Homg (C, B), ) is a CIA.

Proof Consider the algebra (A := Homg (C, K), x4), where x4 is the convolution
product. Then the algebraic tensor product 7 := B ®k A with the product (b ®
9) - (c®Y¥) := bc® ¢ x4 ¥ is a locally convex algebra. Since C is a finite-
dimensional coalgebra, A is a finite-dimensional algebra. Due to an argument which
was communicated to the authors by K.—H. Neeb, the tensor product of a finite-
dimensional algebra and a CIA is again a CIA.® Thus it suffices to prove that the
linear mapping defined on the elementary tensors via

k: T — Homg(C, B), b® ¢ — (x — ¢(x)b)

is an isomorphism of unital algebras. Since A is finite-dimensional, it is easy to see
that « is an isomorphism of locally convex spaces. Thus it suffices to prove that «
is a algebra morphism. To this end let ¢ be the counit of C. We recall that 14 = ¢,
THomg(c,B) = (x > &(x) - 1) and 17 = 1p ® 11 = 1 ® ¢ are the units in A,
Homg (C, B) and T, respectively. Now «(17) = (x + &(x)1g) = LHomg(c,B)
whence « preserves the unit.

SWe are not aware of a literature reference of this fact apart from the forthcoming book by Glsckner
and Neeb [22]. To roughly sketch the argument from [22]: Using the regular representation of A
one embeds B ®x A in the matrix algebra M,,(B) (where n = dim A). Now as A is a commutant
in Endg (A), the same holds for B ® A in M), (B). The commutant of a set in a CIA is again a CIA,
whence the assertion follows as matrix algebras over a CIA are again CIAs (cf. [45, Corollary 1.2]).
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As the elementary tensors span 7, it suffices to establish multiplicativity of x on
elementary tensors b1 ® ¢, br ® ¥ € T. For ¢ € C we use Sweedler notation to
write A(c) = Z(C) c1 ® 2. Then

k(b1 @) - (b2 @ Y))(c) =k (b1by @ ¢ x4 Y)(c) = @ x4 Y (x)b1D2

=3 wlenv(ebibr = Y (@b (¥ (c2)ba)
(c) (c)

= Zx(bl ® @) (c1)k (b2 @ ¥)(c2)
(c)

=k(b1®¢)xk(b2® V)(c)

shows that the mappings agree on each ¢ € C, whence « is multiplicative. Summing
up, Homg (C, B) is a CIA as it is isomorphic to the CIA B ® A. |

Proposition 11 (A* is a regular Lie group) Ler C = P, Ny Cn be a graded
coalgebrawith dim Cy < oo and B be a CIA. Then A = (Homg (7, B), %) is a CIA
whose unit group A* is Baker—Campbell-Hausdorff-Lie group (BCH-Lie group)’
with Lie algebra (A, [ie]), where [ie] denotes the commutator bracket with respect
1o *.

Ifin addition B is Mackey complete, then A is Mackey complete and the Lie group
A* is C'-regular. If B is even sequentially complete, so is A and the Lie group A
is CO-regular. In both cases the associated evolution map is even K-analytic and the
Lie group exponential map is given by the exponential series.

Proof Recall from [5, Lemma 1.6 (c) and Lemma B.7] that the locally convex
algebra A is a Mackey complete CIA since Ay is such a CIA by Lemma 10 (both
CIAs are even sequentially complete if B is so). Now the assertions concerning the
Lie group structure of the unit group are due to Glockner (see [16]).

To see that the Lie group A* is C¥-regular (k = 1 for Mackey complete and
k = 0 of sequentially complete CIA B), we note that the regularity of the unit group
follows from the so called (GN)-property (cf. [5] and see Definition 12 below) and
(Mackey) completeness of A. Having already established completeness, we recall
from [5, Lemma 1.10] that A has the (GN)-property if A has the (GN)-property.
Below in Lemma 13 we establish that Ag has the (GN)-property if B has the (GN)-
property. Now B is a commutative Mackey complete CIA, whence B has the (GN)-
property by [21, Remark 1.2 and the proof of Corollary 1.3]. Summing up, A has
the (GN)-property and thus [21, Proposition 4.4] asserts that A* is CX-regular with
analytic evolution map. O

"BCH-Lie groups derive their name from the fact that there is a neighborhood in their Lie
algebra on which the Baker—Campbell-Hausdorff series converges and yields an analytic map.
See Definition 35.
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Before we can establish the (GN)-property for Ag as in the proof of Proposi-
tion 11 we need to briefly recall this condition.

Definition 12 ((GN)-property) A locally convex algebra A is said to satisfy the
(GN)-property, if for every continuous seminorm p on A, there exists a continuous
seminorm ¢ and a number M > 0 such that for all n € N, we have the estimate:

(n)

H " (n)

vy = sup{p(u, (X1, ..., %)) | q(x;) <1, 1 <i <n} < M". 2

Here, ,uxl) isthen-linearmap,uxl): AX---xA— A, (al,...,ay) — ai---ay.

n times

Lemma 13 Let C be a finite-dimensional coalgebra and B be a CIA with the (GN)-
property. Then the following holds:

1. (A := Homg(C, B), x) has the (GN)-property.
2. If (B, ||-]l) is even a Banach algebra, then A is a Banach algebra.

Proof Choose a basis ¢;,1 < i < d for 7. Identifying linear maps with the
coefficients on the basis, we obtain A = Homg(C, B) = B4 (isomorphism of
topological vector spaces). For every continuous seminorm p on B, we obtain
a corresponding seminorm poc: A — R, ¢ — maxi<j<q p(¢(e;)) and these
seminorms form a generating set of seminorms for the locally convex algebra A.
Let us now write the coproduct of the basis elements as

A=Y vifej@e. 1<i<d forv!*eK.
J.k

To establish the properties of A we need an estimate of the structural constants,
whence we a constant K := d? maxi,j,k{lvijkL 1}

1. It suffices to establish the (GN)-property for a set of seminorms generating
the topology of A. Hence it suffices to consider seminorms g, induced by
a continuous seminorm g on B. Since B has the (GN)-property there are a
continuous seminorm p on B and a constant M > 0 which satisfy (2) with
respect to the chosen g. We will now construct a constant such that (2) holds for
the seminorms g, and p taking the rdle of g and p.
Observe that goo () < 1 implies that g(¥(e;)) < 1 foreach 1 < i < d. Thus
by choice of the constants a trivial computation shows that the constant K M
satisfies (2) for goo, Poo and n = 1. We will show that this constant satisfies the
inequality also for all n > 1 and begin for the readers convenience with the case
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n = 2. Thus for ¥1, ¥» € A with geo(¥7) < 1,1 =1,2and 1 < k < d we have

P xYn(e)) =p Zv Vi (ej)va(er) <Zlv] |P(‘/fl(€z)‘/f2(e/))
J-k J-k SMQ
< K M? < (KM)?
——

>1

As the estimate neither depends on i nor on the choice of 1, ¥, (we only used
qoo (Y1) < 1), KM satisfies Huf) H < (KM)2 . Now for general n > 2 we

Poosqoo

choose ¥; € A with goo(¥7) < 1 and 1 <[ < n. As convolution is associative,
Y1 * - - - % Y, is obtained from applying | ® - - - ® v, to the iterated coproduct
A" :=idc®A" !, Al := A and subjecting the result to the n-fold multiplication
map B® B® ---® B — B of the algebra B. Hence one obtains the formula

P *Yp -+ Yy (e;))

DN R S 1 PO Lol R I P 2|p(w1(ekl> [ v ))

]1 ki joska  ju-tokp—1 T ~ 2<r<n
- <(max; j i {Jvf* |, 1)1
#of terms=d?- d2 d?=(d?)n—1

<K"'M" < (KM)".

Again the estimate does neither depend on e; nor on the choice of ¥, ..., ¥y,
whence we see that one can take K M in general as a constant which satisfies (2)
for goo and poo. We conclude that A has the (GN)-property if B has the (GN)-
property.

2. Let now (B, ||-]|) be a Banach algebra, then A = B? is a Banach space with the
norm ||¢||Oo = maxj<j<q ||¢>(e,-) || To prove that A admits a submultiplicative
norm, define the norm ||a||g := K ||a|o (for K the constant chosen above).
By construction ||-||x is equivalent to |||, and we will prove that ||| is
submultiplicative. Consider «, 8 € A and compute the norm of o x 8 on a basis
element

lasBlen| = [mpo@®p)oaen] < v/ |ae)pen|
j.k
<> 1 atepn] [Beo] = K el 8]
J.k

In passing from the first to the second row we have used that the norm on B is
submultiplicative. Summing up, we obtain ||a * 3 || x = llelig || B || x Whence A
is a Banach algebra. O
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In case the Hopf algeba .7”is only of countable dimension, e.g. a Hopf algebra of
finite type, and B is a Banach algebra, the unit group A™ satisfies an even stronger
regularity condition.

Lemma 14 Let C = @neNU be a graded coalgebra with dim Cy < oo and B be a
Banach algebra. Assume in addition that C is of countable dimension, then the Lie
group A* from Proposition 11 is L'-regular.

Proof If C is of countable dimension, then A = Homg (C, B) is a Fréchet space
(as it is isomorphic as a locally convex space to a countable product of Banach
spaces). Now [19, Proposition 7.5] asserts that the unit group A* of a continuous
inverse algebra which is a Fréchet space will be L!-regular if A is locally m-
convex. However, by the fundamental theorem for coalgebras [39, Theorem 4.12],
C = lim_, X, is the direct limit of finite dimensional subcoalgebras. Dualising,
Lemma 13 shows that A = lim. Homg (X}, B) is the projective limit of Banach
algebras. As Banach algebras are locally m-convex and the projective limit of
a system of locally m-convex algebras is again locally m-convex (cf. e.g. [36,
Chapter III, Lemma 1.1]), the statement of the Lemma follows. m]

To establish the following theorem we will show now that the Lie group A*
induces a Lie group structure on the character group of the Hopf algebra. Note that
the character group is a closed subgroup of A, but, contrary to the situation for
finite dimensional Lie groups, closed subgroups do not automatically inherit a Lie
group structure (see [43, Remark IV.3.17] for a counter example).

Theorem 15 Let 5= P, o, #n be a graded Hopf algebra with dim % < oo.
Then for any commutative CIA B, the group ‘47, B) of B-valued characters of 7
is a (K—analytic) Lie group. Furthermore, we observe the following.

(1) The Lie algebra L(N B)) of Y47 B) is the Lie algebra g(7¢ B) of
infinitesimal characters with the commutator bracket (¢, V] = ¢ x ¥ — ¥ x .

(ii) YN, B) is a BCH-Lie group which is locally exponential, i.e. the Lie group
exponential map exp: g(#, B) — U, B), x > Y oo, x,:,n is a local K-
analytic diffeomorphism.

Proof Recall from Propositions 11 and 4 that (¢, B) is a closed subgroup of the
locally exponential Lie group (A, x). We will now establish the Lie group structure
using a well-known criterion for locally exponential Lie groups: Let exp4 be the Lie
group exponential of A* and consider the subset

LY. B)) == {x e L(A™) = A | exp4(Rx) S Y B)}.

We establish in Lemma 37 that g(# B) is mapped by exp, to /(¢ B), whence
9(J€, B) € Lé(YAA B)). To see that L¢(47Z, B)) only contains infinitesimal
characters, recall from Lemma 37 that there is an open 0-neighborhood £2 € A such
that exp 4, maps g(.7Z, B)NS2 bijectively to exp, (2)NA I, B). If x € L (XA, B))
then we can pick + > 0 so small that tx € 2. By definition of L¢(4(JZ B))
we see that then expy(tx) € A B) N expy($2). Therefore, we must have
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tx € 2Ng(H, B), whence x € g(7, B). This entails that L¢ (4%, B)) = g(J¢, B)
and then [43, Theorem 1V.3.3] implies that 4(J#, B) is a locally exponential closed
Lie subgroup of (A*, ) whose Lie algebra is the Lie algebra of infinitesimal
characters g(, B). Moreover, since (A*, ) is a BCH-Lie group, so is 4(H, B)
(cf. [43, Definition IV.1.9]). O

Note that the Lie group 45, B) constructed in Theorem 15 will be modelled on
a Fréchet space if .77is of countable dimension (e.g. if #Zis of finite type) and B
is in addition a Fréchet algebra. If /#is even finite-dimensional and B is a Banach
algebra, then ¥( ¢, B) will even be modelled on a Banach space.

Example 16

1. The characters of a Hopf algebra of finite-type, i.e. the components 77, in the
grading J¢ = @eN, %, are finite-dimensional, are infinite-dimensional Lie
groups by Theorem 15. Most natural examples of Hopf algebras appearing in
combinatorial contexts are of finite-type.

2. Every finite-dimensional Hopf algebra .7#can be endowed with the trivial grading
4 := € Thus Theorem 15 implies that character groups (with values in a
commutative CIA) of finite-dimensional Hopf algebras (cf. [3] for a survey) are
infinite-dimensional Lie groups.

3. Graded and connected Hopf algebras (see next section) appear in the Connes-
Kreimer theory of perturbative renormalisation of quantum field theories. How-
ever, recently in [32] it has been argued that instead of the graded and connected
Hopf algebra of Feynman graphs considered traditionally (see e.g. the exposition
in [14]) a non connected extension of this Hopf algebra should be used. The
generalisation of the Hopf algebra then turns out to be a Hopf algebra with
dim J%) < oo, whence its character groups with values in a Banach algebra
turn out to be infinite-dimensional Lie groups.

These classes of examples could in general not be treated by the methods developed
in [5].

Remark 17 Recall that by definition of a graded Hopf algebra 57 = @neNO T,
the Hopf algebra structure turns .74j into a sub-Hopf algebra. Therefore, we always
obtain two Lie groups Y7, B) and /.74, B) if dim 77) < oo. It is easy to see
that the restriction map g : Y49, B) — Y54, B), ¢ > ¢| 4 is a morphism of Lie
groups with respect to the Lie group structures from Theorem 15. Its kernel is the
normal subgroup

kerqg = {¢p € A B) | ¢l = 114}

i.e. the group of characters which coincide with the unit on degree 0.
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We now turn to the question whether the Lie group constructed in Theorem 15 is
a regular Lie group.

Theorem 18 Let 57 be a graded Hopf algebra with dim 76 < oo and B be a
Banach algebra. Then the Lie group Y. B) is C%-regular and the associated
evolution map is even a K-analytic map.

Proof In Theorem 15 the Lie group structure on the character group was identified
as a closed subgroup of the Lie group A*. By definition of the character group (cf.
Definition (2)), 4(.7#, B) can be described as

YHA.B)={pe A" |[pomy=mpo(p®P)}

As discussed in Remark 36 Equation (3), the map (m_»)*: A* — AZ, ¢ > pom
is a Lie group morphism. Now we consider the map 0: A — Ag,¢ +— mp o
(¢ ® @). Observe that & = B o diag, where § is the continuous bilinear map (4)
and diag: A - A x A, ¢ — (¢, ¢). Since B is smooth (as a continuous bilinear
map), and the diagonal map is clearly smooth, 6 is smooth. Further, (5) shows that
(¢ x ) = 0(¢) *a; 6(). Thus 6 restricts to a Lie group morphism 6x: A* —
Ar*.

Summing up, we see that A7, B) = {¢p € A* | (m_p*(p) = O4x(¢)}. Since
by Proposition 11 the Lie group A* is C-regular, the closed subgroup ¥(, B) is
also C%-regular by [20, Theorem G]. O

Remark 19 In Theorem 18 we have established that the character group ¢, B)
inherits the regularity properties of the ambient group of units. If the Hopf algebra
Zis in addition of countable dimension, e.g. a Hopf algebra of finite type, then
Lemma 14 asserts that the ambient group of units is even L!-regular. Unfortunately,
Theorem [20, Theorem G] only deals with regularity of type C* for k € Ny U {00}.
However, since (77, B) is a closed Lie subgroup of Homy (7, B)*, itis easy to see
that the proof of [20, Theorem G] carries over without any changes to the L'-case.?
Hence, we can adapt the proof of Theorem 18 to obtain the following statement:

Corollary Let 5¢be a graded Hopf algebra of countable dimension with dim 7 <
oo and B be a Banach algebra. Then the Lie group (., B) is L' -regular.

Note that the results on L!-regularity of character groups considerably strengthen
the results which have been available for regularity of character groups (see [5]).

80ne only has to observe that a function into the Lie subgroup is absolutely continuous if and only
if it is absolutely continuous as a function into the larger group. On the author’s request, a suitable
version of [20, Theorem G] for Ll—regularity will be made available in a future version of [19].
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2.2 Character Groups for a Graded and Connected Hopf
Algebra 7¢and B a Locally Convex Algebra

In many interesting cases, the Hopf algebra is even connected graded (i.e. .74j is one-
dimensional). In this case, we can weaken the assumption on B to be only locally
convex.

Theorem 20 ([5, Theorem 2.7]) Let 57 be a graded and connected Hopf algebra
and B be a locally convex algebra. Then the manifold structure induced by the
global parametrisation exp: g(J, B) — U B), x +— ZneNo x,:," turns
YA, B) into a K-analytic Lie group.

The Lie algebra associated to this Lie group is g(7¢, B). Moreover, the Lie group
exponential map is given by the real analytic diffeomorphism exp.

Remark 21 Note that Theorem 20 yields more information for the graded and con-
nected case then the new results discussed in Sect. 2.1: In the graded and connected
case, the Lie group exponential is a global diffeomorphism, whereas the theorem for
the non-connected case only establishes that exp induces a diffeomorphism around
the unit.

Note that the connectedness of the Hopf algebra is the important requirement
here. Indeed, we can drop the assumption of an integer grading and generalise to the
grading by a suitable monoid.

Definition 22 Let M be a submonoid of (R, +) with 0 € M. We call M an index
monoid if every initial segment I, := {n € M | n < m} is finite. Note that this
forces the monoid to be at most countable.

As in the Ng graded case, we say a Hopf algebra .7is graded by an index monoid
M, if 5= @,,cp #6n and the algebra, coalgebra and antipode respect the grading
in the usual sense.

Example 23 The monoid (N, +) is an index monoid.

A source for (more interesting) index monoids is Hairer’s theory of regularity
structures for locally subcritical semilinear stochastic partial differential equations
[25, Section 8.1] (cf. in particular [25, Lemma 8.10] and see Example 25 below).

Note that the crucial property of an index monoid is the finiteness of initial
segments. This property allows one to define the functional calculus used in the
proof of [5, Theorem B] to this slightly more general setting. Changing only trivial
details in the proof of loc.cit., one immediately deduces that the statement of
Theorem 20 generalises from an Ny-grading to the more general situation

Corollary 24 Let 7 = @, Fn be a graded and connected Hopf algebra
graded by an index monoid M, B a sequentially complete locally convex algebra.
Then the manifold structure induced by exp: g(J¢, B) — HI B), x —
ZneNo xr:;l turns YA, B) into a K-analytic Lie group. This Lie group is C°-regular;
its Lie algebra is g(7¢, B) and the Lie group exponential map is the real analytic
diffeomorphism exp.
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2.2.1 Application to Character Groups in the Renormalisation of SPDEs

Hopf algebras graded by index monoids appear in Hairer’s theory of regularity
structures for locally subcritical semilinear SPDEs [25, Section 8.1]. Character
groups of these Hopf algebras (and their quotients) then appear as structure group
in Hairer’s theory (cf. [25, Theorem 8.24] and [11]) of regularity structures. Recall
that a regularity structure (A, T, G) in the sense of Hairer (cf. [25, Definition 2.1])
is given by

e anindex set A € R with 0 € A, which is bounded from below and locally finite,

* a model space T = @, T» which is a graded vector space with Tp = R
(denote by 1 its unit element) and 7;, a Banach space for every o € A,

* astructure group G of linear operators acting on 7 such that, for every I" € G,
o € Aand a € T, one has

ra—ae@Tpandri=1.

B<a

We sketch now briefly the theory developed in [11], where for a class of examples
singular SPDEs the structure group was recovered as the character group of a
connected Hopf algebra graded by an index monoid.

Example 25 The construction outlined in [11] builds first a general Hopf algebra
of decorated trees in the category of bigraded spaces. Note that this bigrading does
not induce a suitable Np-grading (or grading by index monoid) for our purposes.
This Hopf algebra encodes the combinatorics of Taylor expansions in the SPDE
setting and it needs to be tailored to the specific SPDE. This is achieved by choosing
another ingredient, a so called subcritical and complete normal rule, i.e. a device
depending on the SDE in question which selects a certain sub-Hopf algebra (see [11,
Section 5] for details). Basically, the rule collects all admissible terms (= abstract
decorated trees) which appear in the local Taylor expansion of the singular SPDE.”

Using the rule, we can select an algebra of decorated trees .7 admissible with
respect to the rule. Here the “+” denotes that we only select trees which are positive
with respect to a certain grading | - |+ (cf. [11, Remark 5.3 and Definition 5.29]).
Then [11, Proposition 5.34] shows that (7', | - |+) is a graded and connected Hopf
algebra of decorated trees. Note however, that the grading | - |+ is in general not
integer valued, i.e. .7 is graded by a submonoid M of [0, ool.

Since we are working with a normal rule which is complete and subcritical, the
submonoid M satisfies [{y € M | y < c}| < oo for each ¢ € R, i.e. M is an index
monoid. The reason for this is that by construction .75 is generated by tree products
of trees which strongly conform to the rule [11, Lemma 5.25 and Definition 5.29].
As the rule is complete and subcritical, there are only finitely many trees t with
|T]+ < ¢ (for ¢ € R) which strongly conform to the rule. Now the tree product is

9See [11, Section 5.5] for some explicit examples of this procedure, e.g. for the KPZ equation.
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the Hopf algebra product (i.e. the product respects the grading), whence the property
for M follows.

Now by [11, Proposition 5.39] the graded space 7* = ({(Bo), | - |+) (suitably
generated by a certain subset of the strongly conforming trees) together with the
index set A** = {|t|4 | T € Bo} and the character group 4" := 4.7, R) form a
regularity structure (A%, 7°, 45"). In conclusion, Corollary 24 yields an infinite-
dimensional Lie group structure for the structure group ¢ of certain subcritical
singular SPDE:s.

Remark 26 1In the full renormalisation procedure outlined in [11] two groups are
involved in the renormalisation. Apart from the structure group outlined above, also
a so called renormalisation group 4~ is used (cf. [11, Section 5]). This group ¥
is (in the locally subcritical case) a finite-dimensional group arising as the character
group of another Hopf algebra. However, it turns out that the actions of %" and
%** interact in an interesting way (induced by a cointeraction of underlying Hopf
algebras, think semidirect product). We hope to return to these actions and use the
(infinite-dimensional) Lie group structure to study them in future work.

3 Appendix: Infinite-Dimensional Calculus

In this section basic facts on the differential calculus in infinite-dimensional spaces
are recalled. The general setting for our calculus are locally convex spaces (see
[30, 44]).

Definition 27 Let E be a topological vector space over K € {R, C}. E is called
locally convex space if there is a family {p; | i € I} of continuous seminorms for
some index set /, such that

(1) the topology is the initial topology with respect to {pr, : E — Ej | i € I},
i.e. the E-valued map f is continuous if and only if pr; o f is continuous for
eachi € I, where £, := E/pi_1 (0) is the normed space associated to the p;
and pr;: E — E), is the canonical projection,

(i) ifx € E with p;(x) =0foralli € I, then x = 0 (i.e. E is Hausdorff).

Many familiar results from finite-dimensional calculus carry over to infinite
dimensions if we assume that all spaces are locally convex.

As we are working beyond the realm of Banach spaces, the usual notion of
Fréchet-differentiability cannot be used.'? Moreover, there are several inequivalent
notions of differentiability on locally convex spaces (see again [31]).

10The problem here is that the bounded linear operators do not admit a good topological structure if
the spaces are not normable. In particular, the chain rule will not hold for Fréchet-differentiability
in general for these spaces (cf. [31]).
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We base our investigation on the so called Bastiani calculus, [2]. The notion of
differentiability we adopt is natural and quite simple, as the derivative is defined via
directional derivatives.

Definition 28 Let K € {R,C}, r € N U {o0} and E, F locally convex K-vector
spaces and U C E open. Moreover we let f: U — F be a map. If it exists, we
define for (x, h) € U x E the directional derivative

df(xc,h) =Dy f(x):=_lim 7' (f(x+1th) — f(x)).
K*3t—0
We say that f is Cy if the iterated directional derivatives

d® f(x,y1,..., ) == (Dy, Dy, , -~ Dy, f)(x)

exist for all k € Ng such that k < r, x € U and y1,...,yx € E and define
continuous maps d®) f: U x EF — F.If it is clear which K is meant, we simply
write C" for Ci. If f is CZ°, we say that f is holomorphic and if f is Cg° we say
that f is smooth.

For more information on our setting of differential calculus we refer the reader
to [17, 31]. Another popular choice for infinite-dimensional calculus is the so called
“convenient setting” of global analysis outlined in [34]. On Fréchet spaces (i.e.
complete metrisable locally convex spaces) our notion of differentiability coincides
with differentiability in the sense of convenient calculus. Note that differentiable
maps in our setting are continuous by default (which is in general not true in the
convenient setting). We encounter analytic mappings between infinite-dimensional
spaces, as a preparation for this, note first:

Remark 29 A map f: U — F is of class C¢” if and only if it is complex analytic
i.e., if f is continuous and locally given by a series of continuous homogeneous
polynomials (cf. [4, Proposition 7.4 and 7.7]). We then also say that f is of class
CZ.

C

To introduce real analyticity, we have to generalise a suitable characterisation
from the finite-dimensional case: A map R — R is real analytic if it extends to
a complex analytic map C 2 U — C on an open R-neighbourhood U in C.
We proceed analogously for locally convex spaces by replacing C with a suitable
complexification.

Definition 30 (Complexification of a locally convex space) Let E be areal locally
convex topological vector space. Endow E¢ := E x E with the following operation

(x+1iy).(u,v) := (xu —yv,xv+yu) forx,yeR u,vekE.

The complex vector space Ec with the product topology is called the complexifica-
tion of E. We identify E with the closed real subspace E x {0} of E¢.
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Definition 31 Let E, F be real locally convex spaces and f: U — F defined
on an open subset U. Following [40] and [17], we call f real analytic (or Cﬂ“g) if
f extends to a CZ’-map f: U — Fc on an open neighbourhood U of U in the
complexification Ec.!!

Note that many of the usual results of differential calculus carry over to our
setting. In particular, maps on connected domains whose derivative vanishes are
constant as a version of the fundamental theorem of calculus holds. Moreover, the
chain rule holds in the following form:

Lemma 32 (Chain Rule [17, Propositions 1.12, 1.15, 2.7 and 2.9]) Fix k € Ny U
{oo, w} and K € {R, C} together with Cﬂkg-maps f:EDU — Fandg: H O
V — E defined on open subsets of locally convex spaces. Assume that g(V) C U.
Then f o g is of class C]Ik< and the first derivative of f o g is given by

d(fog)(x;v) =df(g(x);dg(x,v)) forallx €U, veH.

The differential calculus developed so far extends easily to maps which are
defined on non-open sets. This situation occurs frequently in the context of
differential equations on closed intervals (see [1] for an overview).

Having the chain rule at our disposal we can define manifolds and related
constructions which are modelled on locally convex spaces.

Definition 33 Fix a Hausdorff topological space M and a locally convex space E
over K € {R, C}. An (E-)manifold chart (U, «x) on M is an open set U, € M
together with a homeomorphism « : U, — V,. C E onto an open subset of E. Two
such charts are called C”-compatible for r € Ny U {oo, w} if the change of charts
map v lok: k(UcNU,) = v(UNU)isa C’-diffeomorphism. A C"-atlas of M
is a set of pairwise C”-compatible manifold charts, whose domains cover M. Two
such C"-atlases are equivalent if their union is again a C"-atlas.

A locally convex C"-manifold M modelled on E is a Hausdorff space M with an
equivalence class of C"-atlases of (E-)manifold charts.

Direct products of locally convex manifolds, tangent spaces and tangent bundles
as well as C"-maps of manifolds may be defined as in the finite dimensional setting
(see [43, 1.3]). The advantage of this construction is that we can now give a very
simple answer to the question, what an infinite-dimensional Lie group is:

Definition 34 A (locally convex) Lie group is a group G equipped with a Cp°-
manifold structure modelled on a locally convex space, such that the group
operations are smooth. If the manifold structure and the group operations are in
addition (K-) analytic, then G is called a (K-) analytic Lie group.

1T E and F are Fréchet spaces, real analytic maps in the sense just defined coincide with maps
which are continuous and can be locally expanded into a power series. See [18, Proposition 4.1].
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We recommend [43] for a survey on the theory of locally convex Lie groups.
However, the Lie groups constructed in this article have strong structural properties
as they belong to the class of Baker—Campbell-Hausdorff-Lie groups.

Definition 35 (Baker—Campbell-Hausdorff (BCH-)Lie groups and Lie alge-
bras)

1. A Lie algebra g is called Baker—Campbell-Hausdorff-Lie algebra (BCH-Lie
algebra) if there exists an open 0-neighbourhood U C g such that for x, y € U
the BCH-series y_ - Hy,(x, y) converges and defines an analytic map U x U —
g. The H, are defined as Hi(x,y) = x +y, Ha(x,y) = é[x, y] and forn > 3
by linear combinations of iterated brackets, see [43, Definition IV.1.5.] or [9,
Chapter 2, §6].

2. Alocally convex Lie group G is called BCH-Lie group if it satisfies one of the
following equivalent conditions (cf. [43, Theorem IV.1.8])

(i) G is a K-analytic Lie group whose Lie group exponential function is K-
analytic and a local diffeomorphism in 0.

(i) The exponential map of G is a local diffeomorphism in 0 and L(G) is a
BCH-Lie algebra.

BCH-Lie groups share many of the structural properties of Banach Lie groups
while not necessarily being Banach Lie groups themselves.

4 Appendix: Characters and the Exponential Map

Fix for the rest of this section a K-Hopf algebra 5= (7, m yz u_p A € 3 S )
and a commutative continuous inverse algebra B. Furthermore, we assume that the
Hopf algebra /s graded, i.e. #'= (P, o, #and dim 7% < oo. The aim of this
section is to prove that the Lie group exponential map exp,~ of A := Homg (7] B)
restricts to a bijection from the infinitesimal characters to the characters.

Remark 36 (Cocomposition with Hopf multiplication) Let 7 ® 5¢be the tensor
Hopf algebra (cf. [35, p. 8]). We regard the tensor product .7°® .7 as a graded and
connected Hopf algebra with the tensor grading, i.e. #Q = @neNO (R IO,
where for all n € Ny the nth degree is defined as (J£Q ), = ®i+j:n G Q ff,

Since dim #) < oo we see that dim (FQ )y = dim S4B Q 74 < oo Thus
with respect to the topology of pointwise convergence and the convolution product,
the algebras

A := Homg (J7, B) Ag := Homg (H#°Q H, B)

become continuous inverse algebras (see Definition 6 and Lemma 10). This structure
turns

-om y. Homg (5, B — Homg (°Q . B), ¢+ dpomyp
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into a continuous algebra homomorphism. Hence its restriction
(mp*: A" —> Ag, ¢ pomy 3)
is a Lie group morphism with L((m_p*) := T,(m jp* = - o m

0o x*n

Lemma 37 The Lie group exponentialexp,: L(A*) = A — A*, x> > =, ",
maps g(F, B) to Y, B). Further, there is a 0-neighborhood 2 C A such that
exp, maps g(, B) N §2 bijectively onto Y, B) Nexp ,(2). 1

Proof We denote by *4, the convolution product of the CIA Ag and let exp,

be the Lie group exponential of Ag. Let mp: B® B - B, by ® bp — by -
b> be the multiplication in B. Define the continuous bilinear map (cf. [5, proof of
Lemma B.10] for detailed arguments)

B: AXA— Ag, (9. V) dpod:=mpo(@V). “)

We may use § to rewrite the convolution in A as x4 = o A and obtain

(@10 Y1) *ag (P2 © Y2) = (@1 x4 $2) © (Y1 *4 V2). (%)

Recall, that 1 4 := u poe yis the neutral element of the algebra A. From equation (5),
it follows at once, that the continuous linear maps

B(,14): A— Ag, ¢r—>doly and B(la,-): A—> Ag, P> 1a00¢
are algebra homomorphisms which restrict to Lie group morphisms

BP:i A* —> Ay, > B¢ 1) and B A — AS, ¢ B(la,4)  (6)
with L(8?) = B(-,14) and L(B*) = B(l4,-). Let ¢ € A be given and recall

from (5) that (¢ ¢ 14) x4y (14 0 @) = 0P = (14 0 P) *a, (P ¢ 1a). Asa
consequence we obtain

eXPy, (@ 0 1a + 140 @) =expy (@0 1a) x4y expy (14 © ). (7

since every Lie group exponential function transforms addition into multiplication
for commuting elements.

12Note that apart from the locallity and several key arguments, the proof follows the general idea
of the similar statement [5, Lemma B.10]. For the readers convenience we repeat the arguments to
exhibit how properties of the Lie group exponential replace the functional calculus used in [5].
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Note that it suffices to check multiplicativity of exp 4 (¢) as exp,(¢)(1,0 = 15
is automatically satisfied. For an infinitesimal character ¢ € A we have by definition
Pomyp=¢ola+ 14 ¢¢. Using now the naturality of the Lie group exponentials
(i.e. for a Lie group morphism f: G — H we have expy oL(f) = f oexpg), we
derive the following:

¢ g B) &5 pomuy=¢olstlsod
Ly expy, (@ omm) = expa, (@0 la+1409)
25 expy, (¢ om ) = expa, (60 14) *ag expa, (14 0 §)
&5 expy, (¢ om ) = (expa(@) © 14) 4o (14 © expy ()

eXPag (P 0 m ) = (expa (@) x4 1a) © (14 %4 expy ()
eXPyg (P 0 M) = exp, (@) o exp, (@)

exp (@) o m = exp, (@) o expy ()

&L, expA(¢) € AHA B).

This shows that infinitesimal characters are mapped by the Lie group exponential to
elements in the character group.

Now we observe that in general the implication from the first to the second
line will not be an equivalence (as the Lie group exponential is not a global
diffeomorphism unlike the connected Hopf algebra case discussed in [5, Lemma
B.10]). We exploit now that A* and A are locally exponential Lie groups, whence
locally around 0 in A and Ag the Lie group exponentials induce diffeomorphisms.
Hence there are open neighborhoods of 0 and the units of A* and Ag, such
that expyx: A 2 V. — W C A* and eXpyy Ag 2 Vg — Wg S A
are diffeomorphisms. Since Ag is a locally convex space, there is an open O-
neighborhood 2g € Ag such that 2g+ 2¢ C V. By continuity of 8 and - @ m
we obtain an open 0-neighborhood

Q:=VN(E®muy (Vo) NBG, 1) (2g) N B(14, ) (R25) C A.

Now by construction elements in g(##, B) N §2 are mapped by - o m_yinto Vy and
by B(-, 1a)+B(14, ) into 2g + 2 C Vg. Since exp, , induces a diffeomorphism
on Vg, the implication (!) becomes an equivalence for elements in g(.7Z, B) N £2.
We have thus established that exp, maps g(J% B) N §2 bijectively to exp,(£2) N
Y, B). O
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Shape Analysis on Homogeneous Spaces: )
A Generalised SRVT Framework s

Elena Celledoni, Sglve Eidnes, and Alexander Schmeding

Abstract Shape analysis is ubiquitous in problems of pattern and object recog-
nition and has developed considerably in the last decade. The use of shapes
is natural in applications where one wants to compare curves independently of
their parametrisation. One computationally efficient approach to shape analysis is
based on the Square Root Velocity Transform (SRVT). In this paper we propose a
generalised SRVT framework for shapes on homogeneous manifolds. The method
opens up for a variety of possibilities based on different choices of Lie group action
and giving rise to different Riemannian metrics.

1 Shapes on Homogeneous Manifolds

Shapes are unparametrised curves, evolving on a vector space, on a Lie group or on
a manifold. Shape spaces and spaces of curves are infinite dimensional Riemannian
manifolds, whose Riemannian metrics are the essential tool to compare and analyse
shapes. By combining infinite dimensional differential geometry, analysis and
computational mathematics, shape analysis provides a powerful approach to a
variety of applications.

In this paper, we are concerned with the approach to shape analysis based
on the Square Root Velocity Transform (SRVT), [27]. This method is effective
and computationally efficient. On vector spaces, the SRVT maps parametrised
curves to appropriately scaled tangent vector fields along them. The transformed
curves are compared computing geodesics in the L? metric, and the scaling can be
chosen suitably to yield reparametrisation invariance, [6, 27]. Notably, applying a
(reparametrisation invariant) L metric directly on the original parametrised curves
is not an option as it leads to vanishing geodesic distance on parametrised curves
and on the quotient shape space [4, 21]. As an alternative, higher order Sobolev type
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metrics were proposed [22], even though they can be computationally demanding,
since computing geodesics in this infinite dimensional Riemannian setting amounts
in general to solving numerically partial differential equations. These geodesics are
used in practice for finding distances between curves and for interpolation between
curves. The SRVT approach, on the other hand, is quite practical because it allows
the use of the L? metric on the transformed curves: distances between curves are
just L? distances of the transformed curves, and geodesics between curves are
“straight lines” between the transformed curves. It is also possible to prove that
this algorithmic approach corresponds (at least locally) to a particular Sobolev type
metric, see [6, 9].

In the present paper we propose a generalisation of the SRVT, from vector
spaces and Lie groups, [6, 27], to homogeneous manifolds. This problem has been
previously considered for manifold valued curves in [18, 29], but our approach is
different, the main idea is to take advantage of the Lie group acting transitively on
the homogeneous manifold. The Lie group action allows us to transport derivatives
of curves to our choice of base point in the homogeneous manifold. Then this
information is lifted to a curve in the Lie algebra. It is natural to require that the
lifted curve does not depend on the representative of the class used to pull back the
curve to the base point.

The main contribution of this paper is the definition of a generalised square root
velocity transform framework using transitive Lie group actions for curves on homo-
geneous spaces. Different choices of Lie group actions will give rise to different
metrics on the infinite dimensional manifold of curves on the homogeneous space,
with different properties. These different metrics, their geodesics and associated
geometric tools for shape analysis can all be implemented in the computationally
advantageous SRVT framework.

We extend previous results for Lie group valued curves and shapes [9], to
the homogeneous manifold setting. Using ideas from the literature on differential
equations on manifolds [10], we describe the main tools necessary for the definition
of the SRVT and discuss the minimal requirements guaranteeing that the SRVT is
well defined, Sect.2. On a general homogeneous manifold, the SRVT is obtained
using a right inverse of the composition of the Lie group action with the evolution
operator of the Lie group. If the homogeneous manifold is reductive, there is an
explicit way to construct this right inverse (based on a canonical 1-form for the
reductive space, cf.3.3-3.4), see also [20]. We prove smoothness of the defined
SRVT in Sect. 2.1. Detailed examples on matrix Lie groups are provided in Sect. 4.

A Riemannian metric on the manifold of curves on the homogeneous space is
obtained by pulling back the L? inner product of curves on the Lie algebra through
the SRVT, Theorem 11. To ensure that the distance function obtained on the space
of parametrised curves descends to a distance function on the shape space, it is
necessary to prove equivariance with respect to the group of orientation preserving
diffeomorphisms (reparametrization invariance), these results are presented in
Sect. 2.3.

For the case of reductive homogeneous spaces, fixed the Lie group action, two
different approaches are considered: one obtained pulling back the curves to the Lie
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Fig. 1 The blue curve shows the deformation of the green curve into the purple one along a

geodesic y : [0, 1] — Imm(/, Sz) plotted for the three times { }‘, é i } from left to right

algebra g (Proposition 18) and one obtained pulling back the curves to the reductive
subspace m C g (Sect.3.1.1). The resulting distances are both reparametrization
invariant, see Lemmata 13 and 22. For the second approach it follows similarly to
what shown in [9] that the geodesic distance is globally defined by the L? distance,
Proposition 20. We conjecture that also for general homogeneous manifolds, at least
locally, the geodesic distance of the pullback metric is given by the L? distance
of the curves transformed by the SRVT, see end of Sect.2.2. To illustrate the
performance of the proposed approaches we compute geodesics between curves
on the 2-sphere (viewed as a homogeneous space with respect to the canonical
SO(3)-action), see Fig. | for an example. Numerical experiments show that the two
algorithms perform differently when applied to curves on the sphere (Sect. 5).

This work appeared on the arXiv on the 5th of April 2017, later a related but
different work from colleagues at Florida State University was completed and posted
on the arXiv on the 9th of June 2017. The latter work has now appeared in [26], see
also the follow up [25]. Moreover, loc.cit. treats quotients by compact subgroups
focuses on the existence of optimal reparametrisations.

1.1 Preliminaries and Notation

Fix a Lie group G with identity element e and Lie algebra g.! Denote by Ry: G —
G and Lg: G — G the right resp. left multiplication by ¢ € G. Let H be a closed
Lie subgroup of G and M := G/H the quotient with the manifold structure turning
n: G — G/H,g — gH into a submersion (see [12, Theorem G (b)]). Then M
becomes a homogeneous space for G with respect to the (transitive) left action:

A:GxXM—> M, (g,kH)— (gk)H.

!n this paper we assume all Lie groups and Lie algebras to be finite dimensional. Note however,
that many of our techniques carry over to Lie groups modelled on Hilbert spaces, [9].
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For co € M we write A(g, co) = Ag(g) = g.co = A8(cp),ie. Ay : G > M
(the orbit map of the orbit through cg) and A8 : M — M.

1.1.1 We will consider smooth curves on M and describe them using the Lie group
action. Namely for c: [0, 1] — M we choose a smooth lift g: [0, 1] — G of c,
ie.

c(t) =g({t).co, coeM, te[0,1] (thedotdenotes the action of G on G/H).

In general, there are many different choices for a smooth lifts g.> For brevity we
will in the following write / := [0, 1].

Later on we consider smooth functions on infinite-dimensional manifolds beyond
the realm of Banach manifolds. Hence the standard definition for smooth maps (i.e.
the derivative as a (continuous) map to a space of continuous operators) breaks
down. We base our investigation on the so called Bastiani calculus (see [3]): A
map f: E D U — F between Fréchet spaces is smooth if all iterated directional
derivatives exist and glue together to continuous maps.>

1.1.2 Let M be a (possibly infinite-dimensional) manifold. By C*°(I, M) we
denote smooth functions from / to M. Recall that the topology on these spaces, the
compact-open C*>-topology, allows one to control a function and its derivatives.
This topology turns C*° (I, M) into an infinite-dimensional manifold (see e.g. [15,
Section 42]).

Denote by Imm(/, M) € C*°(I, M) the set of smooth immersions (i.e. smooth
curves ¢: I — M with ¢(t) # 0) and recall from [15, 41.10] that Imm(/, M) is an
open subset of C*®° (1, M).

1.1.3 We further denote by Evol the evolution operator, which is defined as
Evol: C®(I,g) — {g € C®(I,G) : g(0) = e} =: C°(, G)

dg = Renalg(0),
g0)=e

Evol(g)(¢) := g(¢) where

2Every homogeneous space G/ H is a principal H-bundle, whence there are smooth horizontal lifts
of smooth curves (depending on some choice of connection, cf. e.g. [23, Chapter 5.1]).

3In the setting of manifolds on Fréchet spaces (with which we deal here) our setting of calculus is
equivalent to the so called convenient calculus (see [15]). Convenient calculus defines a map f to
be smooth if it “maps smooth curves to smooth curves”, i.e. f o c is smooth for any smooth curve
c. This yields a calculus on infinite-dimensional spaces where smoothness does not necessarily
imply continuity (though this does not happen on Fréchet spaces), we refer to [15] for a detailed
exposition. Note that both calculi can handle smooth maps on intervals [a, b], see e.g. [13, 1.1] and
[15, Chapter 24].
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and Ry, = T, R, is the tangent of the right translation. Recall from [13, Theorem A]
that Evol is a diffeomorphism with inverse the right logarithmic derivative

8" C°(1,G) > C¥(I.g). §g:=R. ().

1.1.4 We fix a Riemannian metric (-, -)¢)gec on G which is right H-invariant (i.e.
the maps Ry, h € H are Riemannian isometries). Since M = G/H is constructed
using the right H-action on G, an H -right invariant metric descends to a Riemannian
metric on M. We refer to [11, Proposition 2.28] for details and will always endow
the quotient with this canonical metric to relate the Riemannian geometries.

Hence H -rightinvariance should be seen as a minimal requirement for the metric
on G. Note that a natural way to obtain (right) invariant metrics is to transport a
Hilbert space inner product from the Lie algebra by (right) translation in the group.
This method yields a G-right invariant metric and we will usually work with such
a metric induced by (-, -) on g. Albeit it is very natural, G-invariance does not
immediately add any benefits. In the following table we record properties of H,
the Riemannian metric and of the canonical G-action on the quotient.

1.1.5 Let f: M — N be a smooth map and denote postcomposition by
Op: C*(I, M) — C*(I, N), cH— foc.

Note that 67 is smooth as a map between (infinite-dimensional) manifolds.

1.1.6 (The SRVT on Lie groups) For a Lie group G with Lie algebra g, consider
an immersion c¢: I — G. The square root velocity transform of c is

-1 .
() (Rc(z))* (©)
Vel el
where the norm || - || is induced by a right G-invariant Riemannian metric, [9]. The
SRVT consists of the composition of three maps:

* differentiation D: C*°(I, G) — C*(I,TG), D(c) := ¢,
o transporta: C¥(I, TG) — C*®(l,g), y > (R;TlGoy)*(y) and

o scaling sc: C®(I, g\ {0})) = C=(I, g\ {0}), ¢+ (r > qu(z)”)-

The scaling by the square root of the norm of the velocity is crucial to obtain a
parametrisation invariant Riemannian metric, see [9] and Lemma 13.

R:Imm(I, G) — C®(1, g\ {0}), R(c) = ey



192 E. Celledoni et al.
2 Definition of the SRVT for Homogeneous Manifolds

Our aim is to construct the SRVT for curves with values in the homogeneous
manifold M. It was crucial in our investigation of the Lie group case [9] that the
right-logarithmic derivative inverts the evolution operator, see 1.1.3. To mimic this
behaviour we introduce a version of the evolution for homogeneous manifolds.

Definition 1 Fix ¢y € M and denote by CSS’ (I, M) all smooth curvesc: I — M
with ¢(0) = ¢g. Then we define

Py CF(L, g) > C7 I, M), pey(q) = Acy(Evol(g) (1)) = A(Evol(g)(t), co).

Remark 2 Fix g € C*°(1, g) and ¢y € M and denote by g(t) = Evol(g)(¢). Then

ae®) = ToAey(g(1)),
c(0) = co.

Peo(q) :=c(t) where

Proof In fact

d d
dr Pcy (6])(1) = Tg(Z)Aco (dl‘g(t)> = g(t)AL‘()((Rg(r))*(q(t))) = Tg(Z)Aco o (Rg(r))* (l](f))
=Te(Aey 0 Rg))(q (1)) = TeAn () (@) = Te Ap ()1 (g (1)),

with Teiy Acy: Te)G = Taey (g M = Ty (v M, TeAcry: 9 > TeyM.
O

Hence we can interpret p., as a version of the evolution operator Evol for
homogeneous manifolds.

Example 3 Consider the two dimensional unit sphere M = S? in R3. Consider
the action of SO(3) on S2 by matrix-vector multiplication: A : SO(3) x §? — §2,
A(Q,u) = Q - u. Assume co := e the first canonical vector in R3, then given a
curve in the Lie algebra of skew-symmetric matrices g (t) € s0(3), pe, (g (1)) = y(t),
where y(t) satisfies y = ¢ (¢)y with y(0) = e;.

We want to construct a section of the submersion p., to mimic the construction
for Lie groups, see also [10, Proposition 2.2]. As we have seen in the Lie group
case, the SRVT factorises into a derivation map, a map transporting the derivative
to the Lie algebra and a scaling in the Lie algebra. For homogeneous spaces,
we can make sense of this procedure if we can replace the transport from the
Lie group case by a map which transports derivatives from the tangent bundle
of the homogeneous manifold to the Lie algebra. Thus we search for a map
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a: C®(, TM) — C*®(1, g) such that the following diagram commutes:

COU M) —L> C(1, TM) 2 (1, g) —29 C(1, M)

Moreover, in the Lie group case we see that the mapping oo D maps the submanifold
of immersions into the subset C*°(/, g \ {0}). We will require this property in
general, as derivatives of immersions should vanish nowhere and this property
should be preserved by the transport «. The next definition details necessary
properties of «.

Definition 4 (Square root velocity transform) Let co € M be fixed and define
the closed submanifold® Peo = {c € Imm(I, M) | ¢(0) = ¢o} = Imm(/, M) N
Cx I, M) of C*(I, M). Assume there is a smootha: C*°(I, T M) — C*(, g),
such that

Pcy OO O D = idcgg([’M) and (2)
ao D(Pey) € CF(I, g\ {0}). 3)

Then we define the square root velocity transform on M at cg, with respect to « as

R: Py — C(Lg\ (0], Ree):= *©
. Cy ) b A . ’
’ Vi@l
where || - || is the norm induced by the right invariant Riemannian metric on the Lie

algebra. We will see in Lemma 9 that R is smooth.

The SRVT allows us to transport curves (via ) from the homogeneous manifold
to curves with values in a fixed vector space (i.e. the Lie algebra g). The crucial
property here is that o D is a right-inverse of pc,, and we note that our construction
depends strongly on the choice of the map p,.

Example 5 Let G be a Lie group and H = {e} the trivial subgroup (with e the Lie
group identity). Then G = G/{e} is a homogeneous manifold and p, = Evol.
Taking a(v) = (Ry D, (v), we reproduce the definition of the SRVT on Lie
groups 1.1.6. However, contrary to Evol, p., is not invertible if the subgroup H
(with M = G/H) is non-trivial, but we might still be able to find a right inverse.

Example 6 We have 7,52 := {v € R? | v-u = 0} where we have denoted with “-”
the Euclidean inner product in R?. Then we can write

v = (vuT — uvT)u, Yv € TMS2

4As Imm(I, M) C C®(I, M) is open and the evaluation map evy: Imm(/, M) — M is a
submersion, P, = ev, 1 (co) is a closed submanifold of Imm(Z, M) (cf. [12]).
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and we can define the map

T

a:veT,S?— vl —uwl e 50(3).

For ¢ a curve evolving on $2 with ¢(0) = ey, we have Pe; (@(¢)) = c,s0 0 D is
the right inverse of p,,. The SRVT is then

el —ceT
R@c)= . s
ViéeT —céT|
and || - || is the norm deduced by the usual Frobenius inner product of matrices (the

scaled negative Killing form in so(3) see table in example 16). See Sects.4 and 5,
for further details and more examples.

The definition of o and the SRVT in Definition 4 depend on the initial point
co € M. In many cases our choices of « satisfy (2) for every cp € M, i.e. o
satisfies

0(c(0), a(¢)) 1= peoy(@(¢)) =c forallc e C®U, M).

Further, the SRVT also depends on the choice of the left-action A: G x M — M.
A different action will yield a different SRVT. For example, there are several ways
to interpret a Lie group as a homogeneous manifold with respect to different group
actions. One of these recovers exactly the SRVT from [9] (see Example 5). See [20,
Section 5.1] for more information on Lie groups as homogeneous spaces, e.g. by
using the Cartan-Schouten action.

Remark 7 Fix ¢ € C°°(, M) to obtain a smooth map A.: C*(,G) —
C®U, M), f = (= A(f,c)()) [19, Corollary 11.10 1. and Theorem 11.4].
Further we recall from [15, Theorem 42.17] that C*° (I, TM) = TC*®, M).
Identifying the tangent space over the constant e: I — G (taking everything to the
unit) we obtain

TeAc: C¥(,g) > T.CPU, M), g (1 TeAcr(q@))).

If T, A, was invertible (which it will not be in general), we could use it to define «.

2.1 Smoothness of the SRVT

One of the most important properties of the square root velocity transform is that it
allows us to transport curves from the manifold to curves in the Lie algebra, and this
operation is smooth and invertible. The details are summarised in the following two
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lemmata. Following [9, Lemma 3.9], we consider the smooth scaling maps

RENVIPIOY
se=: C®(1, g\ (0]) = C®(1 g\ (0], ¢+ (t > gllg@D.

sc: C(1, g\ {0) — C(1, g\ {0)), qH<r q¢) ) “

Lemma 8 Fix co € M, then

1. CF I, M) is a closed and split submanifold® of C*°(I, M),

2. pey: C(1, g) = CZ (I, M) is a smooth surjective submersion.
Proof

1. Note that C¢7' (1, M) is the preimage of ¢o under the evaluation map

evg: CU, M) —> M, cr c(0).

One can show, similarly to the proof of [9, Proposition 4.1] that evy is a submer-
sion. Hence, [12, Theorem C] implies that C f(f(l , M) is a closed submanifold of
Cc®(, M).
2. Recall that p., = 04, oEvol with 0aq C*U,G) = C®U,M), f = Agof.
As M is a homogeneous space, 7: G — M is a surjective submersion.
Hence [23, Chapter 5.1] implies that 6, : C*°(I, G) — C*°(I, M) is surjective.
Further, the Stacey-Roberts Lemma [2, Lemma 2.4] asserts that 6, is a sub-
mersion. Picking g € 7 (co), we can also write QAEO (f)=moRyo0 f =
Oz (Or, (f)). Thus 9Aco = 0z o Og, is a surjective submersion and

GXEL(CSS’(I, M) =CPU,G) ={ceC®(,G) | c(0) =e}.

By [13, Theorem C], 6 Ay restricts to a smooth surjective submersion
CX(I,G) — CF (I, M). Finally, since Evol: C*(1,g9) — C°(I,G) is a
diffeomorphism (cf. 1.1.3), p¢, = 6 Agy © Evol is a smooth surjective submersion.

O

Lemma 9 Fixco € M and let a be as in Definition 4. Then the square root velocity
transform R = sc o @ o D constructed from o is a smooth immersion R: Py, —

Ce(, g\ {0}).

Proof The map D: C*°(I, M) — C*°(I, T M), c > ¢ is smooth by Lemma 25.
Hence on P, the restriction of D is smooth. As a composition of smooth maps,
R =scoao D|7>C0 is also smooth.

5 A submanifold N of a (possibly infinite-dimensional) manifold M is called split if it is modeled
on a closed subvectorspace F of the model space E of M, such that F is complemented, i.e.
E = F @ G as topological vector spaces (see [12, Section 1]).
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Since sc: C®(1, g\ {0}) — C°°(1, g \ {0}) is a diffeomorphism, it suffices to
prove that @ o D|P(,~0 is an immersion. As we are dealing with infinite-dimensional
manifolds, it is not sufficient to prove that the derivative of « o D|P(,~0 is injective
(which is evident from (2)). Instead we have to construct immersion charts for x €
Py, 1.€. charts in which « o D is conjugate to an inclusion of vector spaces.®

To construct these charts, recall from (2) that f := « o D|P(,~0 is a right-inverse to
Pco- In Lemma 8 we established that p., is a surjective submersion which restricts
to a submersion ,0;)1(7360) — P, by [12, Theorem C]. Fix x € P, and use the
submersion charts for p.,. By [12, Lemma 1.2] there are open neighborhoods x €
Ur € Py and f(x) € Upry € ,00_01(73(;0) together with a smooth manifold N
and a diffeomorphism 0: Uy x N — Uy () such that p.y o O(u,n) = u. Thus
6~ 1o flu, = (@dy,, f2) for a smooth map f>: Uy — Uy,. Hence 6~ 1o flu,
induces a diffeomorphism onto the split submanifold I"(f2) := {(y, f2(3)) | y €
Uy} € Uy x Uy,. Following [12, Lemma 1.13], we see that f = a o D|y, is an
immersion. As x was arbitrary, the SRVT R is an immersion. O

Exploiting that R is an immersion, we transport Riemannian structures and
distances from C*°(I, g \ {0}) to P, by pullback. Note that the image of the
SRVT for a homogeneous space is in general only an immersed submanifold of
C*(1, g\ {0}). For reductive homogeneous spaces, a certain SRVT will always
yield a smooth embedding (see Lemma 19). We investigate now the Riemannian
structure on P,.

2.2 The Riemannian Geometry of the SRVT

As a first step, we construct a Riemannian metric using the L? metric on C(1,g).

Definition 10 Endow C*°(/, g) with the L? inner product

1
(fog)z = /0 F(), gD,

where (-, -) is induced by the right H -invariant Riemannian metric of G on g.

The L? inner product induces a weak Riemannian metric. The L2-geodesics are
straight lines, i.e. a curve c(r) € C*®(I, g) is a L2-geodesic if and only if for every
t, s — c(t)(s) is a straight line in the vector space g. In Lemma 9 the square
root velocity transform was identified as an immersion, which we now turn into a
Riemannian immersion by pulling back the L?> metric. Arguing as in the proof of
[9, Theorem 3.11] one obtains the following formula for this pullback metric.

6See [12] for more information on immersions between infinite-dimensional manifolds.
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Theorem 11 Let ¢ € P, and consider v,w € TcPe,, ie. v,w: I — TM are
curves with v(t), w(t) € Ty M. The pullback of the L? metric on C*®(I, g \ {0})
under the SRVT to the manifold of immersions Py, is given by:

GR(U w) =/ ! (Dsv, uc) (Dsw, ue)
‘ 14 (5)

+ (st —uc (Dsv,ue), Dyw — ue (Dsw, ”c>>d5,

where Dsv := Ty(a o D) (v)/”a(c') H, Ue = (x(é)/Hoc(c') H is the (transported) unit
tangent vector of ¢, and ds = ||a(é(t)) H dt. The pullback of the L*> norm is given by

1
Gz,z(v, v) = /I 4 (Dyv, uc)* + || Dgv —u. (Dgv, uc) ||2ds.

The formula for the pullback metric in Theorem 11 depends on « and its
derivative. However, notice that we always obtain a first order Sobolev metric which
measures the derivative Dsv of the vector field over a curve c.

The distance on P, will now be defined as the geodesic distance of the first
order Sobolev metric G, i.e. of the pullback of an L? metric. Thus we just need
to pull the L? geodesic distance on R(P.,) back using the SRVT. But, in general,
the geodesic distance of two curves on the submanifold R(P,) with respect to the
L? metric will not be the L? distance of the curves (see e.g. [8, Section 2]). The
question is now, under which conditions is the geodesic distance at least locally
given by the L? distance. Note first that the image of the SRVT will in general
not be an open submanifold of C*° (1, g) (this was the key argument to derive the
geodesic distance in [9, Theorem 3.16]). As a consequence we were unable to derive
a general result describing the links between the geodesic distance by GR on Peo
and the SRVT algorithmic approach for homogeneous manifolds. Nonetheless, we
conjecture that at least locally the geodesic distance should be given by the L2
distance (note that ,Oc_ol (Pc,) 1s an open set, whence the geodesic distance is locally

given by the L? distance). On the other hand, for reductive homogeneous spaces
(discussed in Sect. 3), an auxiliary map can be used to obtain a geodesic distance
which globally coincides with the transformed L? distance.

2.3 Egquivariance of the Riemannian Metric

Often in applications, one is interested in a metric on the shape space

Sey i= Pey/ Diff " (1) = Imm,, (1, M)/ Difft (1),



198 E. Celledoni et al.

where Diff* (1) is the group of orientation preserving diffeomorphisms of I acting
on P, from the right (cf. [5]). To assure that the distance function dpEO descends to
a distance function on the shape space, we need to require that it is invariant with
respect to the group action.

Definition 12 Letd: P., x P, — [0, 0o] be a metric. Then d is reparametrisation
invariant if

d(f,h) =d(fog,gop) Yy e Diff*(I). (6)
In other words d is invariant with respect to the diagonal (right) action of Diff* (1)
on Pey x P

Let [f], [g] € S be equivalence classes and pick arbitrary representatives f €
[fland g € [g]. If d is a reparametrisation invariant, we define a metric on S as

ds([f],[g) = inf d(f, gog). (7N
eDifft (1)

Since d is reparametrisation invariant, the definition of ds makes sense (cf. [9,
Lemma 3.4]). To obtain a metric on S, we need reparametrisation invairance of

1
dp,: Pey X Py > R, dp, (f,8) = \/ /0 IR —R(g) 0] dr.

Lemma 13 Let R be the square root velocity transform with respect to co € M
anda: CR(I, TM)=ETC>®(, M) — C*®(,g). Then d'pEO is reparametrisation
invariant if o is a C*(I, g)-valued 1-form on C*°(I, M), e.g. if « = 6, for a
g-valued 1-form on M.

Proof Consider ¢ € Diff" (1) and f, g € P,. Then a computation yields
a(fop-¢) _ a(fop)-¢
\/Ha<f'ow~¢>H \/Ha(fow>-¢H

where we have used that « is fibre-wise linear as a 1-form. Thus we can now
compute

R(fop) = = (R(f)o9) - Vo,

dp,(f o9, 809) = \/ /1 |R(f) 0 0(6) = R(8) 0 () |* @)t = dp, (. 9.
O

The condition on « from Lemma 13 is satisfied in all examples of the SRVT
considered in the present paper. For example, for a reductive homogeneous case
(see Sect. 3), we can always choose « as the pushforward of a g-valued 1-form.
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3 SRVT for Curves in Reductive Homogeneous Spaces

A fundamental problem in our approach to shape spaces with values in homo-
geneous spaces is that we need to somehow lift curves from the homogeneous
space to the Lie group. Ideally, this lifting process should be compatible with the
Riemannian metrics on the spaces. Note that for our purposes it suffices to lift the
derivatives of smooth curves to curves in the Lie algebra of the Lie group. Hence
we need a suitable Lie algebra valued 1-form, which turns out to exist for reductive
homogeneous spaces, cf. e.g. [16, Chapter X] (see also [20] for a recent account)

3.1 Recall that Ad(g) := T,conj,, where conj, = L, o R,-1 denotes conjugation
conj,: G — G. Suppose m is a subspace of g such that g = h & m.

Let w: Ty M — m be the inverse of T,7|ym: g 2 m — Ty M. Identify
g = T,G and observe that T, : g — T,y M induces an isomorphism 7,7 |y, : M —
T.gM.

By definition w o R, = m holds for all € H. Now the group actions of G on
itself by left and right multiplication commute and we observe that

forallg € G moLg = Ao and T,moAd(h) = TA"T,n forh € h. (8

3.2 We will from now on assume that M is a reductive homogeneous manifold.
This means that the subalgebra ) admits a reductive complement, i.e. a vector
subspace m C g such that

g=h@®mand Ad(h).m Cmforall 2 € H.

If it exists, a reductive complement will in general not be unique. However, we
choose and fix a reductive complement m for .

3.3 As areductive complement, m is closed with respect to the adjoint action of H.
Hence one deduces (cf. [20, Lemma 4.6] for a proof) that w, is H-invariant with
respect to the adjoint action, i.e.

we(TAh (v)) = Ad(h).w.(v) forallve T,yMandh € H.

Thus the following map is well-defined:

w: TM =g, vi> Ad(g).0 (TAL ' (v)) forallv e TgyM.

From the definition it is clear that w is a smooth g-valued 1-form on M. Moreover,
w is even G-equivariant with respect to the canonical and adjoint action:

(T A*(v)) = Ad(k).o(v) forallv e TMandk € G. C)]



200 E. Celledoni et al.

Note that w depends by construction on our choice of reductive complement m.
However, we will suppress this dependence in the notation. As noted in [20,
Section 4.2], the 1-forms w correspond bijectively to reductive structures on G/ H.’

3.4 Let w be the 1-form constructed in 3.3. Then we define the map
0p: C°(U, TM) - C*®,9), [fr>wolf.

Note first that 6,, is smooth by [15, Theorem 42.13]. We will prove that 6, indeed
satisfies (2) and (3), whence o = 6,, yields an SRVT as in 4.

To motivate the computations, let us investigate an important special case.

Example 14 Similarly to example 5, let G be a Banach Lie group and H = {e}
the trivial subgroup. Then G = G/{e} can be viewed as a reductive homogeneous
manifold with m = g, 7 = idg and w, = idg. From the definition of w we
obtain w(v) = Ad(g).(Lgfl)*(v) = (R;l)*(v) = k" (v), where k" denotes the
right Maurer-Cartan form, [15, Section 38] or [20, Section 5.1]. In particular, for
c: I — G we have O(c) = k" (¢) = 8" (c) (right logarithmic derivative). As we
have Evol o0 6" (¢) = ¢ for a curve starting at e.

The SRVT for reductive spaces coincides thus with the SRVT for Lie group
valued shape spaces as outlined in 1.1.6.

Albeit Example 14 is quite trivial as a homogeneous space, it highlights a general
principle of the construction for reductive homogeneous spaces.

Remark 15 We here provide an alternative interpretation for 6,0 D: A smooth curve
¢: I — M admits a smooth horizontal lift ¢: I — G depending on a choice of
connection for the principal bundle G — M [23, Chapter 5.1]. For a reductive
homogeneous manifold we construct a horizontal lift ¢ using the canonical invariant
connection (depending on the reductive complement, see [16, X.2]). Now we take
the (right) Darboux derivative (aka right logarithmic derivative) of ¢: I — G (see
[24, 3.§5]). Then unraveling the definitions similar to Examples 5 and 14, one
can show that §"(¢) = 6, o D(c) holds for the 1-form 6, as in 3.4. Thus for a
reductive homogeneous space the proposed SRVT can be viewed (up to scaling)
as the Darboux derivative of a horizontal lift of a curve in M. Note that this
interpretation justifies again to view p., as a generalised version of the evolution
operator Evol (which inverts the right logarithmic derivative, see Remark 2).

A rich source for reductive homogeneous spaces are quotients of semisimple Lie
groups. We recall now some of the main examples.

Example 16 Let G be a semisimple Lie group and H a Lie subgroup of G which is
also semisimple. Then the homogeneous space M = G/H is reductive. A reductive

"Note that there might be different reductive structures on a homogeneous manifold. We refer to
[20, Section 5.1] for examples and further references.
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complement of b in g is the orthogonal complement b with respect to the Cartan-
Killing form on g (recall that the Killing form of a semisimple Lie algebra is non-
degenerate by Cartan’s criterion [17, 1.§7 Theorem 1.45]). For example, this occurs
for G = SL(n) and H = SL(n — p) or G = SO(n) and H = SO(n — p) (where
1 < p < n), since by [17, 1.§8 and 1.§18] the following properties hold:

Lie group G Compact? Semisimple? Killing form B(X,Y) on g
SO(n) Yes Yes (for n > 3) (n —2)Tr(XY)

SL(n) No Yes 2nTr(XY)

GL(n) No No 2nTr(XY) — 2Te(X)Tr(Y)

Here Tr denotes the trace of a matrix. All main examples in this paper are reductive.

Proposition 17 Let M = G/H be a reductive homogeneous space, co € M, @
and 8, as in 3.4. Consider D: CS°(1, M) — C*(I,TM), ¢ — ¢. Then

0
Pey ©0po D = ingg(I,M) .
Proof As a shorthand write 6 := 6, o D. We establish in Lemma 26 the identity

idC%(I,M)ZPeH 00 = A,y oEvolod = m o Evolo6. (10)

Let now ¢ € C(I, M) with ¢o = goH. Then we obtain A% o ¢ € C, (I, M)
and
Py 00(¢) = (Agy 0 Evol) 080 (¢) = Ay 0 Evolo (T AT A% ¢)

D Ay 0 Evol(Ad(go).(T A% ¢)) = A 0 Evol(Ad(go). B(A% o c)).

Recall from [13, 1.16] that for a Lie group morphism ¢ one has the identity
EvoloL(¢) = ¢ o Evol. By definition, Ad(g) = L(conjg) = Teconjg, where
conj, = Lg o R,-1 denotes the conjugation morphism. Insert this into the above
equation:

-1

Py 00(c) = Ay 0 Evolof(c) = A¢y o Lgy 0 Rgo—l o Evol(8(AS0 o))
= 7 0 Loy EVol(0(A% 0¢)) = A% o1 o Evol(8(A% o c))
(10)

1
= A8 0 A0 oc =c.

In passing to the second line we used that left and right multiplication maps
commute and that A, (R, 1 (k) = Ag (kgo") = kg 'co = kg 'goH = m(k). O
0
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Proposition 18 Ler M = G/H be a reductive homogeneous space, co € M, o
and 6, as in 3.4. Then 0, satisfies (2) and (3), whence for a reductive homogeneous
space we can define the SRVT as

R(c) := 0u(©)
Jeu@]

Proof In Proposition 17 we have already established (2). To see that (3) also holds
for 6,,, observe first that for v € T,z M, we have w(v) = Ad(g).we(TA{l (v)).
Since w, o TAS T¢uM — mand Ad(g): g — ¢ are linear isomorphisms, we
see that w(v) = 0 if and only if v = Ogp. As 6, is post-composition by w, 6,
satisfies (3). |

for ¢ € Imm(I, M)

3.1 Riemannian Geometry and the Reductive SRVT

In the reductive space case, it is easier to describe the image of the square root
velocity transform. It turns out that the image is a split submanifold with a global
chart. Using this chart, we can also obtain information on the geodesic distance.
The idea is to transform the image of the SRVT such that it becomes C* (I, m \
{0}), where m is again the reductive complement. Pick go € 7~ !(co) and use the
adjoint action of G and the evolution Evol: C*°(I, g) — C*°(I, G) to define

Wey(q) := — Ad(goEvol(q)™").q forq € C>(I, g)

where the dot denotes pointwise application of the linear map Ad(Evol(g)~"). Then
Wy, is a diffeomorphism with inverse ¥, -1 (see Lemma 28). We will now see that
0

ngﬂq maps the image of the SRVT to C*°(Z, m \ {0}).

Lemma 19 Choose co € M in the reductive homogeneous space M, and let v and
0w, D be as in Proposition 17. ThenIm 6,0 D is a split submanifold of C*° (1, g\{0})
modelled on C*° (I, m) and 0, o D is a smooth embedding. In particular, R(P¢,) =
oo (C°(I, m \ {0})) is a split submanifold of C*°(I, g \ {0}) and R is a smooth
embedding.

Proof Asg=h®m,wehave C®(I,g) = C®(,hdm) = C®,HHC>®(,m).
Thus C*(I, m \ {0}) is a closed and split submanifold of C*°(/, g \ {0}). Fix
go € G with m(go) = co and note that W, restricts to a diffeomorphism
C®(I1,g\ {0}) — C*(, g\ {0}) by Lemma 28. Now as W, (C*°(I,m \ {0})) =
Im 6, 0 D (cf. Lemma 29), the image Im 6,, o D is a closed and split submanifold of
C™(I, g \ {0}). Further, we deduce from Lemma 29 that p, |img,op is smooth with
Bw © D 0 peyltmb,0o0 = 1dimg,0on- As also p¢, 0 6, = idlmmgo (1, M), we see that 6,, is
a diffeomorphism onto its image. Thus 8, o D is indeed a smooth embedding.
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Since the scaling maps are diffeomorphisms C*°(1, g \ {0}) — C*°(I, g \ {0}),
the assertions on the image of R and on R follow directly from the assertions on
O- |

3.1.1 (Reductive SRVT) Let M be areductive homogeneous space with reductive

complement m and 6,: C*°(I, TM) — C*(,g), f — wo f be constructed

with respect to the 1-form w from 3.3. Then Wg—l 00, (Pey) = C®(I, m\ {0}) (see
0

Appendix 6.1). Now one constructs a version of the SRVT for reductive spaces via

¥ 1 00,(f)
Run: Py = COU,m\{0}), fr> % .
NICREYRE]

We call this map reductive SRVT, to distinguish it from the usual SRVT. Contrary
to the SRVT, the reductive SRVT will go into the reductive complement, but it will
not be a section of p,. Instead it is a section of p, o W,,. Finally, we note that by
construction (cf. Lemma 28) the image of the reductive SRVT is C*° (I, m \ {0}).

Arguing as in Theorem 11, we also obtain a first order Sobolev metric by pullback
with the reductive SRVT. In general this Riemannian metric will not coincide with
the pullback metric obtained from the SRVT. The advantage of the reductive SRVT
is that we have full control over its image, which happens to be an open subset (of
a subspace of C*°(I, g)). Since C*°(1, g) with respect to the L? inner product is a
flat space (in the sense of Riemannian geometry), it follows that at least locally the
geodesic distance on the image of the SRVT is given by the distance

dp,m(f: 8) == dp2(Ru(f), Rm(g)).

However, we argue as in [9, Theorem 3.16] to obtain the following result.

Proposition 20 [f dim h 4+ 2 < dim g, then the geodesic distance of
(R(Pe¢y), (-5 -)12) coincides with the L2 distance. In this case the geodesic distance
on Pe, induced by the pullback metric (5) (with respect to the reductive SRVT) is

given by dp, w(f, 8) =\ [, [R (10 = R (@) .

Note that the modification by the reductive SRVT is highly non-linear, e.g. in the
Lie group case, Example 14, we obtain:

Example 21 Let G be a Lie group, ¢ €® (I, G) and §'(c) = ¢~ !¢. Then
(8" (c)) = — Ad(Evol(8" (¢))™1).8"(¢) = — Ad(c ™ V).cc™! = =84 (c).

Recall from [15, 38.4] that Evol(—&'(¢))(r) = (c(r))~!. In the Lie group case,
the reductive SRVT modifies the formulae to compute distances and interpolations
between the pointwise inverses of curves instead of the curves themselves. In
particular, this shows that the reductive SRVT will not be a section of p,.
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In particular, we have to prove a version of Lemma 13 for the reductive SRVT.
Lemma 22 For a reductive space, cho,m is reparametrisation invariant.

Proof For Ry we use lI/g—l o 8, instead of « = 6,,. Consider f € P, and ¢ €
0
Difft (1) to compute as in Lemma 13: lI/g_Ol(Qw(f o)) = Wg_ol(gb <0y (f) o). Now

Evol(g) o ¢ = Evol(@ - g o ¢) Evol(q)(#(0)) = Evol(¢ - g 0 )

—~
=e since ¢(0)=0

follows from [15, p. 411]. Linearity of the adjoint action yields ngl lu(fop) =
(Wg’ol (0 (f)) o @) - @. Inserting this in (9) yields reparametrisation invariance. O

4 The SRVT on Matrix Lie Groups

In order to illustrate our definition of the SRVT in different instances of homoge-
neous manifolds, we consider in what follows two examples of quotients of finite
dimensional matrix Lie groups (forn > 3 and p < n):

1. SO(n)/(SO(n — p) x SO(p)) (see 4.3).
2. SO(n)/ SO(n — p) (see 4.2).

Note that in both cases the quotients are reductive homogeneous spaces. To prepare
our investigation, we will now collect some information on relevant tangent spaces
for the matrix Lie groups. These examples are relevant in applications [1].

4.1 Tangent Space of G/H and Tangent Map of G - G/H

For G and H finite dimensional (matrix) Lie groups, we here describe the tangent
space of G/H at a prescribed point ¢y and the tangent mapping of the canonical
projection w : G — G/H. We have seen that any curve c(t) on G/H, c¢(0) = cy,
can be expressed non-uniquely by means of a curve on the Lie group c(¢) = w (g(¢)).
For matrix Lie groups, the elements of G/ H are equivalence classes of matrices. Let
the elements of G, g € G, be n x n matrices, then the group multiplication coincides
with matrix multiplication. We identify elements of H C G with matrices

h = |:I O:|, I'a(n— p) x (n — p) matrix and [ the p x p identity. (11
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We obtain Tgym : TeyG — Tr(g)G/H, v = w, by differentiating c(t) =
m(g(t)). Assuming g(0) = go, 7(go) = co, £(0) = v € Ty, G, we have

w = Tr(gy) (V) =

d
m(g(1) = { dt

dt g(1)18(t) = g®) h(1), h(t)GH}-

=0 t=0

Assuming g(t) = A(t)g(t), where A(t) € g, v = Apgo = £o Adg—l(A()), and
0

assuming also that g‘llth(t) = B(t)h(t), B(t) € h, B(0) = By, in analogy to (32),
we get

d
280 = (A0) + Ady(y (B@) g0h(1) = g(0) (Ady1(AD) + BO)) h1),
(12)

SO we obtain

_d| L
w = Tr(gy) (V) = {w = 4| BOID = (A +Adgy(Bo) goh, heH. Bye h}

_ d
- dr

which gives a description of the tangent vector w € T,,G/H as well as the
characterisation of 7w for matrix Lie groups. Suppose that we fix a complementary
subspace m of b, g = h @ m, then there is a unique isotropy element By € b such
that Adgo—l (Ap) + Bp € m.

Repeating this procedure for each value of ¢ along a curve c(¢), we can assume
c(t) = m(g®) and w(t) € Tr(gu)G/H, w(t) = (A() + Adg()(B(2)))c(t) with
A(t) € g, B(t) € h, such that Adg(,)fl(A(t)) + B(t) € m, then we can define

t=0

I3
I

g)|w=go (Adgo—l(Ao) +Bo)h, heH,Bye f)},
t=0

a: Tr)G/H — Adg(m), a(w()) = A(t) + Adg ) (B()).

This map corresponds to the map 6, of 3.4 with @ as described in 3.3. If m is
reductive, this map is well defined (independently of the choice of representative
g() of c(t) = m(g(t))). We refer to Table 1 for different, possible choices of m and
their implications. In the following examples m is reductive and H is compact.

4.2 SRVT on the Stiefel Manifold: SO(n)/ SO(n — p)

In this section we consider the case when G = SO(n) and H = SO(n—p) C SO(n),
where the elements of SO(n — p) are of the type (11) with I" a (n — p) X (n — p)
orthogonal matrix with determinant equal to 1. We consider the canonical left action
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Table 1 Riemannian metrics and decompositions of the Lie algebra

H/p Metric on G Special decompositions of g G-action on M
Compact G-left invariant, g = h @ b, the orthogonal By isometries
H -biinvariant complement b is
Ad(H)-invariant
Compact G-right invariant, As above Only H acts
H -biinvariant by isometries
Admits reductive G-rightinvariant g =bh @ m, mis Not by isometries
complement in g? Ad(H )-invariant
g = bh @ bL, where in general
m# bt
G-right invariant g=b & bt but b is not Not by isometries

Ad(H) invariant

2 = L(H) admits a reductive complement m, if m is an Ad(H)-invariant subspace and g = h @ m
as vector spaces, cf. 3.1. Then M = G/H is a reductive homogeneous space

of SO(n) on the quotient SO(n)/SO(n — p). This homogeneous manifold can be
identified with the Stiefel manifold, M = V,(R"), i.e. the set of p-orthonormal
frames in R” (real matrices n x p with orthonormal columns). We will in the
following denote by [U, U 1] the elements of SO(n) where we have collected
in U the first p orthonormal columns and in U~ the last n — p. Multiplication
from the right by an arbitrary element in the isotropy subgroup SO(n — p) gives
[U, ULT), leaving the first p columns unchanged and orthonormal to the last
n — p, for all choices of I". Here U alone represents the whole coset of [U, U].
When thought of as a map from SO(n) to SO(n)/SO(n — p), the projection
w: SO(m) — SO(n)/SO(n — p) is

a(U,Ur) ={g €SOm) |§ =[U,ULT'], VI €SO — p)}.

Otherwise, when thought of as a map from 7 : SO(n) — V,(R"), the canonical
projection conveniently becomes 7 ([U, UJ-]) = [U, UJ-] I, = U, where I, is the
n X p matrix whose columns are the first p columns of the n x n identity matrix.
The equivalence class of the group identity element i (e) is identified with the n x p
matrix /. Similarly the tangent mapping of the projection ,

Trn : TSO(n) — TSOn)/SO(n — p), v € TgSO(n) = w € Ty (5)SO(n)/SO(”n — p),

with g = [U, UL, v=A[U, U] Tiy.y+1SO(n) and A € so(n), can be realised
as

W =[U, U 1(Adyy y1y7 (A) + B) T,

VI €SO — p), B € so(n — p) ’
(13)

Tyy.yot(A[U, U) = iuv € Tyy.y1r SOM)
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while T'w : TSO(n) — TV ,(R") by multiplication from the right by /,,, and
Tw.yum(ALU, UL = A[U, U I, = AU € TyV,R"). (14)

Alternatively, a characterisation of tangent vectors can be obtained by differentiation
of curves on V,(R"). We have then that

ToV,(R") ={V n x p matrix | o'v p x p skew-symmetric}.

Proposition 23 ([10]) Any tangent vector V at Q € V ,(R") can be written as

V=FQ0" -0Fh0, (15)
T
F =V—QQ2V € ToM. (16)

And notice that replacing F with F := V — Q( Q;V + §), where S is an arbitrary
p X p symmetric matrix, does not affect (15).

We proceed by using the representation (15) of TV, (IR") and the framework
described in Definition 4 for defining an SRVT on the Stiefel manifold. Consider

omv
fo: ToM — ToM, foV)y=Vv -0 5 (17)
ag: ToM — mg C g, ap(V) = fo(V)QT — Qfo(V) . (18)

The SRVT of a curve Y (¢) on the Stiefel manifold is a curve on so(n) defined by

. o o
Ry WD YT =Y fr()

= .= : S (19)
Viar@Ml - Vilfr YT =Y fy ()|

As the Stiefel manifold is a reductive homogeneous space, we can define a
reductive SRVT in this case. Denoting with [Q, 01tla representative in SO (n) of
the equivalence class identified by Q on V,(R"), we observe that

V =Adjo1(G)], with G:=[QQ 1" FI] —1,F'[Q0"].

Assuming the right invariant metric on SO (n) is the negative Killing form, then
we observe that G belongs to the orthogonal complement of the subalgebra
so(n — p) in so(n) with respect to this inner product. As stated in Table 1, this
orthogonal complement is the reductive complement, i.e. m = so(n — p)*, and
Adso(n—p)(so(n — p)Y) C so(n — p)*. The elements of such an orthogonal
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complement so(n — p)* are matrices W € so(n) of the form

2 xT
W=|:_E 0}, (20)

with 2 € so(p) and ¥ an arbitrary (n — p) x p matrix. Consider the maps

T
~ ~ Vv
fo : ToM — Tj, M, fQWU=[QQHTV—JpQ2, 1)
dg:ToM —m C g, ag(V) = foI} — I, fo(V)", (22)
and we observe that ag (V) € m. Then the reductive SRVT is
iy (Y rWIT — 1, fy (1T
Rm(Y) — ay( ) _ fY( ) P pr( ) (23)

VI 1T - 1T

4.3 SRVT on the Grassmann Manifold:
SO(n)/(SO(n — p) x SO(p))

In this section we consider the case when G = SO(n) and H = SO(n — p) X
SO(p) C SO(n) where the elements of SO(n — p) x SO(p) are of the type

A0
h=|:01“:|’ (24)

with A a p X p matrix and I" an (n — p) X (n — p) matrix, both orthogonal
with determinant equal to 1. We consider the canonical left action of SO(n) on the
quotient SO(n) /(SO (n— p) xSO(p)). This homogeneous manifold can be identified
with a quotient of the Stiefel manifold V,(IR")/SO(p) with equivalence classes
(01 =1{0 € V,p(R™) | 0=0A, Ac s0(p)}. We denote such a manifold here
with G p,n(R).S The reductive subspace is m = (so(p) x so(n — )+ with elements
as in (20) but with £2 = 0. Imposing a choice of isotropy B € so(p) x so(n — p)
such that (Ad;g o1yr (A)+ B) € mleads to the following characterisation of tangent
vectors.

Proposition 24 Any tangent vector V at Q € G ,(R) is an n x p matrix such that
QTV =0, and V can be expressed in the form (15) with F = V.

8 An alternative representation of G p.n 18 given by considering symmetric matrices P, n x n, with
rank(P) = p and P2 = P, [14].
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The proof follows from (12) assuming g(¢) = [Q()Q(t)*+] € SO(n), and h(r) of
the form (24), imposing the stated choice of isotropy, and projecting the resulting
curves on V,(R") by post-multiplication by /,.

We proceed by using (15) but with ' = V. Define ag : ToM — g asin (18)
with fo : ToM — ToM, the identity map fo(V) = V. Suppose that Y (¢) is a
curve on the Grassmann manifold, then the SRVT of Y is a curve on so(n) and takes
the form (19) which here becomes

YYT —yyT

RY) = .
W VIYYT — Y YT

(25)
The reductive SRVT is defined by (23) with

; _ 1Ty 0

fov) =10, 011"V = [(QL)TV}

and ag as in (22), which implies ag (V) € m.

S Numerical Experiments

To demonstrate an application of the SRVT introduced in this paper, we present a
simple example of interpolation between two curves on the unit 2-sphere. In the
following we describe some implementation details for this example.

5.1 (Preliminaries) We will use Rodrigues’ formula for the Lie group exponential,

) X1 0 —x3 x2
R sin(e) ., 1—cos(a) ., n
exp(X) =1+ X+ 2 ¥, a=|lxll2, x=|x|Pi=]x 0 —x
X3 —x» x;1 O

where x > X defines an isomorphism between vectors in R and 3 x 3 skew-
symmetric matrices in 50(3).

5.2 (Interpolated curves) Given a continuous curve c(t),t € [fo,fy] on the
Stiefel manifold SO(3)/ SO(2), which is diffeomorphic to S?, we replace c(t) with
the curve c(¢) interpolating between N + 1 values ¢; = c(#;), with#tp < ) < ... <
tn, as follows:

N—-1

B t—t T - _
c(t) = Z Xltitis1) (1) €XP (t- ! (v,-cl-T — c;v?))c;, (26)
1

i—0 +1 i
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where y is the characteristic function, exp is the Lie group exponential, and v; are
approximations to g(zlz c(t)‘ found by solving the equations
t=t;

Gt =exp (wil =&l ) @7)

constrained by vl-TE,- =0. (28)

The v;, i = 1,..., N, can be found explicitly, by a simple calculation. We
observe that if k = ¢; x v;, then k£ = v,-El.T — E,-vl.T. By (28), we have that
llci x villa = lIcill2llvilla = |lvill2, where the last equality follows because we
assume the sphere to have radius 1, and so ||¢;|» = EiTE,' = 1. Using Rodrigues’

formula, from (27) we obtain

_sin(lluill)

Citl = vi + cos (J|vill2)¢i.
lvill2

Thus &/¢i+1 = 1 — cos (Jlvil2) and so [|v; ||> = arccos (EiTE,-H) leading to

_T_
arccos (Ci c,-+1)

g
\/ 1= (i)

- _T_ -
v = (Ci+1 - Ci+1Ci)

Inserting this into (26) gives

N-1 Tz
{—p arccos (Ci c,+1)

c(t) = § Xiti.1i41) (1) €Xp
— tiv1 — i T= 2
i 1-— (Ci Ci+1)
(29)

5.3 (The SRVT and its inverse) By Definition 4 and formulae (17), (18) and (19),
the SRVT of the curve (29) is a piecewise constant function g (¢) in so0(3), taking
values ¢; = q(t;), i =0,...,N — 1, where g; = R(5)|[= _is given by

- _T - _T -
(C,+1Cl - C,CH_l) Ci.

1,

1
_ _ -T~
) UiC,-T -G viT arccos 2 (cl. c,-+1) .
q; = oo = ) (CH-IC[ —CiC,'.H)-
”Uici —GiY; lI2 1— (&Tz 2\ 4 S ;
Ci Ci+1 ||CH_1(:[. CzCl'_H”

(30)

Here the norm ||-|| is induced by the negative (scaled) Killing form, which for skew-
symmetric matrices corresponds to the Frobenius inner product, ||A|| = \/ tr(AAT).
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The inverse SRVT is then given by (29), with
Giv1 = exp (IGi1@i)e, i=1,....,N =1, & =c(io).

5.4 (The reductive SRVT) Since Evol(ag (v;)) = exp (ag (vi)), the reductive
SRVT (3.1.1) becomes then

1 (o7~
arccos 2 (ciTci+1> T T
Rm(c)‘z:r,- = R(C>|r=z, = 5 i (ci‘HCi - ciciJrl) >
T - o 1
1 - (C;IC[+1) ) ||ci_,_1c;r — cic;rH II2
(€29

with
&=[U,UNe i=0,....N, [U. Uit = exp (ag i)[U, UYL i=0,...,N—1,

where [U, U] can be found e.g. by O R-factorization of c(#).

5.5 (Curve blending on the 2-sphere) We wish to compute the geodesic in the
shape space of curves on the sphere between the two curves ¢l@t) and ().
Following [9], we use a dynamic programming algorithm to solve the optimization
problem (7) (see [7, 28] for a detailed description on the use of dynamic program-
ming for shapes):

Algorithm 1 REPARAMETRISATION][7, Section 3.2]

Given g'(1), (1), N, {1:}},
fori,j€{0,...,N}do
Cmin = 00O
forke{0,...,i—1},1€{0,...,j—1}do
Cloc = [i13" (1) — @ (0 + ) 0 Pd
ifv"(k,l)=Wo---0W(k,I)=(0,0) for some m > 0 then
z=0
else
z=00
¢ = Cloc +Ap1+2
if ¢ < cpin then
Cmin = C
v, j) = (k1D
Ai,j = Cmin
Create two vectors of indices (p, g) by setting (po, go) = (N, N) and
(pm+1 s qm+1) = ‘I/(Pma qm) until (pm+1 s qm+1) = (0, O)
Flip (p, q) so it starts at (0, 0) and ends at (N, N)
fori € {0,...,N}do

_ fi=tp;
8i = 1g; + (g, — 1q;)

for jst.p; <i<p;
1= 10; J Dj Pj+1
Return s = {si},N:o
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With this approach, we reparametrise optimally the curve &2(¢) while minimizing
its distance to ¢! (#). This distance is measured by taking the L? norm of q 1 (1) _(?2 (1)
in the Lie algebra. In the discrete case, this reparametrisation yields an optimal set
of grid points {si}lN:O, where so = 1) < 51 < ... < sy = ty, from which we find
¢? = &(si) by (29). See [9] for further details.

We interpolate between ¢! (r) and ¢’%(¢) by performing a linear convex combina-
tion of their SRV transforms ¢! (¢) and ¢’*(¢), and then by taking the inverse SRVT
of the result. We obtain

Gnt(€1,85,0) =R ((1 —O)R@) +ORE)),  6€l0,1].

Examples are reported in Figs.2, 3 and 4, where interpolation between two
curves is performed with and without reparametrisation. We show curves resulting
from using both (30) and (31), and compare these to the results obtained when
employing the SRVT introduced in [9] on curves in SO(3) which are then traced
out by a vector in R? to match the curves in S? studied here.

5.6 (Conclusions) We have proposed generalisations of the SRVT approach to
curves and shapes evolving on homogenous manifolds using Lie group actions.
Different Lie group actions lead to different Riemannian metrics in the infinite
dimensional manifolds of curves and shapes opening up for a variety of possibilities
which can all be implemented in the same generalised SRVT framework. We have
presented only a few preliminary examples here, and further tests and analysis will
be the subject of future work. A number of open questions related to the properties
of the pullback metrics through the SRVT, to the performance of the algorithms
when using different Lie group actions, to the comparison of the SRVT and the
reductive SRVT and to the implementation of the approach in examples of non
reductive homogeneous manifolds will be addressed in future research.

6 Appendix

6.1 (Auxiliary results for Sect. 3)

Lemma 25 For the homogeneous space M = G/H with projection m: G —
G/H the derivation map Dpyg: C*(I,G/H) — C*®(,T(G/H)),c + ¢ is
smooth.

Proof The map Dg: C*°(I,G) — C*{,TG), y + y is a smooth group
homomorphism by [13, Lemma 2.1]. As 7: G — G/H is a smooth submersion,
Or: C*®(,G) - C*®(,G/H), ¢ — mocis asmooth submersion [2, Lemma 2.4].
Write 67, o Dg = D o 6;, whence by [12, Lemma 1.8] D A4 is smooth. |
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-

Fig. 2 Interpolation between two curves on S2, with and without reparametrisation, obtained by
the reductive SRVT (31). The results obtained by using the SRVT (30) are not identical to these,
but in this case very similar, and therefore omitted. The results are compared to the corresponding
SRVT interpolation between curves on SO(3), which are then mapped to S$? by multiplying
with the vector (1, 0,0)T. The curves are ¢! (t) = Rx(m3)Ry(m3)Ry(7rt3/2) - (1,0,0)T and
2@ = R, (Brt/4)R,(mt) - (1,0, 0T for t+ € [0, 1], where R, (¢), Ry(z) and R,(t) are the
rotation matrices in SO(3) corresponding to rotation of an angle ¢ around the x-, y- and z-axis,
respectively. (a) From left to right: Two curves on the sphere, their original parametrisations,
the reparametrisation minimizing the distance in SO(3) and the reparametrisation minimizing the

distance in S2, using the reductive SRVT (31). (b) The interpolated curves at times ¢ = { i, %, 3 },
from left to right, after reparametrisation, on SO(3) (yellow, dashed line) and S2 (blue, solid line).
(c) The interpolated curves at times t = {}1, %, i }, from left to right, before reparametrisation, on
SO(3) (yellow, dashed line) and s? (blue, solid line)

Lemma 26 With 6 := 6, o D The identity (10) idcgg(l,M) = 7 o Evolo 6 holds.

ProofLet c: I — M be smooth with ¢(0) = e¢H and choose g: I — G smooth
with g(0) = e and 7 o g = ¢. Set y(¢) := Evol(8(c))(¢). It suffices to prove that
y(®)~'g(t) € Hforallt € I. Thenm oy = o g = ¢ and the assertion follows.
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Fig. 3 Interpolation between two curves on S, with and without reparametrisation, found by
the reductive SRVT (31). The curves are c'(t) = R,(2nt)R,2rt)R (1) - (0,1, DT //2 and

(1) = R,Q2rt)R, 2rt) Ry (wt/2) - (0, 1, )T /5/2 for t € [0, 1], where Ry (1), Ry(t) and R, (t)
are the rotation matrices in SO(3) corresponding to rotation of an angle ¢ around the x-, y- and
z-axis, respectively. (a) From left to right: Two curves on the sphere, their original parametrisations
and the reparametrisation minimizing the distance in $2, using the reductive SRVT (31). (b) The

interpolated curves at times ¢ = {}1, %, 431}’ from left to right, before reparametrisation. (¢) The

interpolated curves at times t = { ‘1‘, ;, i } from left to right, after reparametrisation

As y(0)"lg(0) = e € H, we only have to prove that £n(y (1)"'g(¢)) vanishes
everywhere to obtain y(r)"'g(r) € H. Before we compute the derivative of
7 (y (1)~ g(1)), let us first collect some facts concerning the logarithmic derivatives
8" (f) = f.f_l and 3l(f) =f! f By definition §" (y) = 8" (Evol(8(c))) = 6(c).
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Fig. 4 Interpolation between the same curves as in Fig. 3, with and without reparametrisation,
obtained here with the SRVT (30), compared to the corresponding interpolation between curves on
SO(3) mapped to S? by multiplication with the vector (0, 1, 1)T/+/2. (a) From left to right: The
original parametrisations of the curves to be interpolated, the reparametrisation minimizing the
distance in SO(3) and the reparametrisation minimizing the distance in $2, using the SRVT (30).

(b) The interpolated curves at times t = {411’ é, i}, from left to right, before reparametrisation,

on SO(3) (yellow, dashed line) and S2 (red, solid line). (¢) The interpolated curves at times t =

{ }‘, é, i }, from left to right, after reparametrisation, on SO(3) (yellow, dashed line) and s2 (red,

solid line)

Further, [15, Lemma 38.1] yields for smooth f, h: I — G:
8 (f-h)=68(f)+Ad(f).8"(h) and & (f~')=—5'(f), whence
(32)
d( -1 _ —1 sliy~! (32) -1 § (o~}
dr vy g®) = (v g®) -5y o) = —(y@®) g®) -5 v)®)
D )T e1)) - (8 (@)1) — Adg(t) ™). 6(c) (1))
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Recall that by definition, 6(c)(t) = w(¢(t)) = Ad(g(t)).a)e(TAg(’r1 (¢(2))) (here
7w o g = cis used). Inserting this into the above equation we obtain

d _
dr O g) = @) 'g®) - (6" (©)(1) — w (T A5 0 é(1))). (33)

Observe that T, (8'(2) (1)) = TASD ™' Trg(t) = TASDO ™' ¢(1) since mog = c. As
we is a section of T, 7, Tom (8! () (1) — we (T A2V~ 0¢(1)) = 0 € T,y M. Summing
up

d _
NELZONPIO) D (v ()5 - (81 (9)(1) — we(T A ™ 6 é(1)))

Q7 A7 07O, 78! (9)(1) — w(T A" 0 c(1))) = 0.

O

6.2 (A chart for the image of the SRVT) Let G be a Lie group with Lie algebra g.
Using the adjoint action of G on g and the evolution Evol: C*°(I, g) — C*(, G),
we define the map

w:C®(,g) = C®°(,g), g+ —AdEvolig) H.q,

where the dot denotes pointwise application of the linear map Ad(Evol(g)™!).
Observe that ¥ (co)restricts to a mapping C*°(1, g \ {0}) — C°(1, g \ {0}).
Lemma 27 The map W : C*°(I,g) — C*°(l, g) is a smooth involution.

Proof To establish smoothness of ¥, consider the commutative diagram

v

C>(I, g) C™(,9) .
(Evolidcoo (g g)) J/
) Ad(f).
C(1. G) x C(1. g) (fAd(f).g (1. 9)

As Ad: G x g — g is smooth, so is (f, g) +— Ad(f).g (cf. [13, Proof of
Proposition 6.2]) and ¥ is smooth as a composition of smooth maps. Compute for
qe€C™(.9)

W (¥(q) = — Ad(Evol(¥(9))~1).¥(g) = — Ad(Evol(— Ad(Evol(g) 1).q)™1).(— Ad(Evol(g)~1).q)

= Ad((Evol(g) Evol(— Ad(Evol(g) 1).q)) "1 .q.
To see that ¥ (¥ (q)) = q , we prove that

¥q := Evol(q) Evol(— Ad(Evol(¢)™").q)
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is a constant path. Recall that Evol(g) and
Evol(— Ad(Evol(¢)™1).¢)

are smooth paths starting at the identity in G. Hence it suffices to prove §" (y,) = 0.
To this end, apply the product formula (32) and §" (Evol(g)) = g:

8" (y4) = 8" (Evol(q)) + Ad(Evol(g)).8" (Evol(— Ad(Evol(¢)™").¢))
=g + Ad(Evol(g)).(— Ad(Evol(q)fl).q) =qg—q=0.

To account for the initial point co € M, fix gg € 71 (co) and define
Py, : C>®,g) — C*®(,g), Wy, (q) = Ad(go).¥ (q) = — Ad(go Evol(q)_l).q.

For k in the center of G, ¥ = ¥ holds, but in general ¥, will not be an involution.

Lemma 28 For each gy € G, the map Wy, is a diffeomorphism with inverse Wg—l.
0

Proof From the definition of W, and Lemma 27, it is clear that ¥, is a smooth
diffeomorphism. We use that Ad: G — GL(g) is a group morphism and compute

V1 Py (9)) = Ad(gy )Y (W (9)) = Ad(g0).¥ (Ad(80).9/())
= Ad(gy ). (— Ad(Evol(Ad(g0)-¥ (@) ™). Ad(20).¥/())
= — Ad(g; ' g0 Evol(¥ (9)) gy '80)-¥ (@) = ¥ (¥(9)) = q.

Here we used that Evol(Ad(g).f) = g Evol(f)g_l, for g € G. |

Lemma 29 Fix co € M and choose gy € G with w(go) = co. Assume that M is
reductive with g = h @ m, then

Yoo (CU, m\{0D)) ={f € C*U,9) | f =060,() forsomec e Immy (I, M)}.

With 6, as in 3.4 the formula 6, o D(pey © Wy, (q)) = Wy,(q) holds.

Proof Consider ¢ € Immg,(/, M) and recall from Proposition 17 the identity
Ay (Evol(0,(¢))) = m(Evol(8,(¢))go) = c¢. Choose ¢ = Evol(0,(¢))go as a
smooth lift of ¢ to G and compute as follows:

V1 (0(@) = Ad(gy ). (— Ad(EvOlE(@) .00 (@)

= Ad(gy ). (— AdEVOl(B, () ™). Ad(@).p (T AS (é)))
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= Ad(gy D). (— Ad(EVol(6,(¢)) 1) Ad(Evol (0 (¢))go).-we (T AT (c‘)))
= —wo(TAY (&) e m\ {0).

Conversely, let us show that ¥y (C°°(I,m \ {0})) is contained in the image of
6, o D|ImmEO(I,M)- To this end, consider ¢ = W, (v) for v € C®(, m \ {0}).
We compute

Peo(q) = Ay (Evol(Ad(go).¥ (v))) = m(Evol(Ad(go).¥ (v)go))
= (g0 Bvol(¥ (v))) = 7 (g0 Evol(— Ad(Evol(v) " 1).v)) = A% ((Evol(¥ (v)))).
(34)

Since A#° is a diffeomorphism, p.,(¢): I — M is an immersion if and only if
the curve w(Evol(¥ (v))) has a non-vanishing derivative everywhere. Recall from
the proof of Lemma 27 that Evol(v) Evol(¥ (v)) = e, whence we compute the
derivative

:tn(Evol(lI/(v))(t)) =Tn <§t Evol(lll(v))(t)) = T (¥ (v) Evol(¥ (v)))(7)

— T (— Ad(Evol(v)1).v Evol(¥ (v))) (1)
= —T7 o (Lgyoiv)-1(1))* © (REvol(v) (1) Evol(w (1)) (1)) (V (1))

— T ABIOTO o 72 (0 (1)),
(35)

In passing to the last line, we used that w commutes with the left action.
Since T A¢ is an isomorphism, i]‘[(EVOl(lI’ (v))(#)) vanishes if and only if v(¢) €
kerT,m = b. However, v(f) € m \ {0}, whence p¢,(¥g,(v)) € Immg (I, M)
and we can apply 6, o D to pg(q). A combination of (34) and (35) yields
9 by (W ()(®) = —TAOETO o T,z (u(r)). With 7(go Evol(v)™!) =
Peo(Wgo (V) (1)), this yields

O <(ftpc0(v(r))> = 00 (;pco(wgo(v»m) = 0, (=T AS B0 7,7 (v 1))
= Ad(g0 (Evol(v)) ™). (—T AGOEOI) ™1™ 7 480 @) ™MD 6 7,7 (1 (1))
= — Ad(g0(Evol(v)) ™). (Temr (v(1))) = — Ad(go(Evol(v)) ~1).v(t) = Wg, (v) (1).
Note that as w, = (T,7 |m) ", we have w, (T, (v(1))) = v(7). |
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Universality in Numerical Computation )
with Random Data: Case Studies, Gt
Analytical Results and Some Speculations

Percy Deift and Thomas Trogdon

Abstract We discuss various universality aspects of numerical computations using
standard algorithms. These aspects include empirical observations and rigorous
results. We also make various speculations about computation in a broader sense.

1 Introduction

There are two natural “integrabilities” associated with matrices M. The first
concerns random matrix theory where key statistics, such as the distribution of
the largest eigenvalue of M, or the gap probability, i.e., the probability that the
spectrum of M contains a gap of a given length, are described in an appropriate
scaling limit as N = dimM — oo, by the solution of completely integrable
Hamiltonian systems, viz., Painlevé equations (see e.g. [8]). The second concerns
the numerical computation of the eigenvalues of a matrix. Many standard eigenvalue
algorithms work in the following way. Let Xy denote the set of real N x N
symmetric matrices and let M € Xy be a given matrix whose eigenvalues one
wants to compute. Associated with each algorithm .7, there is, in the discrete case,
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amap ¢ = ¢ Xy — Xy, with the properties

+ (isospectral) spec (¢ AH)) = spec (H), H e Xy,
e (convergence) the iterates Xx4+1 = ¢ AXk), k >0, Xo = M, converge
to a diagonal matrix Xoo, Xi = Xoo, as k — 00,

and in the continuum case, there is a flow ¢+ — X (¢) € Xy with the properties

* (isospectral)  spec (X (1)) = spec (X (0)),
* (convergence) the flow X (¢), t > 0, X(0) = M, converges to a diagonal matrix
Xoo, X(t) > X0 ast — o0.

In both case, necessarily the (diagonal) entries of X, are the eigenvalues of the
given matrix M. Now the fact of the matter is that, in most cases of interest, the flow
t — X (¢) is Hamiltonian and completely integrable in the sense of Liouville, and
in the discrete case we have a “stroboscope theorem”, i.e. there exists a completely
integrable Hamiltonian flow ¢t — X (t) which coincides with the above iterates X at
integer times, )?(k) = Xk, k > 0(see, in particular, [2, 4, 13]). The QR algorithm
on full N x N matrices is a prime example of such a discrete algorithm, while the
Toda algorithm is an example of the continuous case.

Question: What happens if one tries to “marry” these two integrabilities? In
particular, what happens when one computes the eigenvalues of a random matrix?
In response to this question, the authors in [11] initiated a statistical study of the
performance of various standard algorithms to compute the eigenvalues of random
matrices M from Xy.

Given € > 0, it follows, in the discrete case, that for some m the off-diagonal
entries of X,, are! O(¢) and hence the diagonal entries of X,, give the eigenvalues
of Xo = M to O(e). The situation is similar for continuous algorithms ¢t — X (¢).
Rather than running the algorithm until all the off-diagonal entries are O (¢), it is
customary to run the algorithm with deflations as follows. For an N x N matrix Y

in block from
Y — Y Y
Y21 Yo

with Yq; of size k x k and Yy, of size (N — k) x (N — k) for some k €
{1,2,..., N — 1}, the process of projecting ¥ — diag (Y11, Y22) is called
deflation. For a given ¢ > 0, algorithm & and matrix M € Xy, define the k-
deflation time 7® (M) = TE(QV(M ), 1<k < N —1,tobe the smallest value of

1For our purposes, a quantity X is O (¢) if |X| < Ce for a (possibly) N-dependent constant C if €
is sufficiently small.
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m such that X,,, the mth iterate of algorithm ./ with Xo = M, has block form

(k) (k)
X = | Gl
x® x®

with X% of size k x k and X ) of size (N —k) x (N—k) and [ X5 ] = [ X)) < e.
The deflation time T (M) is then defined as

_ _ : k)
TM) =T, (M) = 1511(1;12_1 Te’M(M).

If k € {l,...,N —1} is such that T7(M) = T*)(M), it follows that the
eigenvalues of M = X are given by the eigenvalues of the block-diagonal

matrix diag (X Y?, Xg?) to O(e). After running the algorithm to time T, A M),

the algorithm restarts by applying the basic algorithm .o/ separately to the smaller

matrices X Yi) and Xg;) until the next deflation time, and so on. There are again
similar considerations for continuous algorithms.

As the algorithm proceeds, the number of matrices after each deflation doubles.
This is counterbalanced by the fact that the matrices are smaller and smaller in size,
and the calculations are clearly parallelizable. Allowing for parallel computation,
the number of deflations to compute all the eigenvalues of a given matrix M to an
accuracy €, will vary from O(log N) to O(N).

In [11] the authors considered the deflation time T = T, o= T, oy sfor N x N
matrices chosen from an ensemble & For a given € > 0, algorithm 27 and ensemble
&, the authors computed 7' (M) for 5,000-10,000 samples of matrices M chosen
from &, and recorded the normalized deflation time

s = 1 M) —{T)

(M) ey

o

where (T) and 02 = <(T — (T))2> are the sample average and sample variance

of T(M), respectively. What the authors found, surprisingly, was that for the
given algorithm 7 and € and N in a suitable scaling range with N — oo, the
histogram of 7" was universal, independent of the ensemble & In other words,
the fluctuations in the deflation time T, suitably scaled, were universal, independent
of & Figure 1 displays some of the numerical results from [11]. Figure 1a displays
data for the QR algorithm, which is discrete, and Fig. 1b displays data for the Toda
algorithm, which is continuous. Note that the histograms in Fig. la, b are very
different: Universality is observed with respect to the ensembles &—not with respect
to the algorithms 7. The reason these particular histograms are different can be
explained by the observation that the deflation time for the Toda algorithm is largely
controlled by the largest gap in the spectrum of the matrix which typically occurs
at the edge for our matrices. On the other hand, the QR algorithm biases towards
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Fig. 1 Universality for T when (a) o/is the QR eigenvalue algorithm and when (b) <7is the Toda
algorithm. Panel (a) displays the overlay of two histograms for 7 in the case of QR, one for each of
the two ensembles & = BE, consisting of iid mean-zero Bernoulli random variables and & = GOE,
consisting of iid mean-zero normal random variables. Here ¢ = 1070 and N = 100. Panel (b)
displays the overlay of two histograms for T in the case of the Toda algorithm, and again & = BE
or GOE. And here ¢ = 1078 and N = 100

finding small eigenvalues first so that the statistics of the eigenvalues in the bulk of
the spectrum control the deflation times.

Subsequently in [3] the authors raised the question of whether the universality
results in [11] were limited to eigenvalue algorithms for real symmetric matrices,
or whether they were present more generally in numerical computation. And indeed
the authors in [3] found similar universality results for a wide variety of numerical
algorithms, including

(a) other algorithms such as the QR algorithm with shifts,” the Jacobi eigenvalue
algorithm, and also algorithms applied to complex Hermitian ensembles

(b) the conjugate gradient and GMRES algorithms to solve linear N x N systems
Hx = b with H and b random

(c) an iterative algorithm to solve the Dirichlet problem Au = 0 in a random star-
shaped region £2 € R? with random boundary data f on 92

(d) a genetic algorithm to compute the equilibrium measure for orthogonal polyno-
mials on the line.

In [3] the authors also discuss similar universality results obtained by Bakhtin
and Correll [1] in a series of experiments with live participants recording

(e) decision making times for a specified task.

2The QR algorithm with shifts is the accelerated version of the QR algorithm that is used in
practice.
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Whereas (a) and (b) concern finite dimensional problems, (c) shows that universality
is also present in problems that are genuinely infinite dimensional. And whereas
(a), (b) and (c) concern, in effect, deterministic dynamical systems acting on
random initial data, problem (d) shows that universality is also present in genuinely
stochastic algorithms.

The demonstration of universality in problems (a)—(d) raises the following issue:
Given a view commonly discussed by neuroscientists and psychologists that the
human brain acts as a big computer with hardware and software (see, e.g., [7, 14]
and the references therein) , one should be able to find evidence of universality in
some neural computations. It is this issue that led the authors in [3] to the work of
Bakhtin and Correll. In [1] each of the participants is shown a large number k of
diagrams and then asked to make a decision about a particular geometric feature of
each diagram. What is then recorded is the time it takes for the participant to reach
his’r decision. Thus each participant produces k decision times ¢ which are then
centered and scaled as in (1) to obtain a normalized decision time

LU 2

o

The distribution of 7 is then recorded in a histogram. Each of the participants
produces such a histogram, and what is remarkable is that the histograms are,
with a few exceptions, (essentially) the same. Furthermore, in [1], Bakhtin and
Correll developed a Curie-Weiss-type statistical mechanical model for the decision
process, and obtained a distribution function fpc which agrees remarkably well
with the (common) histogram obtained by the participants. We note that the model
of Bakhtin and Correll involves a particular parameter, the spin flip intensity c;.
In [1] the authors made one particular choice for ¢;. However, as shown in [3], if
one makes various other choices for ¢;, then one still obtains the same distribution
fBc. In other words, the Bakhtin-Correll model itself has an intrinsic universality. In
an independent development Sagun, Trogdon and LeCun [12] considered, amongst
other things, search times on Google™ for a large number of words in English
and in Turkish. They then centered and scaled these times as in (1), (2) to obtain
two histograms for normalized search times, one for English words and one
for Turkish words. To their great surprise, both histograms were the same and,
moreover, extremely well described by fpc. So we are left to ponder the following
puzzlement: Whatever the neural stochastics of the participants in the study in [1],
and whatever the stochastics in the Curie-Weiss model, and whatever the mechanism
in Goog1e™ s search engine, a commonality is present in all three cases expressed
through the single distribution function fpc.
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2 A Limit Theorem

All of the above results are numerical. In order to establish universality as a bona
fide phenomenon in numerical analysis, and not just an artifact suggested, however
strongly, by certain computations as above, P. Deift and T. Trogdon in [5] considered
the Toda eigenvalue algorithm mentioned above. In place of the deflation time
T(M) = minj<k<y—1 TE({;)/(M), «/ = Toda algorithm, Deift and Trogdon used

the 1-deflation time 7(M(M) = TE({;(M ) as the stopping time for the algorithm. In
other words, given € > 0 and an ensemble &, they ran the Toda algorithm r — X (¢)
with X (0) = M € &, until a time ¢t where

N
t=TYWM)=infls>0: Z(Xu(s))2 <é
j=2

It follows by perturbation theory that ‘X 11 (T(l)(M)) —Xjx(M)| < e for some

eigenvalue A j«(M) of M. But the Toda algorithm is known to be ordering, i.e.
X(t) > Xoo = diag (Al(M), (M), ... AN(M)), where the eigenvalues of M are
ordered, A1 (M) > (M) > --- > Ay(M). It follows then that (for € sufficiently

small and TE(’(Bf correspondingly large) j* = 1 so that the Toda algorithm with

stopping time 71 = T;B{computes the largest eigenvalue of M to accuracy € with
high probability. ’

The main result in [5] is the following. For invariant and generalized Wigner
random matrix ensembles? there is an ensemble dependent constant ¢ such that the
following limit exists (see [10] and [15])

1
FE®(1) = lim Prob <t], t>0. (3)
P N—00 2 2723 N23 (3 — 1)

Here B = 1 for the real symmetric case, § = 2 for the complex Hermitian case. Thus
F gap () is the distribution function for the (inverse of the) gap A1 — A2 between the
largest two eigenvalues of M, on the appropriate scale as N — oo.

Theorem 1 (Universality for 7)) Ler 0 < o < 1 be fixed and let (¢, N) be in

the scaling region

loge™' 5 o
>> 47 o)
log N 32

3See Appendix A in [5] for a precise description of the matrix ensembles considered in Theorem 1.
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Then if M is distributed according to any real (8 = 1) or complex (8 = 2) invariant
or Wigner ensemble, we have

71 “
lim Prob <t | = F5%". (3)

N—o0 ciﬁ 2-2/3 N2/3 <loge*1 -2 logN) a g

Here cgis the same constant as in (3).

This result establishes universality rigorously for a numerical algorithm of
interest, viz., the Toda algorithm with stopping time 7' to compute the largest
eigenvalue of a random matrix. We see, in particular, that 7 behaves statistically
as the inverse of the top gap A1 — A3, on the appropriate scale as N — oo. Similar
results have now been obtained for the QR algorithm and related algorithms acting
on ensembles of strictly positive definite matrices (see [6]).

Remark 1 We point out that Theorem 1 could, in principle, give a robust statistical
estimate of the expected run time in the same way that the classical Central Limit
Theorem is used to give confidence levels for estimates in elementary statistics.
In particular the “3-sigma” confidence level derived from the bell curve, would be
replaced by a (possibly different) confidence level derived from F gap.

Remark 2 Theorem 1 depends on the matrices being distributed according to an
unstructured Wigner or invariant ensemble. If the matrices had structured form M =
D + W where D is given and deterministic, and W is random, then we would
again expect universality for the runtime fluctuations with respect to the choice of
ensemble for W. A priori, the histogram would be different from the histogram for
the unstructured case, but one would still have universality with respect to W.

Howeyver, it turns out that in some cases of interest, the effect of W overwhelms
the deterministic structure, and the histogram is the same as in the unstructured case.
We recall that at the very beginning of the introduction of random matrix theory into
theoretical physics, Wigner postulated, with remarkable success, that the resonances
of neutron scattering off a U?3® nucleus were described by the eigenvalues of a
random matrix. In other words, though we might view the uranium nucleus as a
system with structure and randomness, the structure is wiped out by the randomness.
In the experiments in [3], the authors found a similar phenomenon. Indeed, it turns
out that the halting time for the GMRES algorithm gives the same histogram for
the fluctuations for unstructured systems Mx = b (M = [ + X, where X is iid) as
it does when it comes from a discretization of the Dirichlet problem on a random
star-shaped domain. In terms of the double layer potential method, the Dirichlet
problem in a random domain has the form “structure + random” and so we again
have a situation where a random, structured system is modeled by a completely
random one.
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The proof of Theorem 1 depends critically on the integrability of the Toda flow
t - X(t), X(0) = M.Theevolution of X () is governed by the Lax-pair equation

dX

m:{xBaﬂzxmm—Bwuf

where B(X) = X_ — X! and X_ is the strictly lower triangular part of X. Using
results of J. Moser [9] one finds that

N N
E@) = |X1e@)* = > (b = X11®0)” |ur; 0 ©6)
k=2 j=1
N
X11(0) = Y A |urj @) )
j=1
u1j(0) e’ .
uyj(t) = , l<j=N, (3)

1
2

N
3 a2
k=1

where u1;(¢) is the first component of the normalized eigenvector u () for X (¢)
corresponding to the eigenvalue A ; (1) = 4;(0) of X (1), (X (1) — A () uj(1) = 0.
(Note that r — X (¢) is isospectral, so spec(X (¢)) = spec(X (0)) = spec(M).) The
stopping time TV is obtained by solving the equation

E(t) = € 9)

for ¢. Substituting (7) and (8) into (6) we obtain an formula for E(¢) involving
only the eigenvalues and (the moduli of) the first components of the normalized
eigenvectors for X (0) = M. Itis this explicit formula that the Toda algorithm brings
as a gift to the marriage announced earlier of eigenvalue algorithms and random
matrices. What random matrix theory brings to the marriage is an impressive
collection of very detailed estimates on the statistics of the A;’s and the u1;(0)’s
obtained in recent years by a veritable army of researchers including P. Bourgade,
L. Erdés, A. Knowles, J. A. Ramirez, B. Rider, B. Vifag, T. Tao, V. Vu, J. Yin and H.
T. Yau, amongst many others (see [5] and the references therein for more details).

Theorem 1 is a first step towards proving universality for the Toda algorithm with
full deflation stopping time T = T, .. The analysis of T, . involves very detailed
information about the joint statistics of the eigenvalues A ; and all the components
u;; of the normalized eigenvectors of X (0) = M, as N — oco. Such information is
not yet known and the analysis of T, . is currently out of reach.
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3 Speculations

How should one view the various two-component universality results described in
this paper? “Two-components” refers to the fact for a random system of size S,

say, and halting time T', once the average (T') and variance 0> = <(T — (T))2> are

known, the normalized time 7 = (T — (T)) /o is, in the large S limit, universal,
independent of the ensemble, i.e. as § — oo, T ~ (T) + o x, where x is
universal. The best known two-component universality theorem is certainly the
classical Central Limit Theorem, already mentioned in Remark 1 above: Suppose
Y1, Y,,... are independent, identically distributed variables with mean p and
variance o>, Set W, = Y1 ¥;. Then as n — oo, (W, — (W,)) /o, converges
in distribution to a standard normal N(0, 1), where (W,) = E(}/_, ¥i) = nu
and 02 = E ((W,, - (W,,))z) = no?. In words: As n — oo, the only specific
information about the initial distribution of the Y;’s that remains, is the mean x and
the variance o.

Now, for a moment, set aside histograms for halting times, and imagine you are
walking on the boardwalk in some seaside town. Along the way you pass many
palm trees. But what do you mean by a “palm tree”? Some are taller, some are
shorter, some are bushier, some are less bushy. Nevertheless you recognize them all
as “palm trees”: Somehow you adjust for the height and you adjust for the bushiness
(two components!), and then draw on some internal data base to determine, with
high certainty, that the object one is looking at is a “palm tree”. The database itself
catalogs/summarizes your learning experience with palm trees over many years. It
is tempting to speculate that the data base has the form of a histogram. We have
in our brains one histogram for palm trees, and another for olive trees, and so on.
Then just as we may use a #-test, for example, to test the statistical properties of
some sample, so too one speculates that there is a mechanism in one’s mind that
tests against the “palm tree histogram” and evaluates the likelihood that the object
at hand is a palm tree. So in this way of thinking, there is no ideal Platonic object
that is a “palm tree”: Rather, a palm tree is a histogram.

One may speculate further in the following way. Just imagine if we perceived
every palm tree as a distinct species, and then every olive tree as a distinct species,
and so on. Working with such a plethora of data, would require access to an
enormous bandwidth. From this point of view, the histogram provides a form
of “stochastic data reduction”, and the fortunate fact is that we have evolved
to the point that we have just enough bandwidth to accommodate and evaluate
the information “zipped” into the histogram. On the other hand, fortunately, the
information in the histogram is sufficiently detailed that we can make meaningful
distinctions, and one may speculate that it is precisely this balance between data
reduction and bandwidth that is the key to our ability to function successfully in the
macroscopic world.

We note finally that there are many similarities between the above speculations
and machine learning. In both processes there is a learning phase followed by a
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recognition phase. Also, in both cases, there is a balance between data reduction
and bandwidth. In the case of the palm trees, etc., however we make the additional
assertion/speculation that the stored data is in the form of a histogram, similar in
origin to the universal histograms observed in numerical computations.

Now, returning to histograms for halting times, do not mean to suggest that
there is a direct correspondence between the histogram which we postulate to be
associated with an object and a histogram for halting times. Rather, our point of
view is that these histograms are two different manifestations of a deeper form of
universality acheived in both cases by a process of stochastic data reduction.

We may summarize the above discussion and speculations in the following way.
In a common view, the brain is a computer, with software and hardware, which
makes calculations and runs algorithms which reduce data on an appropriate scale—
the macroscopic scale on which we live—to a manageable and useful form, viz., a
histogram, which is universal® for all palm trees, or all olive trees, etc. With this in
mind, it is tempting to suggest that whenever we run an algorithm with random
data on a “computer”’, two-component universal features will emerge on some
appropriate scale. This “computer” could be the electronic machine on our desk,
or it could be the device in our mind that runs algorithms to classify random visual
objects or to make timed decisions about geometric shapes, or it could be in any of
the myriad of ways in which computations are made. Perhaps this is how one should
view the various universality results described in this paper.

Acknowledgements One of the authors (P.D.) would like to thank the organizers for the invitation
to participate in the Abel Symposium 2016 “Computation and Combinatorics in Dynamics,
Stochastics and Control”. During the symposium he gave a talk on a condensed version of the
paper below.
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option is a large investor whose portfolio strategy can influence the probability of
default.

1 Introduction

The aim of the present paper is to study BSDEs driven by a Brownian motion
and a compensated default jump process with intensity process A = (A;). The
applications we have in mind are the pricing and hedging of contingent claims
in an imperfect financial market with default. The theory of BSDEs driven by a
Brownian motion and a Poisson random measure has been developed extensively
by several authors (cf., e.g., Barles, Buckdahn and Pardoux [2], Royer [22], Quenez
and Sulem [21], Delong [10]). Several of the arguments used in the present paper
are similar to those used in the previous literature. Nevertheless, it should be noted
that BSDEs with a default jump do not correspond to a particular case of BSDEs
with Poisson random measure. The treatment of BSDEs with a default jump requires
some specific arguments and we present here a complete analysis of these BSDEs,
which is particularly useful in default risk modeling in finance. To our knowledge,
there are few works on nonlinear BSDEs with default jump. The papers [6] and [1]
are concerned only with the existence and the uniqueness of the solution, which
are established under different assumptions. In this paper, we first provide some a
priori estimates, from which the existence and uniqueness result directly follows.
Moreover, we allow the driver of the BSDEs to have a singular component, in the
sense that the driver is allowed to be of the generalized form g(t, y, z, k)dt + d Dy,
where D is an optional (not necessarily predictable) right-continuous left-limited
(RCLL) process with finite variation. We stress that the case of a singular optional
process D has not been considered in the literature on BSDEs, even when the
filtration is associated with a Brownian motion and a Poisson random measure.
Moreover, these BSDEs are useful to study the nonlinear pricing problem in
imperfect markets with default. Indeed, in this type of markets, the contingent claims
often generate intermediate cashflows — in particular at the default time — which can
be modeled via an optional singular process D (see e.g. [3,5,7, 8]). We introduce the
definition of a A-linear driver, where A refers to the intensity of the jump process,
which generalizes the notion of a linear driver given in the literature on BSDEs
to the case of BSDEs with default jump and generalized driver. When g is A-
linear, we provide an explicit solution of the BSDE associated with the generalized
M-linear driver g(t,y, z,k)dt + dD; in terms of a conditional expectation and
an adjoint exponential semimartingale. We note that this representation formula
depends on whether the singular process D is predictable or just optional. Under
some suitable assumptions on g, we establish a comparison theorem, as well
as a strict comparison theorem. We emphasize that these comparison results are
shown for optional (not necessarily) predictable singular processes, which requires
some specific arguments. We then give an application in mathematical finance. We
consider a financial market with a defaultable risky asset and we study the problems
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of pricing and hedging of a European option paying a payoff £ at maturity 7 and
intermediate dividends (or cashflows) modeled by a singular process D. The option
possibly generates a cashflow at the default time, which implies that the dividend
process D is not necessarily predictable. We study the case of a market with
imperfections which are expressed via the nonlinearity of the wealth dynamics. Our
framework includes the case of different borrowing and lending treasury rates (see
e.g. [17] and [8]) and “repo rates”, ! which is usual for contracts with intermediate
dividends subjected to default (see [7]). We show that the price of the option is
given by x* T(é D), where X° T(é D) is the solution of the nonlinear BSDE with
default jump (solved under the primitive probability measure P) with generalized
driver g(t, y, z, k)dt 4+ d Dy, terminal time T and terminal condition &. This leads
to a non linear pricing system (£, D) +— X?T(g, D), for which we establish
some properties. We emphasize that the monotdnicity property (resp. no arbitrage
property) requires some specific assumptions on the driver g, which are due to the
presence of the default. Furthermore, for each driver g and each (fixed) singular

process D, we define the (g, D)-conditional expectation by é’f:?(&) =X fﬁT(é , D),
for& € L?(%r). In the case where D = 0, it reduces to the g-conditional expectation

& (in the case of default). We also introduce the notion of & ’D-martingale, which
is a useful tool in the study of nonlinear pricing problems: more specifically, those
of American options and game options with intermediate dividends (cf. [13, 14]).

The paper is organized as follows: in Sect. 2, we present the properties of BSDEs
with default jump and generalized driver. More precisely, in Sect. 2.1, we present
the mathematical setup. In Sect. 2.2, we state some a priori estimates, from which
we derive the existence and the uniqueness of the solution. In Sect. 2.3, we show the
representation property of the solution of the BSDE associated with the generalized
driver g(t, y, z, k)dt +d D; in the particular case when g is A-linear. We distinguish
the two cases: the case when the singular process D is predictable and the case
when it is just optional. In Sect. 2.4, we establish the comparison theorem and the
strict comparison theorem. Section 3 is devoted to the application to the nonlinear
pricing of European options with dividends in an imperfect market with default. The
properties of the nonlinear pricing system as well as those of the (g, D)-conditional
expectation are also studied in this section. As an illustrative example of market
imperfections, we consider the case when the seller of the option is a large investor
whose hedging strategy (in particular the cost of this strategy) has impact on the
default probability.

Which can be seen as securities lending or borrowing rates in a “repo market” (cf. [7]).
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2 BSDEs with Default Jump

2.1 Probability Setup

Let (£2,9,P) be a complete probability space equipped with two stochastic
processes: a unidimensional standard Brownian motion W and a jump process N
defined by N; = 1y<; for any t € [0, T], where ¥ is a random variable which
models a default time. We assume that this default can appear after any fixed time,
thatis P( > t) > O for any + > 0. We denote by G = {¥;, t > 0} the augmented
filtration generated by W and N (in the sense of [9, IV-48]). In the following, &
denotes the G-predictable o-algebra on §2 x [0, T]. We suppose that W is a G-
Brownian motion.

Let (A;) be the G-predictable compensator of the non decreasing process (Ny).
Note that (A;rp) is then the G-predictable compensator of (Nyay) = (Ny). By
uniqueness of the G-predictable compensator, A;np = As, t > 0 a.s. We assume
that A is absolutely continuous w.r.t. Lebesgue’s measure, so that there exists a
nonnegative G-predictable process (A;), called the intensity process, such that A; =
fot Asds, t > 0. Since A;np = Ay, the process A vanishes after . We denote by M
the G-compensated martingale given by

1
M[ = N[ _/ )\,Sds. (1)
0

Let T > 0 be the finite horizon. We introduce the following sets:

. <72T (also denoted by ) is the set of G-adapted right-continuous left-limited
(RCLL) processes ¢ such that E[supy, <7 11?1 < 400.

. MT (also denoted by m‘z) is the set of real-valued finite variational RCLL G-
adapted (thus optional) processes A with square integrable total variation process
and such that Ay = 0.

. m’;T (also denoted by ;zf%) is the set of predictable processes belonging to .

. HzT (also denoted by H?) is the set of G-predictable processes with || Z]? :=
E[[OT |z,|2dt] <00,

. H%’T = L2(2 x [0, T], 2, A, dP ® dt) (also denoted by H?), equipped with
scalar product (U, V), = E[fOT U,V,)»,dt], forall U, V in Hi. Forall U e H%,

we set | U2 := E[fOT |U,|2)\,dt]
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Foreach U € H%, we have ||U||§ = E[fOTAﬂ |Ut|2A,dt] because the G-intensity
A vanishes after ©*. Note that, without loss of generality, we may assume that U
vanishes after .

Moreover, Zis the set of stopping times t such that 7 € [0, 7] a.s. and for each
S in J, s is the set of stopping times 7 suchthat S <t < T a.s.

We recall the martingale representation theorem in this framework (see [18]):

Lemma 1 (Martingale representation) Let m = (m;)o<;<r be a G-local
martingale. There exists a unique pair of G-predictable processes (z;, 1,)> such that

t t
m; = mo +/ zsd Wi +/ lsdMg, Ytel[0,T] a.s. 2)
0 0

If m is a square integrable martingale, then z € H? and | € ]HI%.
We now introduce the following definitions.
Definition 1 (Driver, A-admissible driver)

e A function g is said to be a driverif g : 2 x [0, T] x R3 > R; (w,t,y,2,k) —
g(w,t,y,2,k)is ZQ® %(R3)— measurable, and such that g(., 0,0, 0) € HZ.

e A driver g is called a A-admissible driver if moreover there exists a constant
C > 0 such that for d P @ dt-almost every (w, t) , for all (y1, 21, k1), (2, 22, k2),

lg(@, 1, y1, 21, k1) — (@, 1, 2, 22, ka)| < Cly1 — y2| + 21 — 22| + VA (@) k1 — kal).
(3)

A non negative constant C such that (3) holds is called a A-constant associated
with driver g.

Note that condition (3) implies that for each (y, z, k), we have g(¢,y,z,k) =
g(,y,2,0),t > 0 dP ® dt- a.e. Indeed, on the set {r > ¥}, g does not depend on
k, since A, = 0.

Remark 1 Note that a driver g supposed to be Lipschitz with respect to (y, z, k) is
not generally A-admissible. Moreover, a driver g supposed to be A-admissible is not
generally Lipschitz with respect to (y, z, k) since the process (A;) is not necessarily
bounded.

Definition 2 Let g be a A-admissible driver, let £ € L*(%r).

e Aprocess (Y, Z, K) in S x H? x H% is said to be a solution of the BSDE with
default jump associated with terminal time 7', driver g and terminal condition &

%Indeed, each U in HZ (= L2(2 x [0, T], 2, ,;d P ® dt)) can be identified with U1, <y, since
U1,<y is a G-predictable process satisfying U;1;,<y = U; A dP ® dt-as.
3Such that the stochastic integrals in (2) are well defined.
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if it satisfies:
—dY; =g, Y, Zs, Kp)dt — Z,dW; — KidM;; YT =& 4)

e LetD € o7 A process (Y, Z, K) in S x H? x H% is said to be a solution
of the BSDE with default jump associated with terminal time 7', generalized -
admissible driver g(t, y, z, k)dt + d D; and terminal condition & if it satisfies:

—-dY, =g, Y, Z;, Ky)dt +dD; — Z;dW; — K, dM;; Yr =§. (5)

Remark 2 Let D = (Dy)o<:<r be a finite variational RCLL adapted process such
that Dy = 0, and with integrable total variation. We recall that D admits at most
a countable number of jumps. We also recall that the process D has the following
(unique) canonical decomposition: D = A — A’, where A and A’ are integrable non
decreasing RCLL adapted processes with A9 = A;, = 0, and such that dA; and d 4]
are mutually singular (cf. Proposition A.7 in [11]). If D is predictable, then A and
A’ are predictable.

Moreover, by a property given in [14], for each D € A, there exist a unique
(predictable) process D’ belonging to ;zf% and a unique (predictable) process 7,

belonging to IH % such that forall ¢t € [0, T],

t
D, = D, ~|—/ nsdNg a.s.
0

If D is non decreasing, then D’ is non decreasing and ny > O a.son {¢ < T}.

Remark 3 By Remark 2 and Eq.(5), the process Y admits at most a countable
number of jumps. It follows that ¥; = Y,-,0 <t < T dP ® dt-a.e. Moreover,
we have g(¢, Y, Z;, K;) = g(t, Y-, Z:, K;),0 <t <T dP Q@ dt-a.e.

2.2 Properties of BSDEs with Default Jump

We first show some a priori estimates for BSDEs with a default jump, from which
we derive the existence and uniqueness of the solution. For 8 > 0, ¢ € IH 2

and [ € H%, we introduce the norms ||¢||/23 = IE[fOT eﬁsqsfds], and ||k||%’/3 =
E[ [y eP*k2s ds].
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2.2.1 A Priori Estimates for BSDEs with Default Jump

Proposition 1 Ler &', €2 € L*(%r). Let g' and g*> be two A-admissible drivers.
Let C be a A-constant associated with g'. Let D be an (optional) process belonging

1o .
Fori = 1,2, let (Y!, 7}, K') be a solution of the BSDE associated with terminal
time T, generalized driver g'(t, y, z, k)dt + dD; and terminal condition gl Let

£ = &' — &% Forsin[0,T], denote Yy := Y} — Y2, Z; := Z} — Z? and
K, =K} — K2
Let nn, B > 0 be such that 8 > 3] +2Candn < C12~ Foreacht € [0, T], we have

T
P (V)2 <E[PTE? | 414 nE[ f P g()’ds | 9] a.s., (6)
t

where g(s) 1= gl(s, YSZ, Zf, Ksz) — gz(s, YSZ, Zf, KSZ). Moreover,
Y15 < TP ELEE 1+ nllgli3). )

Ifn < CIZ, we have
_ - 1 - _
IZIE +1KIEs < | ,C2 [’ TEIE ]+ nlgl5]. ®)

Remark 4 1f C = 0, then (6) and (7) hold for all n, 8 > 0 such that 8 > 3, and (8)
holds (with C = 0) for all n > 0.

Proof By Itd’s formula applied to the semimartingale (e#*Y Sz) between f and T, we
get

T T T
eﬂtftz ~|—,B/ eﬂsfszds —l—/ eﬂSZfds ~|—/ eﬂfkfxsds
t t t
- T —_
=ePTyV2 4 2/ P Y(gl s, ),z KD — g%(s, Y2, 22, K?))ds
t

T T
) / P, ZodW, / #(27,- K, + K2)dM,. ©
t t

Taking the conditional expectation given ¥;, we obtain
- T - T - -
PYP+E|B / P Y2ds + / P22+ K2h)ds | %,
t t

T
SE[eﬁT?%I%]JrﬁE[/ Y (g 5. Y), 2] K)) — (5. Y], Z3, 3))ds|%]
t
(10)
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Now, g'(s. ¥}, Z!, K1) — g2(s. Y2, 22, K} = ¢' (s, ¥} Z} K]) — ¢! (5. Y2, Z
K + &
Since g1 satisfies condition (3), we derive that

lg' (s, Y], Z} KY) = g(s, Y2, 22, KD)| < CIYs| + C1Z| + CIKs |V As + 18]

Note that, for all non negative numbers A, y, z, k, g and ¢ > 0, we have

29(Cz+Chkv/A+g) < ;’i +&X(Cz+Chk/A+g)? < ii +382(C?y2 + CHr+g2).
Hence,

T T
PV +E [ﬂ/ P 72ds +/ PS(Z2 + K20)ds | 54 <E [eﬂTY% | %] +
t t

1 T _ T _ _ T
E [(2C + ) / P Y2ds +3C%? / ePS(Z2 4 K2hg)ds + 3¢? / P ds |9 .
€ t

Y

Let us make the change of variable n = 3¢2. Then, for each 8,7 > 0 chosen as
in the proposition, this inequality leads to (6). By integrating (6), we obtain (7).
Using (7) and inequality (11), we derive (8).

Remark 5 By classical results on the norms of semimartingales, one similarly
shows that ||?||yz <K (IE[§ 21+ |I§||1Hz), where K is a positive constant only
dependingon T and C.

2.2.2 Existence and Uniqueness Result for BSDEs with Default Jump

By the representation property of G-martingales (Lemma 1) and the a priori
estimates given in Proposition 1, we derive the existence and the uniqueness of the
solution associated with a generalized A-admissible driver.

Proposition 2 Let g be a A-admissible driver, let & € Lz(%r), and let D be an
(optional) process belonging to . There exists a unique solution (Y, Z, K) in
S x H? x HZ of BSDE (5).

Remark 6 Suppose that D = 0. Suppose also that & is ¥y, -measurable and that g
is replaced by g1,<y (which is a A-admissible driver). Then, the solution (Y, Z, K)
of the associated BSDE (4) is equal to the solution of the BSDE with random
terminal time ¢ A T, driver g and terminal condition &, as considered in [6]. Note
also that in the present paper, contrary to papers [6, 12], we do not suppose that the
default intensity process A is bounded (which is interesting since this is the case in
some models with default).
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Proof Let us first consider the case when g(¢) does not depend on (y, z, k). Then
the solution Y is given by ¥; = E[§ + ftT g(s)ds + Dt — D;|%]. The processes Z
and K are obtained by applying the representation property of G-martingales to the
square integrable martingale E[§ + fOT g(s)ds + Dr|%]. Hence, there thus exists
a unique solution of BSDE (5) associated with terminal condition & € L?*(Zr) and
generalized driver g(t)dt + dD;. Let us now turn to the case with a general A-
admissible driver g(¢, y, z, k). Denote by IH /23 the space .2 x H? x IH % equipped
with thenorm ||Y, Z, K ||/23 = ||Y||/23 + ||Z||/23+ ||K||§’/3. We define a mapping @ from
H% into itself as follows. Given (U, V, L) € H%, let (Y, Z,K) = ®(U,V, L) be
the solution of the BSDE associated with generalized driver g(s, Us, Vs, Ls)ds +
d Dy and terminal condition &. Let us prove that the mapping @ is a contraction from
H-I% into H—I% Let (U’, V', L") be another element of H’-I/zS and let (Y',Z', K') :=
®(U’, V', L"), that is, the solution of the BSDE associated with the generalized
driver g(s, U/, V,, L})ds + d D, and terminal condition &.

SetU =U~-U,V=V-V,L=L-L,Y=Y-Y,Z=7Z-7,K=K—-K'
Set Ag; = g(t, Uy, Vi, Ly) — g(¢, U/, V/, L}). By Remark 4 applied to the driver
processes g1 (t) := g(t, U;, Vi, L)* and g2(t) = g(t, U/, V/, L}), we derive that
for all n, B > O such that § > 3], we have

IYI5 + 1Z1G + IKIF g < n(T + Dl Aglg-
Since the driver g is A-admissible with A-constant C, we get
115+ 1Z15 + K17 g < n(T + D3C*ATIg + V15 + LI ),

forall n, B > 0 with g > z Choosing n = (T+11)6C2 and g > g = 18(T + 1)C?,
we derive that ||(Y, Z, K)||5 < HIUAS K)|3. Hence, for g > 18(T + 1)C?, @
is a contraction from IH % into IH % and thus admits a unique fixed point (¥, Z, K)
in the Banach space IH 2 which is the (unique) solution of BSDE (4).

2.3 A-Linear BSDEs with Default Jump

We introduce the notion of A-linear BSDESs in our framework with default jump.

Definition 3 (A-linear driver) A driver g is called A-linear if it is of the form:

gt,y, 2, k) =68y +Biz+viki + o, (12)

“4Note that the driver processes g1 (¢) admits C = 0 as A-constant.
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where (¢;) € H?, and (8¢), (Br) and (y;) are R-valued predictable processes such
that (8;), (B;) and (y;+/A) are bounded. By extension,

61y + Bz + i kA)dt +dDy,

where D € 42%2, is called a generalized \-linear driver.

Remark 7 Note that g given by (12) can be rewritten as
8.y, 2, k) = @i + 8,y + Bz + vk, (13)

where v; := y;+/A; is a bounded predictable process.’> From this remark, it clearly
follows that a A-linear driver is A-admissible.

We will now prove that the solution of a A-linear BSDE (or more generally
a generalized A-linear driver) can be written as a conditional expectation via an
exponential semimartingale. We first show a preliminary result on exponential
semimartingales.

Let (Bs) and (ys) be two real-valued G-predictable processes such that the
stochastic integrals fo Bsd Wy and fo ysd My are well-defined. Let (¢;) be the process
satisfying the forward SDE:

diy = §- (Bsd Wy + yodMy); Lo = 1. (14)

Remark 8 Recall that the process (&) satisfies the so-called Doléans-Dade formula,
that is

\)

N 1 N §
i = eXP{/O BrdW, — 2/0 ﬂrzdr}exp{—/o Yrrrdr}(1+ yol=9)), s>0 as.

Hence, if yy > —1 (resp. > —1) a.s, then &g > 0 (resp. > 0) forall s > 0 a.s.
Remark 9 The inequality y9 > —1 a.s. is equivalent to the inequality
v > —1, }dt ® dP-as. Indeed, we have E[1,,-_1]1 = E[f,"1,,<_1dN,]

= I[-E[fOJroo 1y, <—1Asdr], because the process (f(; Ardr) is the G-predictable
compensator of the default jump process N.

Proposition 3 Let T > 0. Suppose that the random variable fOT (,Br2 + yrz)w) dris
bounded.

Then, the process (is)o<s<r, defined by (14), is a martingale and satisfies
Elsupg<s<r ¢34 < +oo0.

5 Actually the formulation (13) is equivalent to (12).
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Proof By definition, the process () is a local martingale. Let T > 0. Let us
show that E[supy.,<7 ¢2] < +o0. By Ito’s formula applied to ¢2, we get d¢2 =
24“?761{8 + d[é‘v {]S' We haVe

di¢, ¢)s = ¢2 B2ds + 2 y2dN;.
Using (1), we thus derive that
dc? = 2 [2B,dWs + Qys + yDdM, + (B2 + y2r,)ds).

It follows that ¢ is an exponential semimartingale which can be written:

£2 = 1, exp /O (B2 + ) dr), (15)

where 7 is the exponential local martingale satisfying
dny = n-[2B5dWs + Qys + y)dM;),

with no = 1. By equality (15), the local martingale n is non negative. Hence, it is
a supermartingale, which yields that E[n7r] < 1. Now, by assumption, fOT (,Br2 +
y,ZA,) dr is bounded. By (15), it follows that

El¢?] < ElnrlK < K,

where K is a positive constant. By martingale inequalities, we derive that
E[supp<s<r ¢2] < +o0. Hence, the process (¢y)o<s<7 is a martingale.

Remark 10 Note that, under the assumption from Proposition 3, one can prove by
an induction argument (as in the proof of Proposition A.1 in [21]) that for all p > 2,
we have E[supy,<7 ¢] < +00.

We now show a representation property of the solution of a generalized i-linear
BSDE when the finite variational process D is supposed to be predictable.

Theorem 1 (Representation result for generalized \-linear BSDEs with D pre-
dictable) Let (6;), (B;) and (y;) be R-valued predictable processes such that (6;),
(B:) and (yia/As) are bounded.

Let £ € L>(%r) and let D be a process belonging to ;sz,, that is, a finite variational
RCLL predictable process with Dy = 0 and square integrable total variation
process.

Let (Y, Z, K) be the solution in A x H? x H—I% of the BSDE associated with
generalized A-linear driver (6;y + B:z + y; k A;)dt + d D, and terminal condition &,
that is

—dYt:(Sth+‘BtZt+]/th)\.t)dt+th—thWt—thMt; YT ZE (16)
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Foreacht € [0, T], let (I} )s>: (called the adjoint process) be the unique solution
of the following forward SDE

dlhs = I; 5~ [8sds + BsdWs + ysd M) Tiy = 1. (17

The process (Y;) satisfies
T
Vo=ElNre+ [ Loddg) 0srsT. as (8)
t

Remark 11 From Remark 8, it follows that the process (/7 s)s>, defined by (17),
satisfies

s s 1 s -5
Ly = el ordr exp{f BrdW, — 5 f Brdrye™ A (1 fyylopay) s =1 as.
t t

Hence, if y3 > —1 (resp. > —1) a.s., we then have 75 > 0 (resp. > 0) for all
s >ta.s. .

Note also that the process (eft ‘S’d’),SSST is positive, and bounded since § is
bounded. Using Proposition 3, since g and y\/ A are bounded, we derive that
E[sup, <;<1 ths] < +oo.

Proof Fix t € [0, T]. Note first that since D is a finite variational RCLL process,
here supposed to be predictable, and since the process I;. admits only one jump at
the totally inaccessible stopping time @, we get [[7,., D] = 0. By applying the Itd
product formula to Y I 5, we get

—d(YsIts) = —Y-dly s — I} -dYs —d[Y, '],
= —Y, I} - 8sds + I} o~ [8:Ys + By Zs + vs Kshs | ds + T, -d Dy
— BsZs Ty -ds — I}~ ys Kshsds — Ty s~ (YsBs + Zs)dWs — (19)
— I - [Ks (1 + y5) + Y- ys1d M.

Setting
dmg = _Ft,s*(YS,BS + Zy)dWy — Ijt,s* [Ks(1 4+ ys) + Y- ys1d M,
we get

—d(Yslts) = Ft,s*st —dms. (20
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By integrating between ¢ and 7', we obtain
T
Vo=hi+ [ LedDo—nr-m) as @
1

By Remark 11, we have (I7 5)i<s<T € 2 Moreover, Y € 32, YRS H—IZ, K e H-I%,
and 8 and y\/ A are bounded. It follows that the local martingale m = (my);<s<7 is
a martingale. Hence, by taking the conditional expectation in equality (21), we get
equality (18).

When the finite variational process D is no longer supposed to be predictable
(which is often the case in the literature on default risk®), the representation
formula (18) does not generally hold. We now provide a representation property
of the solution in that case, that is, when the finite variational process D is only
supposed to be RCLL and adapted, which is new in the literature on BSDEs.

Theorem 2 (Representation result for generalized \-linear BSDEs with D
optional ) Suppose that the assumptions of Theorem 1 hold, except that D is
supposed to belong to o instead ofﬁfi. Let D' € szi andn € H-I% be such that for

allr €10, T,
t
D, = D —l—/ nsdNs a.s. (22)
0

Let (Y, Z, K) be the solution in A x H? x H—I% of the BSDE associated with
generalized A-linear driver (6;y + B:z + y; k A;)dt 4+ d D, and terminal condition &,
that is BSDE (16).

Then, a.s. forallt € [0, T],

T
n=EUh£+/'nrum+a+mmmmn%]
t

T
=E[I;7 & +/ I dDg + Iy ynp <o <1y | 4] (23)
t

where (I 5)sels,1] Satisfies (17).

Proof Since D satisfies (22), we getd|[I7,., D]y = Iy ;- ysnsd Ng. The computations
are then similar to those of the proof of Theorem 1, with I ;- d Dy replaced by
I} - (dDs + ysnsdNy) in Egs.(19), (20) and (21). We thus derive that ¥; =

SIn the case of a contingent claim or a contract subjected to default, ADy represents the cashflow
generated by the claim at the default time 9 (see Sect.3). It is sometimes called “rebate” (cf.
[3, 16]).

7See Remark 2.
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EllI;7 &+ ftT I} s~ (dDs + ysnsdNy) | %] a.s.From this together with (22),
the first equality of (23) follows. Now, we have a.s.

T
E[/ Iy s-(1+yo)nsdNs | 9] = E[L p- (1 + y9)ny Lp<w<1y | 4]
t
=E[ ;90 lp<w<r) | 41,

where the second equality is due to the fact that I y3-(1 + y») = I} as. (cf.
Remark 11). This yields the second equality of (23).

Remark 12 By adapting the arguments of the above proof, this result can be
generalized to the case of a BSDE driven by a Brownian motion and a Poisson
random measure,® which provides a new result in the theory of BSDEs in this
framework.

2.4 Comparison Theorems for BSDEs with Default Jump

We now provide a comparison theorem and a strict comparison theorem for BSDEs
with generalized A-admissible drivers associated with finite variational RCLL
adapted processes.

Theorem 3 (Comparison theorems) Ler & and & € L*(9r). Let g1 and g, be
two A-admissible drivers. Let D' and D? be two (optional) processes in .

Fori = 1,2, let (Y', Z!, K') be the solution in .#* x IH? x H—I% of the following
BSDE

—dY} = gi(t,Y], Z!, K)dt +dD! — Z!dW, — K!dM,; Y. =¢&.

(1) (Comparison theorem). Assume that there exists a predictable process (y;) with
(y,\/)»t) bounded and y; > —1, dP ®dt— a.e. 24)
such that

a(t, Y2, 22, K — a1, Y2, 22, K?) > y(K}! — KD, 1€]0,T], dP®dt — ae.
(25)

8Since in this case, the jumps times of the Poisson random measure are totally inaccessible.
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Suppose that €| > & a.s., that the process D := D' — D? is non decreasing,
and that

gut. Y2 ZL KD = ot Y2, 27 KD), t€[0.T], dP®dt— ae. (26

We then have Yt1 > Ytzfor allt € [0, T] a.s.
(i1) (Strict Comparison Theorem). Suppose moreover that yy > —1 a.s.
If Yt(l) = Ytﬁ a.s. for some ty € [0,T], then El = 52 a.s., and the
inequality (26) is an equality on [ty, T1. Moreover, D = D' — D? is constant

onto, Tland Y' = Y2 on [1o, T).

Remark 13 We stress that the above comparison theorems hold even in the case
when the generalized drivers are associated with non-predictable finite variational
processes, which thus may admit a jump at the default time . This is important for
the applications to nonlinear pricing of contingents claims. Indeed, in a market with
default, contingent claims often generate a cashflow at the default time (see Sect. 3.3
for details).

As seen in the proof below, the treatment of the case of non-predictable finite
variational processes requires some additional arguments, compared to the case of
predictable ones.

Proof Setting Y = Y! — Y2;Z, = 7! — 72 ; K, = K! — K2, we have

-
—dYs = hyds + dDy — ZgdWs — KydMy;  Yr = & — &,

where hg == g1(s, YSL, ZL KD — ga(s, YS{’ 72, K2).

Set &, := f16s YSL’ Z Ksl)__ 81(s, YS{’ Zi. K}
Y-

g1, Y], Z, K — 105, Y], Z3, K )

Zs
By definition, the processes § and B are predictable. Moreover, since g satisfies

condition (3), the processes § and 8 are bounded. Now, we have

if Y, # 0, and 0 otherwise.

Set Bs := if Zs # 0, and 0 otherwise.

hy =8 Yo~ + BsZ + 8105, Y2 23 KS) — g1(5. Y2 23, KD) + 0,
where ¢ 1= g1(s. Y2, Z3. KJ) — 2(s. Y2, Z2 K.
Using the assumption (25) and the equality Y- = Y; d P ® ds-a.e. (cf. Remark 3),

we get

hs > 8SYS + ,BSZS + Vs ks)‘-s +¢s dP ®ds —a.e. 27

9Note that, by Remark 3, we have ¢; = g (s, Ysz, Z?, Ksz) — g2(s, Yf, Z?, Ksz) dP ® ds-a.e.
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Fix t € [0, T]. Let I, be the process defined by (17). Since §, 8 and y\/)L are
bounded, it follows from Remark 11 that I € 2 Also, since y; > —1, we have
I7,. > 0 as. Let us first consider the simpler case when the processes D! and D?
are predictable. By Itd’s formula and similar computations to those of the proof of
Theorem 1, we derive that

_d(?srt,s) = E,S(hs - (Ss?s - ,BSZS — Vs Igs As)ds + E,S*dDS —dmyg,

where m is a martingale (because I}, € A Y e ZeH* K e H-I2 and B,
y+/A are bounded). Using inequality (27) together with the non negativity of I", we
thus get d(Y Its) = Iy s@sds + Ty ¢ ~dDg; — dmy. By integrating between ¢ and
T and by taking the conditional expectation, we obtain

T
Fo= Bl @ —Ez)+/ o (oods +dDy) | %1, 0<1<T, as.
t
(28)

By assumption (26), ¢; > 0 dP ® ds-a.e. Moreover, & — & > 0 and D is non
decreasing, which, together with the non negativity of I, ., implies that ¥, = Ytl -
er > 0 a.s. Since this inequality holds for all ¢ € [0, T'], the assertion (i) follows.

Suppose moreover that Yt(l) = Yt%) a.s. and that y. > —1. Since yy > —1 a.s., we
have I; ; > O a.s. for all s > ¢. From this, together with (28) applied with ¢ = #,
we get 51 =& as.and ¢, = 0,¢t € [t9, T] dP ® dt-a.e. On the other hand, set
D, = fr o, deq, for each ¢ € [1p, T]. By assumption, DT > 0 a.s. By (28), we

thus getE[DT | 4,1 = 0a.s. Hence DT = Oa.s. Now, since I, s > 0,foralls > £y

a.s., we can write Dy — Dm fto _1 dD We thus get Dr = D,0 a.s. The proof
of (ii) is thus complete.

Let us now consider the case when the processes D! and D? are not predictable.
By Remark 2, fori = 1, 2, there exist D'ie m‘?, and ni S H—I% such that

t
D, =D/ —i—/ nydNs a.s.
0

Since D := D' — D? is non decreasing, we derive that the process D’ := Dp'-Dp?
is non decreasing and that né > 17% a.s. on {0 < T}. By It6’s formula and similar
computations to those of the proof of Theorems 1 and 2, we get

_d(y_vsrt,s) = Ft,s(hs - SSYS - ﬁszs — Vs Ks As)ds

+ I 4-1dDs + (1) — n?)ysd Ny — dms,
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where m is a martingale. Using inequality (27) and the equality D, = D; + fé (773 -
nf)d N; a.s., we thus derive that

Y, >E[ L1 (51 — &)

T
+/ Ft,s— (psds +dD; + (7}; - 77%)(1 + ¥5)dNs) | 91, 0<t<T, as.
t
29

Since 7} > n3 a.s.on{® < T}and yp > —1 a.s., we have (7}, — n3)(1 + y9) > 0
a.s. on {¢# < T}. Hence, using the other assumptions made in (i), we derive that
Y, = Y,l — Y,2 > ( a.s. Since this inequality holds for all ¢ € [0, T'], the assertion (i)
follows.

Suppose moreover that Yt(l) = Y,% a.s. and that yp > —1 a.s. By the inequality (29)
applied with r = #9, we derive that Sl = 52 as., ;s =0dP ®ds-a.e.on [1g, T],
17119 = '7,% as.on {f9 < ¥ < T}. Moreover, D' = D' — D'? is constant on the time
interval [#g, T]. Hence, D is constant on [#g, T']. The proof is thus complete.

Remark 14 By adapting the arguments of the above proof, this result can be
generalized to the case of BSDEs driven by a Brownian motion and a Poisson
random measure (since the jumps times associated with the Poisson random
measure are totally inaccessible). This extends the comparison theorems given in
the literature on BSDEs with jumps (see [21, Theorems 4.2 and 4.4]) to the case of
generalized drivers of the form g(¢, y, z, k)dt +d D;, where D is a finite variational
RCLL adapted process (not necessarily predictable).

When the assumptions of the comparison theorem (resp. strict comparison
theorem) are violated, the conclusion does not necessarily hold, as shown by the
following example.

Example 1 Suppose that the process A is bounded. Let g be a A-linear driver
(see (12)) of the form

glw.t,y,z,k) = 8(w)y + Br(w) 2+ y k (), (30)

where y is here a real constant. At terminal time 7', the associated adjoint process
I, satisfies (see (17) and Remark 11):

T
It = Hr eXP{—/ yAirdri(1+ y Lir>9)). (3D
0

where (H;) satisfies d H; = H,(8;dt + B;dW;) with Hy = 1.
Let Y be the solution of the BSDE associated with driver g and terminal condition

&= 1r>p).
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The representation property of A-linear BSDEs with default jump (see (18)) gives
Yo = E[Io,78]1 = E[lo,rl{r>v}].

Hence, by (31), we get

T o
Yo = E[T0 7 1r=9)] = E[Hre 7 0 (1 4y rsg)lir=s)]
T o
= (1 + y)E[Hre ™" 0o g1, (32)

Equation (32) shows that under the additional assumption P(7 > ) > 0, when
y < —1, we have Yy < 0 although & > 0 a.s.

This example also gives a counter-example for the strict comparison theorem by
taking y = —1. Indeed, in this case, the relation (32) yields that Yo = 0. Under the
additional assumption P(T > ¥) > 0, we have P(§ > 0) > 0, even though Yy = 0.

3 Nonlinear Pricing in a Financial Market with Default

3.1 Financial Market with Defaultable Risky Asset

We consider a complete financial market with default as in [4], which consists of
one risk-free asset, with price process S° satisfying d S,0 = S?rtdt with S8 = 1,and
two risky assets with price processes S', §? evolving according to the equations:

ds}) = Stuldt +oldw,] with S} > 0;
dS? = SE[uldt + o?dW, —dM,] with S} >0, (33)

where the process (M) is given by (1).

The processes ol,o?, r, ,ul, /ﬁ are predictable (that is &?-measurable). We set
o= (o 1 02)’ , where / denotes transposition.

We suppose that o', 62 > 0,and r, u!, u?, 0!, 02, (al)_l, (62)_1 are bounded.
Note that the intensity process (A;) is not necessarily bounded, which is useful in
market models with default where the intensity process is modeled by the solution
(which is not necessarily bounded) of a forward stochastic differential equation.

Remark 15 By Remark 11, we have

t 1 t
2 = elonrdr exp{/ o2dW, — 2[ (@22dr)eh I (1 — 1y=9)), >0 as.
0 0

The second risky asset is thus defaultable with total default: we have St2 =0,t> 1
a.s.
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We consider an investor who, at time 0, invests an initial amount x € R in the
three assets. Fori = 1, 2, we denote by (pf the amount invested in the i risky asset.
After time ¢, the investor does not invest in the defaultable asset since its price is
equal to 0. We thus have (p,2 =0ont > . A process ¢ = (¢!, ¢?) belonging
to H? x ]HI% is called a risky assets strategy. Let C be a finite variational optional
process belonging to 7, representing the cumulative cash amount withdrawn from
the portfolio.

The value at time ¢ of the portfolio (or wealth) associated with x, ¢ and C is
denoted by Vtx"p’c. The amount invested in the risk-free asset at time ¢ is then given

,0,C
by V9" — (@] + ¢?).

3.2 Pricing of European Options with Dividends in a Perfect
(Linear) Market with Default

In this section, we place ourselves in a perfect (linear) market model with default. In
this case, by the self financing condition, the wealth process V*¢:C (simply denoted
by V) follows the dynamics:

AV, = (Ve + ol —r) + @2 (2 — r))dr —dC, + (9o + @2oP)dW, — pPd M,

- (rr Vi +¢/0:6 — %29;2%) dt —dC, + ¢jodW, — ¢{dM,, (34)
where ¢,/0; = q),la,l + 90[20[2, and

1 2 2n1
1. Mg =T 2, wi — o070 —r
0, = L 07 = — N 14,01
o; t

Suppose that the processes 6! and #2+/A are bounded.

Let T > 0. Let & be a %r-measurable random variable belonging to L2, and let
D be a finite variational optional process belonging to MT We consider a European
option with maturity 7, which generates a terminal payoff &, and intermediate
cashflows called dividends, which are not necessarily positive (cf. for example
[7, 8]). For each t € [0, T], D; represents the cumulative intermediate cashflows
paid by the option between time O and time ¢. The process D = (Dy) is called the
cumulative dividend process. Note that D is not necessarily non decreasing.

The aim is to price this contingent claim. Let us consider an agent who wants
to sell the option at time 0. With the amount the seller receives at time O from the
buyer, he/she wants to be able to construct a portfolio which allows him/her to pay
to the buyer the amount £ at time 7', as well as the intermediate dividends.

Now, setting

Z = €0t/0t ;K= —%za (35)
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by (34), we derive that the process (V, Z, K) satisfies the following dynamics:
—dV, = —(r Vi + 01 Z, + 02K A)dt +dD; — Z,dW;, — K:dM, .
We set for each (w, t, v, z, k),
g@.1,y,2,k) i= —r1(@)y =0} @)z = 0} (@) k 4y (). (36)

Since by assumption, the coefficients r, oL, 02/ are predictable and bounded, it
follows that g is a A-linear driver (see Definition 3). By Proposition 2, there exists a
unique solution (X, Z, K) € S x H? x H% of the BSDE associated with terminal
time T, generalized A-linear driver g(t,y, z, k)dt + d D; (with g defined by (36))
and terminal condition &.

Let us show that the process (X, Z, K) provides a replicating portfolio. Let ¢
be the risky-assets strategy such that (35) holds. Note that this defines a change of
variables @ as follows:

@ : H? x H% — H? x H%; (Z,K)— ®(Z,K) := ¢, where ¢ = ((pl, (pz) is given
by (35), which is equivalent to

Zi — o}  Zi+0’K
(ptzz_Kl‘ 5 gotl = ' 1t "= ' 1t t' (37)
0y 0y

The process D corresponds here to the cumulative cash withdrawn by the seller
from his/her hedging portfolio. The process X thus coincides with VX0-¢:D the
value of the portfolio associated with initial wealth x = X, risky-assets strategy
¢ and cumulative cash withdrawal D. We deduce that this portfolio is a replicating
portfolio for the seller since, by investing the initial amount X in the reference
assets along the strategy ¢, the seller can pay the terminal payoff £ to the buyer at
time T, as well as the intermediate dividends (since the cash withdrawals perfectly
replicate the dividends of the option). We derive that X is the initial price of the
option, called hedging price, denoted by X¢ 7(£¢, D), and that ¢ is the hedging risky-
assets strategy. Similarly, for each time ¢ € [0, T], X; is the hedging price at time ¢
of the option, and is denoted by X; 7(¢, D).

Suppose that the cumulative dividend process D is predictable. Since the driver g
given by (36) is A-linear, the representation property of the solution of a generalized
MA-linear BSDE (see Theorem 1) yields

) T "
X7 D) =Ele™ )i 5z, 1 + / e~ indug _dDg |9 as., (38)

t

where ¢ satisfies

des =4 - [—01dWs — 02dM,); ¢ = 1.
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Suppose now that Qtz < 1 dP ®dt-a.e. By Proposition 3 and Remark 8, the process
o,. 1s a square integrable positive martingale. Let Q be the probability measure
which admits o 7 as density with respect to P on «r 19 By the equality (38), we
have

T S
X, 7(6, D) = Egle~ I s 4 / e fimdigp 14 as. (39)
t

When the cumulative dividend process D is not predictable and thus admits a
jump at time ¢, the representation formulas (38) and (39) for the no-arbitrage price
of the contingent claim do not generally hold. In this case, by Remark 2, there exist
a (unique) process D' € 422?, and a (unique) process n € IH i such that for all
te[0,T],

t
D, = D] —l—/ nsdNs a.s. (40)
0

The random variable 1y (sometimes called “rebate” in the literature) represents the
cash flow generated by the contingent claim at the default time ¢ (see e.g. [3, 7, 8,
16] for examples of such contingent claims). By Theorem 2, we get

T . T s » .
X, 7€ D) =Ele l "¥¢ e+ / e indng, dD] 4 e g sy pery 19 as.,
t

or equivalently

T . T s s .
X, (€ D) =Egle™ I g4 / e gDl pem J 1y _yory | %] as.

t

We thus recover the risk-neutral pricing formula of [3, 16], which we have
established here by working under the primitive probability measure, using BSDE
techniques.

We note that the pricing system (for a fixed maturity 7): (§, D) — X. r(§, D) is
linear.

10Note that the discounted price process (e~ Jorsds 5,1)05z5T (resp. (e~ fo ’A‘d‘YSlz)os,ST) is a
martingale (resp. local martingale) under Q. Suppose now that £ [e? Io #edr ] < +oo for some g >
2. Using Remark 15, we show that e~ Iy reds S% € L2Q, which, by martingale inequalities, implies

1
that (e~ Jo reds 8?)o</<r is a martingale under Q. In other terms, Q is a martingale probability
measure. By classical arguments, Q can be shown to be the unique martingale probability measure.
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3.3 Nonlinear Pricing of European Options with Dividends
in an Imperfect Market with Default

From now on, we assume that there are imperfections in the market which are taken
into account via the nonlinearity of the dynamics of the wealth. More precisely, we
suppose that the wealth process V,x’(p’c (or simply V;) associated with an initial
wealth x, a risky-assets strategy ¢ = (¢!, ¢?) in H?> x H% and a cumulative
withdrawal process C € o satisfies the following dynamics:

—dV, =g(t, Vi, @01, —p2)dt — ¢/ 0;dW; +dC, + @2dM,; Vo=x,  (41)

where g is a nonlinear A-admissible driver (see Definition 1). Equivalently, setting
Z; =¢/o;and K; = —(ptz, we have

—dVi =g, Vi, Zs, Ky)dt — Z,dW; +dC; — K, dM;; Vo = x. (42)

Let us consider a European option with maturity 7', terminal payoff & € L?(¢r),
and dividend process D € o# (with a possible jump at the default time ) in
this market model. Let (xf 7€, D), zf 7€, D), Kf’T (€, D)), simply denoted by
(X, Z, K), be the solution of BSDE associated with terminal time 7', generalized
driver g(t, v, z, k)dt + d D; and terminal condition &, that is satisfying

—dX; =g, X;, Zs, K1)dt +dD; — Z;dW; — K;dMy; Xt =§.

The process X = X* r(&, D) is equal to the wealth process associated with
initial value x = X, stfategy ¢ = ®(Z,K) (see (37)) and cumulative amount
D of cash withdrawals, that is X = V*0-#-2_ Tts initial value Xo = X§ ;(§, D)
is thus a sensible price (at time 0) of the option for the seller since this amount
allows him/her to construct a risky-assets strategy ¢, called hedging strategy, such
that the value of the associated portfolio is equal to £ at time 7, and such that
the cash withdrawals perfectly replicate the dividends of the option. We call X =
Xg’T(é , D) the hedging price at time t of the option. Similarly, for each ¢ € [0, T1],
X; = X} (&, D) is the hedging price at time ¢ of the option.

Thus, for each maturity S € [0, T] and for each pair payoff-dividend (¢, D) €
L%(¥s) x o, the process X?’S(g, D) is called the hedging price process of the
option with maturity S and paybﬁ‘-dividend (&, D). This leads to a pricing system

X" : (8.6, D) X! 4(¢. D), (43)
which is generally nonlinear with respect to (&, D).

We now give some properties of this nonlinear pricing system X° which
generalize those given in [15] to the case with a default jump and dividends.
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+ Consistency. By the flow property for BSDEs, the pricing system X' is
consistent. More precisely, let § € [0,T], & € Lz(gs,), D e ,;zfzs,, and let
S € [0, S']. Then, the hedging price of the option associated with payoff &,
cumulative dividend process D and maturity S coincides with the hedging price
of the option associated with maturity S, payoff X § ¢(§, D) and dividend process
(Dy)s<s (still denoted by D), that is

Xig€ D) =X'g (Xi’s,(é, D), D).
* When g(z,0,0,0) = 0,!! then the price of the European option with null payoff
and no dividends is equal to 0, that is, for all § € [0, T], X?S(O, 0) =0.

Due the presence of the default, the nonlinear pricing system X* is not necessarily
monotone with respect to the payoff and the dividend. We introduce the following
assumption.

Assumption 4 Assume that there exists a map
y 2 x[0,TIxR* > R: (0.1, y, 2. ki, k2) > 17 ()
P ® BRY-measurable, satisfying dP Q dt-a.e., for each (y, z, k1, k2) € R*,
lyskek < coanad oy s (44)
and
gy, 2, ) = gty 2, k2) = v Rk — ka2 (45)

(where C is a positive constant).

Remark 16 Suppose ();) bounded (as in [12]). Then the first inequality in (44)
holds if, for example, y is bounded.

Recall that A vanishes after ¢+ and g(z, -) does not depend on k on {t > ¥}. Hence,
inequality (45) is always satisfied on {# > ¢}}. Note that Assumption 4 holds when
g(t, -) is non decreasing with respect to k, or when g is %" in k with org(t, ) = —A;.

Before giving some additional properties of the nonlinear pricing system under
Assumption 4, we introduce the following partial order relation, defined for each
fixed time S € [0,7], on the set of pairs “payoff-dividends” by: for each
€', DY), (52, D?) € L2(%s) x s

(El, DY > (52, D?* if Sl > 52 a.s.and D' — D? is non decreasing.

' Note that when the market is perfect, g is given by (36) and thus satisfies g(z, 0, 0, 0) = 0.
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Loosely speaking, the non decreasing property of D' — D? corresponds to the fact
that the dividends paid by the option associated with (¢!, D') are greater than or
equal to those paid by the option associated with (£%, D?).

Using the comparison theorem for BSDEs with generalized drivers (Theorem 3
(1)), we derive the following properties:

 Monotonicity. Under Assumption 4, the nonlinear pricing system X° is non
decreasing with respect to the payoff and the dividend. More precisely, for all
maturity S € [0, T], for all payoffs &1, & € Lz(%s), and cumulative dividend
processes D', D? € o/, the following property holds:
If (¢!, DY) > (€%, D?), then we have X ((&1, D') = X% (&, D?), 1 € [0, §]
a.s.!?

¢ Convexity. Under Assumption 4, if g is convex with respect to (y, z, k), then
the nonlinear pricing system X® is convex with respect to (&, D), that is, for any
a€[0,11,S €[0,T1, &, & € L*(%s), D', D* € o, forallt € [0, S], we have

Xis (et + (-, aD' + (1 —@)D?) <a X, 5, DY+ -a) X 5&. DY) as.

* Nonnegativity. Under Assumption 4, when g(¢,0,0,0) > 0, the nonlinear
pricing system X* is nonnegative, that is, for each S € [0, T'], for all non negative
£ € L*(¥s) and all non decreasing processes D € ., we have Xfﬁs(g, D) >0
forall ¢ € [0, S] a.s.

By the strict comparison theorem (see Theorem 3(ii)), we have the following
additional property.

* No arbitrage. Under Assumption 4 with y; @K1k o 1 the nonlinear pricing

system X* satisfies the no arbitrage property: for all maturity S € [0, T, for all
payoffs & 1 & 2 ¢ L2(€f5), and cumulative dividend processes D! D% ¢ ,5222, for
each 7y € [0, S], the following holds:

If ¢!, DY) > (&2, D?) and if the prices of the two options are equal at time
fo, that s, Xﬁ)’s(él, DY = Xi),s(";?’ D?) as., then, & = & as. and (D} —

D?),,<i<s is a.s. constant.'3

Remark 17 In the perfect market model with default, the driver is given by (36).
When Gtz < 1, then Assumption 4 is satisfied with y,y ok —Gtz, which ensures
in particular the monotonicity property of the pricing system. Note that when (Qtz)
isa constant @ > 1 and P(T > ¢) > 0, the pricing system is no longer monotone
(see Example 1 with §; = —ry, By = —9,1 and y = —6). Moreover, when Gtz <1,

then the above no arbitrage property holds. This is no longer the case when, for

12This property follows from Theorem 3 (i) applied to g' = g2 = g and £!, €2, D!, D?. Indeed by
Y2 .72, K} K}
Assumption 4, Assumption (25) holds with y, replaced by the predictable process y, '~ ' .

131n other words, the intermediate dividends paid between 7y and S are equal a.s.
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example, Qtz = land P(T > ¢) > 0 (see Example 1 with §; = —ry, B = —9} and
y=-.

3.4 The (g, D)-Conditional Expectation & P
and & ’D-Martingales

Let g be a A-admissible driver and let D be an optional singular process belonging
to MT

We define the (g, D)-conditional expectation for each S € [0, T] and each & €
L*(¥s) by

E9(E) =X, D), 0<1<S.

In other terms, & g (&) is defined as the first coordinate of the solution of the
BSDE associated with terminal time S, generalized driver g(t, y, z, k)dt + dD;
and terminal condition &.

In the case where D = 0, it reduces to the g-conditional expectation & (in the case
of default).

Note that é"e g (§) can be defined on the whole interval [0, 7] by setting
S pS
E9@E) =& &) fort = S, where g5(t,.) := g(t, ),<s and D := Dys.

We also define é§ f (&) for each stopping time t € 9 and each & € L?(¥,) as the
solution of the BSDE associated with terminal time T, driver g* (¢, .) := g(¢, .)1;<¢
and singular process D} := Dj-.
We now give some properties of the (g, D)-conditional expectation which
generalize those given in [20] to the case of a default jump and generalized driver.
The (g, D)-conditional expectation & is consistent. More precisely, let v/ be
a stopping time in %, £ € L?(%,/), and let T be a stopping time smaller or equal to

_L,/

We then have &) = &7 (E7.6) forall 1 € [0, T] ass.

The (g, D)-conditional expectation & satisfies the following property:
foialllr € %, & € L*(9,), andforallt € [0, T] and A € .%;, we have:
&7 (148) = 1487 () as., where gA(s,) = g(s, ) 1aly 7)(s) and DA =
(D5 — D)1aly M

Using the comparison theorem for BSDEs with default and generalized drivers
(Theorem 3(i)), we derive that, under Assumption 4, the (g, D)-conditional

4From this property, we derive the following Zero-one law: if g(-,0,0,0) = 0, then

g}:ff‘ (148) = lAéf:f(S) a.s.
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expectation & is monotone with respect to &. If moreover g is convex with
respect to (y, z, k), then & P is convex with respect to &.

From the strict comparison theorem (see Theorem 3(ii)), we derive that, under
Assumption 4 with yg ki -1,& " satisfies the no arbitrage property. More
precisely, for all S € [0, T], €', £% € L?(%s), and for all to € [0, S] and A € 9,
we have:

11! > &2 as.and & s(61) = & 5(52) a.s. on A, then & = & a.s. on A.

The no arbitrage property also ensures that when y; “kek o1 the (g, D)-

conditional expectation &% is strictly monotone.'”

We now introduce the definition of an & -martingale which generalizes the
classical notion of &%-martingale.

Definition4 Let Y € .. The process Y is said to be a & ‘D-martingale if
éi"[;(Yr) =Y,as.ono <t,forallo, t €.%.

Proposition 4 For all S € [0, T, payoff & € L*(¥s) and dividend process D €
oA, the associated hedging price process & ;) & isan & ’D-martingale.
Moreover, for all x € R, risky-assets strategy ¢ € H? x H% and cash withdrawal

. . .D .
process D € P, the associated wealth process VX#D s an & -martingale.

Proof The first assertion follows from the consistency property of & . The second
one is obtained by noting that V*¢:? is the solution of the BSDE with generalized

driver g(t, -)dt + d Dy, terminal time T and terminal condition Vi D

Remark 18 The above result is used in [12, Section 5.4] to study the nonlinear
pricing of game options with intermediate dividends in an imperfect financial market
with default.

Some examples of market models with default and imperfections or constraints,
leading to a nonlinear pricing are givenin [7, 8, 13, 14, 19]. We now provide another
example.

3.5 Example: Large Seller Who Affects the Default Probability

We consider a European option with maturity 7', terminal payoff £ € L*(%r), and
dividend process D € ;zsz We suppose that the seller of this option is a large trader.
More precisely, her hedging strategy (as well as its associated cost) may affect the

1510 the case without default, it is well-known that, up to a minus sign, the g-conditional
expectation &% can be seen as a dynamic risk measure (see e.g. [20, 21]). In our framework, we can
define a dynamic risk measure p¢ by setting p¢ = —&® (= —&%). This dynamic risk-measure
thus satisfies similar properties to those satisfied by 8.
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prices of the risky assets and the default probability. She takes into account these
feedback effects in her market model in order to price the option. To the best of our
knowledge, the possible impact on the default probability has not been considered
in the literature before.

In order to simplify the presentation, we consider the case when the seller’s
strategy affects only the default intensity. We also suppose in this example that the
default intensity is bounded.

We are given a family of probability measures parametrized by V and ¢. More
precisely, for all V S, 9 e H? x H%, let V¢ be the probability measure
equivalent to P, which admits LY as density with respect to P, where L">% is the
solution of the following SDE:

L = Ly (. V- g)dMy;  Ly? =1.

Here, y : (w,t,y,¢1,92) — y(,t,y,91,¢2) is a £ Q %(R3)-measurable
function defined on £2 x Rt x R?, bounded, and such that the map y +>
y(w,t,y, 91, v2)/¢>2 is uniformly Lipschitz. We suppose that y (¢, -) > —1. Note
that by Proposition 3 and Remark 8, the process L "% is positive and belongs to .
By Girsanov’s theorem, the process W is a Q"#-Brownian motion and the process
MV-# defined as

Vv

t t
MY = Nt—fo AS<1+y(s,w,¢s>)ds=Mt—fo hoy (s, Voo g)ds  (46)

is a QV+¢-martingale. Hence, under Q"+¢, the G-default intensity process is equal
toX;(14+y (¢, Vi, ¢;)). The process y (¢, Vi, ¢;) represents the impact of the seller’s
strategy on the default intensity in the case when ¢ is the seller’s risky-assets strategy
and V is the value of her portfolio.

The large seller considers the following pricing model. For a fixed pair
“wealth/risky-assets strategy” (V,¢) € S x H? x H%, the dynamics of the
risky-assets under the probability Q¢ are given by

ds} = SHuldt +olaw,;
dS? = S2 [pldt + o2dW, — dM,"?].

The value process (V;) of the portfolio associated with an initial wealth x, a risky-
assets strategy ¢, and with a cumulative withdrawal process, that the seller chooses
to be equal to the dividend process D of the option, must satisfy the following
dynamics:

v, = (r, Vi + ¢lo,6) — (pfefxt) dt —dD; + @lodW, — 2dM)*.  (47)
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Note that the dynamics of the wealth (47) can be written

dV, = <r, Vi + ¢loi0) — 02070 + (1, Vi, <p,)x,<p,2) dt —dD, + ¢o;dW, — 2d M.
(48)

Let us suppose that the large seller has an initial wealth equal to x and follows a
risky-assets strategy ¢. By the assumptions made on y, there exists a unique process
V*¢ satisfying (48) with initial condition Vg *¥ = x. This model is thus well posed.

Moreover, it can be seen as a particular case of the general model described in

Sect. 3.3. Indeed, setting Z;, = ¢,/0; and K, = —(p,2, the dynamics (48) can be
written

—dVy =g, Vi, Z;, K)dt +dDy — Z,dW; — K;dM,, (49)
where

gty 2. k) = —ry — 01z — 023k + y (r, v, (67 (z + o2k), —k) Ak,

Assuming that there exists a positive constant C such that inequality (3) holds, g
is A-admissible. We are thus led to the model from Sect. 3.3 associated with this
nonlinear driver g. Thus, by choosing this pricing model, the seller prices the option
at time ¢, where ¢ € [0, T'], at the price Xf’T(S , D). In other terms, the seller ’s price

process16 will be equal to X, where (X, Z, K) is the solution of the BSDE:
—dX; =g, X;, Zs, K1)dt +d Dy — Z;dW; — K;dMy; X7 =§.

Moreover, her hedging risky-assets strategy ¢ will be such that Z; = ¢,’0; and
K, = —(ptz, that is, equal to @(Z, K), where @ is given by (37).

This model can be easily generalized to the case when the coefficients u!, 0!,
w?, o2 also depend on the hedging cost V (equal to the seller’s price X of the option)

and on the hedging strategy ¢>.!”

4 Concluding Remarks

In this paper, we have established properties of BSDEs with default jump and
generalized driver which involves a finite variational process D. We treat the case

16Note that the seller ’s price is not necessarily equal to the market price of the option.

17The coefficients may also depend on ¢ = (@', »?), but in this case, we have to assume that the

map ¥ : (w,t,y, @) — (z,k) withz = ¢'oy(w, t, y, ¢) and k = —@~ is one to one with respect to
W ) = (2. k) with z = /o ( yandk = —¢? i ith

¢, and such that its inverse llqul is 2 ® #(R?)-measurable.
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when D is not necessarily predictable and may admit a jump at the default time. This
allows us to study nonlinear pricing of European options generating intermediate
dividends (with in particular a cashflow at the default time) in complete imperfect
markets with default. Due to the default jump, we need an appropriate assumption on

the driver g to ensure that the associated nonlinear pricing system X* : (T, £, D)
ébf{ ? (&) is monotonous, and a stronger condition to ensure that it satisfies the so-
called no-arbitrage property. Some complements concerning the nonlinear pricing
of European options are given in [13] (cf. Section 4 and Section 5.1). The nonlinear
pricing of American options (resp. game options) in complete imperfect markets
with default are addressed in [13] (resp. [12]). The case of American options in

incomplete imperfect financial markets with default is studied in [14].

Appendix
BSDEs with Default Jump in L?, for p > 2

For p > 2, let / be the set of G-adapted RCLL processes ¢ such that
E[supg<; <7 l¢: 7] < +00,

HP? the set of G-predictable processes such that ||Z||§ = E[(fOT |Zt|2dt)1’/2] <
oo,

HY the set of G-predictable processes such that ||U||§,x = ]E[(fOT |U,|2)»tdt)l7/2] <
00.

Proposition 5 Let p > 2 and T > 0. Let g be a A-admissible driver such that
g2(t,0,0,0) € IH?. Let & € LP(Yr). There exists a unique solution (Y, Z, K) in
S x HP x HY of the BSDE with default (4).

Remark 19 The above result still holds in the case when there is a G-martingale
representation theorem with respect to W and M, even if G is not generated by W
and M.

Proof We now introduce the same arguments as in the proof of Proposition A.2 in
[21] together with the arguments used in the proof of Proposition 2.

BSDEs with Default Jump and Change of Probability Measure

Let (B5) and (ys) be two real-valued G-predictable processes such that (85) and
(ys+/*s) are bounded. Let (¢5) be the process satisfying the forward SDE:

dty = ¢-(BsdWs + ysd My),
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with ¢p = 1. By Remark 10, we have E[supy, 7 {sp] < 4oo forall p > 2. We
suppose that yy > —1 a.s., which, by RemarI{STimplies that &g > O forall s > 0
a.s. Let Q be the probability measure equivalent to P which admits {7 as density
with respect to P on ¥r.

By Girsanov’s theorem (see [16] Chapter 9.4 Corollary 4.5), the process W,ﬁ =
W, — f(; Bsds is a Q-Brownian motion and the process M? defined as

t t
M} = M,—/O Asysds = Ny —/0 As (1 + ys)ds (50)

is a Q-martingale. We now state a representation theorem for (Q, G)-local martin-
gales with respect to W and M.

Proposition 6 Let m = (m;)o</<1 be a (Q, G)-local martingale. There exists a
unique pair of predictable processes (z;, ky) such that

t t
m =m0+/ 2 dWP +/ ksdM! 0<s<T as. (51
0 0

Proof Since m is a Q-local martingale, the process m; := ¢m; is a P-local
martingale. By the martingale representation theorem (Lemma 1), there exists a
unique pair of predictable processes (Z, K) such that

t t
m; = mo ~|—/ ZdW, +/ KidM; 0<t<T a.s.
0 0

Then, by applying Ito’s formula to m, = r,(¢;)~! and by classical computations,
one can derive the existence of (z, k) satisfying (51).

From this result together with Proposition 5 and Remark 19, we derive the
following corollary.

Corollary 1 Let p > 2 and let T > 0. Let g be a A-admissible driver such that

g(,0,0,0) H—I’é. Let & € Lg(%r). There exists a unique solution (Y, Z, K) in
X X of the with default:

Yg Hlé Hg)\ f the BSDE with defaul

~dY, = g(t. Y, Z;, Kpydt — ZW) — KidM]';  Yr =&.

Here the spaces %, Hg, and Hg,x are defined as 7, HP, and Hf, by replacing
the probability P by Q.

Remark 20 Note that the results given in the Appendix are used in [12] (Section 4.3)
to study the nonlinear pricing problem of game options in an imperfect market with
default and model uncertainty.
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The Faa di Bruno Hopf Algebra )
for Multivariable Feedback Recursions St
in the Center Problem for Higher Order

Abel Equations

Kurusch Ebrahimi-Fard and W. Steven Gray

Abstract Poincaré’s center problem asks for conditions under which a planar
polynomial system of ordinary differential equations has a center. It is well
understood that the Abel equation naturally describes the problem in a convenient
coordinate system. In 1990, Devlin described an algebraic approach for constructing
sufficient conditions for a center using a linear recursion for the generating series
of the solution to the Abel equation. Subsequent work by the authors linked this
recursion to feedback structures in control theory and combinatorial Hopf algebras,
but only for the lowest degree case. The present work introduces what turns out to
be the nontrivial multivariable generalization of this connection between the center
problem, feedback control, and combinatorial Hopf algebras. Once the picture
is completed, it is possible to provide generalizations of some known identities
involving the Abel generating series. A linear recursion for the antipode of this new
Hopf algebra is also developed using coderivations. Finally, the results are used to
further explore what is called the composition condition for the center problem.

1 Introduction

The classical center problem first studied by Henri Poincaré [38] considers a system
of planar ordinary differential equations

dx

d
. Y =¥y 1)

= X(x,y), dt
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where X, Y are homogeneous polynomials with a linear part of center type. The
equilibrium at the origin is a center if it is contained in an open neighborhood
U having no other equilibria, and every trajectory of system (1) in U is closed
with the same period w. The problem is usually studied in its canonical form via a
reparametrization that transforms (1) into the Abel equation

(1) = vi(DZ* (1) + ()2 (1), )

where v; and vy are continuous real-valued functions [3, 9, 35]. In this setting, the
origin z = 0 is a center if z(0) = z(w) = r for r > 0 sufficiently small and w > 0
fixed. The center problem is to determine the largest class of functions v; and v
that will render z = O a center.

An algebraic approach to the center problem was first proposed by Devlin in 1990
[10, 11], which was based on the work of Alwash and Lloyd [3, 35]. In modern
parlance, Devlin’s method was to first write the solution of the Abel equation (2)
in terms of a Chen—Fliess functional expansion or Fliess operator [18, 19] whose
coefficients are parameterized by r. A Fliess operator is simply a weighted sum of
iterated integrals of v; and v indexed by words in the noncommuting symbols x;
and x;, respectively. The concept is widely used, for example, in control theory to
describe the input-output map of a system modeled in terms of ordinary differential
equations. (For readers not familiar with this subject, the following references
provide a good overview [18, 19, 32, 33, 37, 42-46].) Devlin showed that the
generating series for his particular Fliess operator with » = 1, which is a formal
power series c4 over words in the alphabet X = {x1, x>}, can be decomposed as

o0

CA =ZCA(n), (3)

n=1

where the polynomials c4(n), n > 1 satisfy the linear recursion
ca(n) =@ —Deatn — Dx1 + (n —2)can —2)x2, n =2

with c4(1) = 1 and c4(0) = 0. Here deg(x;) := i, and each letter x; encodes the
contribution of v; to the series solution of (2). His derivation used the underlying
shuffle algebra induced by products of iterated integrals rather than the fact that the
operator coefficients are differentially generated from the vector fields in the Abel
equation (2) [18, 32, 37]. Devlin also provided a recursion for the higher-order Abel
equation

=) w@de, m=2, )
i=1

though the calculations become somewhat intractable. Using such recursions, it was
then possible to synthesize various sufficient conditions on the v; under which the
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origin was a center. This included a generalization of the composition condition in
[3]. The latter states that a sufficient condition for a center is the existence of a
differentiable function ¢ such that g (w) = ¢ (0) for some w > 0 and

vi() =vi(g(®)q(0), i=1,....m, &)

where the v; are continuous functions. For a time it was conjectured that this
condition was also a necessary condition for a center if certain constraints were
imposed on the v;, for example, if they were polynomial functions of cos wt and
sin wt. However, a counterexample to this claim was later given by Alwash in [1]. It
is still believed, however, to be a necessary condition when the v; are polynomials.
This is now called the composition conjecture (see [2, 5-7, 47] and the references
in the survey article [22]).

Recently, the authors revisited Devlin’s method in a combinatorial Hopf algebra
setting in light of the fact that the Abel equation was found to play a central role
in determining the radius of convergence of feedback connected Fliess operators as
shown in Fig. 1 [41]. This recursive structure is described by the feedback equation

Y1) = Fe[vi (1) + Faly ()],

which by a suitable choice of generating series ¢ and d involving an arbitrary
function v, (¢) can be written directly in the form

2(1) = 22O 1 (1) + v2 ()Y ()]
= v1(0Z2(t) + (N2 (1),

where y(¢) = z(t). It was shown in [14] that the decomposition (3) is exactly the
sum of the graded components of a Hopf algebra antipode applied to the formal
power series —cr, where

o0
CFp = Z k! xlf
k=0

is the Ferfera series, that is, the generating series for solution of the equation z =
z%u, z(0) = 1 [15, 16]. The link is made using the Hopf algebra of output feedback

Fig. 1 Feedback connection

of Fliess operators F, and Fy v , ( ) , F, >y
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which encodes the composition of iterated integrals rather than their products [12,
23, 29]. As a consequence, another algebraic structure at play in Devlin’s approach
beyond the shuffle algebra is a Faa di Bruno type Hopf algebra. Now it is a standard
theorem that the antipode of every connected graded Hopf algebra can be computed
recursively [17, 36]. This fact was exploited, for example, in the authors’ application
of the output feedback Hopf algebra to compute the feedback product, a device
used to compute the generating series for the Fliess operator representation of the
interconnection shown in Fig. 1 [12, 27]. But somewhat surprisingly it was also
shown in [14] that for this Hopf algebra the antipode could be computed in general
using a linear recursion of Devlin type. This method has been shown empirically to
be more efficient than all existing methods for computing the antipode [4], which is
useful in control applications [13, 26, 30, 31]. What was not evident, however, was
how all of these ideas could be related for higher order Abel equations, i.e., Eq. (4)
whenm > 2.

The goal of this paper is to present what turns out to be the nontrivial
generalization of the connection between the center problem, control theory, and
combinatorial Hopf algebras for higher order Abel equations. It requires a new class
of matrix-valued Fliess operators with a certain Toeplitz structure in order to provide
the proper grading. In addition, a new type of multivariable output feedback Hopf
algebra is needed, one which is distinct from that described in [12, 23, 29] and
is more closely related to the output affine feedback Hopf algebra introduced in
[28] for the m = 2 case with vy = 1 (so effectively the single-input—single-output
case) to describe multiplicative output feedback. Once the picture is completed, it is
possible to provide higher order extensions of some known identities for the Abel
generating series, c4. A linear recursion for the antipode of this new Hopf algebra is
also developed using coderivations. Finally, a new sufficient condition for a center is
given inspired by viewing the Abel equation in terms of a feedback condition. This
in turn provides another way of interpreting the composition condition.

2 Linear Recursions for Differentially Generated Series and
Their Inverses

The starting point is to show how any formal power series whose coefficients are
differentially generated by a set of analytic vector fields can be written in terms of a
linear recursion, as can its inverse in a certain compositional sense. This implicitly
describes a group that will be utilized in the next section to describe recursions
derived from feedback systems.

Consider the set of formal power series R{(X)) over the set of words X*
generated by an alphabet of noncommuting symbols X = {xi, ..., x;;}. Elements
of X are called letters, and words over X consist of finite sequences of letters,
n = xj, ---xi, € X*. The length of a word 7 is denoted |77| and is equivalent to
the number of letters it contains. When viewed as a graded vector space, where
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deg(x;) := i and deg(e) := O with e denoting the empty word # € X*, any
¢ € R{(X)) can be uniquely decomposed into its homogeneous components
¢ = Y, c(n) with deg(c(n)) = n — 1, n > 1. In particular, if Xk is the set
of all words of length k, then ¢(1) = (c, e)e and

min(m,n—1)

c(n) = Z Z (¢, nxiynxi, n>2. (6)

nexn— 1—i

A series ¢ € R((X)) is said to be differentially generated if there exists a set of
analytic vector fields {g1, g2, . . . , gn} defined on a neighborhood W of zg € R" and
an analytic function 4 : W — R such that for every word 7 in X* the corresponding
coefficient of ¢ can be written as

<C1 n)ngjl "'ngkh(zo)v n:xjk"'lev

where the Lie derivative of 2 with respect to g; is defined as the linear operator
oh
Legh: W — R:zi> Lgh(z) := 9 (2) gj(2).
Z

The tuple (g1, 82, - - -, &m,» 20, 1) Will be referred to as a generator of c. It follows
directly that c(n) = P,_1(z0), where Py(z0) = h(zp)e and for n > 0, P,(z) :=
> nexn Lg,h(2)n, with Lg, := Lg; -+ Lg, , and (6) can be rewritten as the linear
recursion

min(m,n)

Py (z0) = Z Lg Py—i(z0)xi, n>1. (7
i=1

In this case the grading on R((X)) can be encoded in the sequence P,(zp), n > 1,
by assigning degrees to the vector fields, namely, deg(g;) = deg(x;) = i,i =
1,...,m.

Example 1 Suppose m = 1, g1(z) = z%, 20 = 1, and h(z) = z. Then ¢(1) =
Py(1) = h(l)e = e and

cm)=P1(D=La2Pr2(Dx1=n—DP,2(Dx1=@m—Dctn—Dx1, n=2.

In which case,

o o o
Zc(n) = Z(n - 1)!)(1171 = Zn!x? =:cF.
n=1 n=1 n=0

This is the well studied generating series of Ferfera [15, 16].
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Now suppose d € R((X)) is differentially generated, and consider the corre-
sponding Chen—Fliess series or Fliess operator

Falul(t) := ) {d, n) Ey[ul(t, 10),

neX*

where E;[u] is defined inductively for each word € X* as an iterated integral over
the controls u :== (u1(t), ..., uu (1)), u; : [to,t] = R, by Eglu] := 1 and

t

Eyilul(t. 10) = / ui (2 Exlul(, 10) de

fo

with x; € X, n € X*. Ifu € L'[ty, to + T, that is, u is measurable with finite
Li-norm, |lullz, := max{|lu;|l; : 1 <i < m} < R, then the analyticity of the
generator for d is sufficient to guarantee that the Fliess operator F;[u](¢) converges
absolutely and uniformly on [0, T'] for sufficiently small R, T > 0 [24]. Suppose
next thatd = (dy, ..., dpn—1) is a family of series d; € R((X)),i =1,...,m — 1
which are differentially generated by (g1, . . ., &m, 20, /11, - - ., hm—1), and define the
associated Toeplitz matrix

ldidy---dyu—1

01d--duo m—1
dgpi=| 111 10| =14) AN

000 - d i=1

000--- 1

where I € R™ ™ is the identity matrix, and N € R™*™ is the nilpotent matrix
consisting of zero entries except for a super diagonal of ones. The Toeplitz affine
Fliess operator is taken to be y = Fy,[u] := FdToep[u]u, which can be written in
expanded form as

yi 1 Fglu] Fgylul --- Fg,_,[u] uy
2 0 1 Fgqlul--- Fy, ,[ul 175)
Ym—1 0 0 0 - Fylul Um—1
Vi 00 0 - 1 -

Note in particular that Oeep = I so that Fo;[u] = u. The operator Fy; is realized by
the analytic state space system

=) &@ui, z20)=z (8a)

i=1

y = H()u, (8b)
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where
1hyhy - hy—
01 hy - huo m—1
H=|:: 1 0 1 |=1+) N, ©)
00 0 - h i=1
000--- 1

in the sense that on some neighborhood W of zp, (8a) has a well defined solution z(¢)
on[ty, to+7T]andy = Froep [u]u = H (z)u on this same interval. Since the Toeplitz
matrix H is always invertible and Toeplitz, it follows that the inverse operator u =
F a5 [y]:=F iz ) [y]y is another Toeplitz affine Fliess operator realized by the state

space system

=Y G@HET @yl 200) =20 (10a)

i=1

u=H"'@)y. (10b)

so that Fy; ongl = ngl oFy; = 1. (Here [y]; denotes the i component of y € R™.)

The generating series for the inverse operator, d -1 = d, 1, R dr;ll), is differen-

tially generated by (&1, ..., &m, 20, 1, ..., hm—1), where g; = Z;’Ll ngﬁl
i—1 Foa T —1

gi + le=1 gi—jhj withh; := H1,1+j'

Example 2 For the case where m = 3, system (10) becomes

2=giy1 + (g2 — g1h)y2 + (g3 — g2l + g1(h} — h2)ys,  2(0) = 2o

(11a)
ui l—hlh%—hz V1
uy | =10 1 —h y2 |- (11b)
us 0 0 1 3

In which case,

L Eyrly] Fyly]
Fdi,lep[y] =10 1 Filyl],
0 0 1
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where d~! = (dfl,dgl) is generated by (21, 82, 83, 20, 111, ha) with g1 = g1,
8= g — g1h1, & 1= g3 — g2h1 + g1(h] — ha), hy = —hy and hy = by — hy. If
coordinate functions are defined as linear maps on R2((X)) by

ap(d) = (di.n) = Lg,hi(z0), neX* i=12,
and S is defined as a mapping on R(X) seen as the dual space of R((X)), so that
(S@) (@) = (d; . n) = Lg hi(z0). neX* i=12,

then the coordinates, i.e., coefficients of the inverse series are described compactly
by the following polynomials:

S(ap) = —a; (12a)
S(a2) = —a? +alal (12b)
S(ay,) = —ay, (12¢)
S(ay,) = —ay, +a}a} (12d)
S(ay,) = —aj, +2a} a} (12e)
Say,) = —ay, +ay,a; — ay aca; +ay al (12f)
S(ag,) = —ag, +2ay,a; — 2y aga; + a3 ag (12¢)
S(ai) = —ai + 2a;3aé — 2a;2aéaé + afzaé — a)%laelaé + a)%lag~|—

2ay ajajal —2a} alal (12h)

It is not obvious in general whether the generators for the inverse series dl._1
will necessarily satisfy a linear recursion of the form (7). This is contingent on
whether the new vector fields g; are consistent with the grading on R((X)), that
is, whether deg(g;) = deg(g;),i = 1, ..., m. The next theorem gives a sufficient
condition under which the upper triangular Toeplitz structure of H in (9) guarantees
this property.

Theorem 1 Given any Toeplitz matrix of the form (9) and a set of vector fields g;,

i=1,...,mwithdeg(g;) =i, it follows that g; :== 27:1 gj Hj_il has the property
deg(gi) = deg(gi) provided deg(h;) :=deg(g;) =i, i=1,...,m — 1.
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Proof First observe that

n

m—1 -1 m—1 m—1
H'=|1+Y N | =>"(D"| > mN| .
i=1 n=0 i=1
using the fact that N" = 0, n > m. Now applying the multinomial theorem gives

J

m—1
1 ki .
-1 _ _1hk ki K J
H =1+ E E (=D"k! E kl!---kj!hl hj N/. (13)

j=1| k=1 Ky g4k =k
ky 2k 4t jh =

m—1
=1+ Zth/.
j=1

This means that deg(ﬁj) = deg(h]f' ~-~hl;j) = k1 +2ky+---+ jk; = j. Therefore,
since g = 1 ngﬁl =20 gi—jhj(ho :=1) and

deg (gi-jh; ) = deg (gi) + deglh)) = ( = )+ j =1,

it follows that deg(g;) = i,i = 1, ..., m as required.

Example 3 Reconsider Example 2 in the particular case where (g1, g2, g3, 20, /11,
hy) = (z2,0,0, 1, —z, 0) so that d = (—cF, 0). This is an embedding of Example 1
into the case where m = 3. The series d~! = d, 1, dy 1) has the generator

(81, 82. 83,20, h1, ho) = (2%, 2%, 2%, 1, z, z%). The system (11) reduces to the Abel
system

t=yi+2m 4ty 20)=1

up 1772 yi
up | =101z 2 |
us 001 y3
and therefore, cp3 = d| I Using (7) with the generator for d; 1, the Abel

generating series c4 3 can also be written as cq 3 = Zn>1 ca3(n), whereca 3(1) =
Py(1) = e and

ca3(n) = Py—1(1) =LoPyro(Dx; + LsPy—3()xo+ LaPya(D)x3, n=2
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(P,(1) := 0 for n < 0). A polynomial recursion follows from proving the identity
LiviPyj-1(1)=m—i)P,—i—1(1),i =1, 2,3, so that

ca3(n) = (n—1ca3(n—Dxi+n—=2)ca3(n=2)x2+(n—-3)ca3(n—=3)x3, n=2
(ca3(n) = 0forn < 1). The first few of these polynomials are:

ca3(l) =1

ca3(2) =x

CA’3(3) =2x1x1 + x2

ca3(4) = 6x1x1x1 + 3x2x1 + 2x1x2 + X3

cA3(5) = 24x1x1x1x1 + 12x0x1x1 4+ 8x1x2x1 + 4x3x1 + 6x1x1 X2 + 3x2X2 + 2X1X3.
Note that each c4 3(n) consists only of words of degree n — 1. These polynomials
were first identified by Devlin in [10]. The example can be generalized to any m > 2
so that

cam=I—crN)', (14)

and the corresponding Abel series cq m = >
recursion

n>1CA,m (n) can be computed from the

m

camn) =Y (n—icamn—i)xi, n=2,

i=1
withcqg m(1) =1landcyg jy(n) =0forn < 1.

It is interesting to note that the construction above has some elements in common
with the Faa di Bruno Hopf algebra ¢, = (u, Arap) for the group 9yirr
of diffeomorphisms 4 on R satisfying 2(0) = 0, h(0) = 1. See [17] for details.
First observe that (13) can also be written in terms of the partial exponential Bell
polynomials

. ki ki
B J! n ]
Bj(ti,....n) = Z k1!---k1!<1!) “.<l!) ’

kg -y =k
ky+2ky+- k=

where ! = j — k + 1, using the Faa di Bruno formula
J ti

@) =" BiBjxlan, k)

j=1lk=1
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with f(1) := Y 02, But"/n! and h(r) := Y oo | ant”/n!. Specifically, setting

fo= ' —1= i(—l)ﬂnﬁ"
1+¢ — n!
m—1 m

h(t) = ;n!hnn!

gives

m—1 j

k! i

H' =1+ fv) =1+ Y =Dk [j,B,;k(hl, 2y, G~k + 1>!h,~_k+1>] NY.
j=1 k=1 ’

The expressions in brackets above, i.e., the partial ordinary Bell polynomials, are
used in [8] to define a variation (flipped/co-opposite version) of the coproduct AraB
on #F4p (see equations (4.1)—(4.2) in this citation). A faithful representation of the
group ¥yirr is

k! r
My = |:].'Bj,k(h1, 2y, ..., (j—k+ 1)!hj—k+1):|
[ hy hy s ha hs ]
0 h3 2hyhy h3 + 2h1h3 2hohs + 2k hy - -
00 k3  3h2hy  3hih3+3h3hs -

=100 o0 nt 4h3hy
00 0 0 h
(cf. [21]) and
m—1 ' m—1 .
H'=1+ Z[th],N/ =1+ Zﬁ,N/,
j=1 Jj=1

where 1 :=[—-11 —1 e ]. The_refore, defining the coordinate functions a; (h) =
h;,i > 1, it follows that h; = w(Argpa;(1, h)). For example,

h3 = (Arag(as)(L, h))
= (a1 ® a3 + ax ® 2a1az + a3 ® a}) (1, h))
= —h3 +2h1hy — h3.
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Further observe, setting &; = 1, that the antipode Sgyp of #F4p can be identified
from the top row of

1 —hy 2h3 — h3 —5h3 + Shahz — hy 14h3 — 21h3h3 + 3h% + 6hohy — hs -+

0 1 —2n 5h3 — 2h3 —14h3 + 12hoh3 — 2hy
0 0 1 —3h, 9h3 — 3h3
M =
N O 0 1 —4h,
0 0 0 0 1

That is, using a standard expression for Srgp (see [17]), the (j + 1)th entry in the
top row of M, Vis given by

J
(Srap(aj+1))(h) = Z(—l)k3j+k,k(0, 2tha, 3ths, ..., (j + Dhjy1), j=1
k=1

The assertion to be explored in Sect. 4 is that this construction has deeper connec-
tions to another kind of Faa di Bruno type Hopf algebra, one that is derived from a
group of Fliess operators and used to described their feedback interconnection. In
fact, the compositional inverse described above corresponds to the group inverse.

3 Devlin’s Polynomials and Feedback Recursions

It was shown in [14] that the Devlin polynomials describing the Abel generating
series c4,, when m = 2 can be related to a certain feedback structure commonly
encountered in control theory. This in turn led to a Hopf algebra interpretation of
these polynomials since feedback systems have been characterized in such terms
in [12, 23, 26, 27, 29]. In this section, the generalization of the theory is given
for any m > 2. This will again provide a Hopf algebra interpretation of Devlin’s
polynomials as well as a shuffle formula for the Abel series which is distinct from
that derived directly from the Abel equation, namely, the non-linear recursion

CAm—1+thCZUWZL+1a m > 2,
i=1
where c/f I denotes the i-th shuffle power of ca . Recall that R((X)) consisting
of all formal power series over the alphabet X with coefficients in R forms a unital
associative R-algebra under the concatenation product and a unital, commutative
and associative R-algebra under the shuffle product, denoted here by the shuffle
symbol w . The latter is the R-bilinear extension of the shuffle product of two words,
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Fig. 2 Multiplicative
feedback system v u F ,

F
dToep D

which is defined inductively by
(im)w (xj&) = xi(Nuw (x;8)) + x;((xin) w)

with n W@ = Pwn = n for all words n, & € X* and letters x;, x; € X [18, 39]. For
instance, x; wx; = x;x; + x;x; and

Xiy Xiy wXizXiy = Xjj XipXizXiy + XigXigXiy Xiy + Xiy Xis ()C,'2 uux,'4) + X3 Xxi, ()C,'2 uux,~4).

Consider the (componentwise) multiplicative feedback interconnection shown in
Fig.2 consisting of a Fliess operator F, in the forward path, where ¢ € R™((X)),
and an m x m matrix-valued Toeplitz Fliess operator Fgy,, in the feedback path. It
is useful here to define a generalized unital series, §;, so that Fs [y] := y; for all

i=1,....,mand Fywilyl = (Fs,[yDJ = y/. Withd = (81,822, ...,82m 1),
the closed-loop system shown in Fig. 2 is described by

m—1
y=Flul, u=Fp,ylv=v+ ) yiNv,
i=1
and, in particular,
up = v+ y1va+ yivs+ -+ oy (15)
Example 4 Suppose ¢, = [cF, 0, ...,0] € R"((X)), where cr = Z,fiok!x’f as

in Example 1. In which case, y; = F¢,[u] is realized by the one dimensional state
space model

i=7u, z00)=1, y =z

Applying the feedback (15) gives the following realization for the closed-loop
system

m
Z=Zvizi+1, zZ)=1, yy=z, i=1,...,m.
i=1
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Hence, the generating series for the closed-loop system, denoted here by
¢F,m @droep, has the property that

cAm = [cF,m @droepli- (16)

This is a generalization of the result given in [14] for the m = 2 case.

In control theory, feedback is often described algebraically in terms of trans-
formation groups. This approach is useful here as it will lead to an explicit way
to compute the generating series of any closed-loop system as shown in Fig.2.
Consider the group of Toeplitz affine Fliess operators

T= {y = Fuylul = Fupyo,[ulu : d € Rm*1<<x>>}
under the operator composition

(Fq o Fda)[u] = FCTuep[FdTuep [M]M]Fd'n,ep [u]u,

which is associative and has the identity element Fy,. Strictly speaking, one should
limit the definition of the group to those generating series whose corresponding
Fliess operators converge. But the algebraic set up presented here carries through
in general if one considers the non-convergent case in a formal sense (see [25]).
The group inverse has already been described for the case where d is differentially
generated, i.e., by Eq. (10). It can be shown by other arguments to exist in general
(via contractive maps on ultrametric spaces, see [28]). The group product on .7
in turn induces a formal power series product on R™=1((X)) denoted by c¢s o d;
satisfying Fegoq; = F¢; o Fy;. Given that generating series are unique and the
bijection between R™=1((X)) and their associated Toeplitz matrices, this means
that R~ ((X)) inherits a group structure. A right action of the group .7 on the set
of all Fliess operators F, c € R"({(X)) is given by

m—1
(Fe 0 Fap)[u] = FelFangy[ulul = Fe | u+ Y FgulN'u
i=1

This composition induces a second formal power series product, the mixed compo-
sition product c¢ o ds, satisfying

Feo Fys = Fe a4y (17)
It can be viewed as a right action of the group R™=1((X)) on the set R ((X)).

This product is left linear, nonassociative, and can be computed explicitly when
¢ € R{(X)) by

cdds = ga(@M) = Y {c,n) da()(D),

nex*
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where 1 := le, and ¢, is the continuous (in the ultrametric sense) algebra
homomorphism from R{{X)) to End(R((X))) uniquely specified by ¢4 (x;n) =
$a(xi) o pa(n) with

m—i

Ga(xi)(e) =xie+ Y xiyj(djwe), i=1,....m
j=1

for any e € R{(X)), and where ¢4 (¥) denotes the identity map on R((X)). For any
¢ € R/ ((X)) the product is extended componentwise such that

[codly = [cluod (18)

forallk = 1,2,...,iand! = 1,2,..., j. The following pre-Lie product results
from the right linearization of the mixed composition product

m—i

xin <d:=xi(n <« d) +ZXi+j(djwn)
j=1

with @ <«d := 0. In which case, cods = c +c<d + 0(d2). In particular, it can be
shown directly that

(cs 0 dB)Toep = (CToep ods) UUdToepa

where the shuffle product on matrix-valued series is defined componentwise.
Another useful composition product is the (unmixed) composition product ¢ o d
induced simply by Fooq = F. 0 Fy.

With these various formal power series products defined, it is now possible to
give a general formula for the feedback product c@droep describing the generating
series for the interconnected system in Fig. 2. The following lemma is needed.

Lemma 1 The set 9, = {c € R™" (X)) : (c,e) € Gl,,(R)} is a group under
the shuffle product with the identity element being the constant series 1 := Ie, and
the inverse of any c € 9., is

Ul = (e, )X — NP1 = () e, o)L,

where ¢’ is proper (i.e, (¢, e) = 0), and (') " := ;- ,(c") wk,

Theorem 2 For any ¢ € R™((X)) and d € R"~1((X)) it follows that c@droep =
co ((dToep oc) mil);l'
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Proof The feedback law requires that u = FdToep [ylv = FdToep[FC[u]]v =
FdToepoc[u]v. From Lemma 1 it follows that

V= Flapepocy v -1l = Fi(ap ey w -1y, [l

As the latter is now a group element in .7, one can write

U= Fgrpepocy s -1y; 1 V]

Making this substitution for u into y = F.[u] and writing the result in terms of the
group action gives

Y = Fe@dng [V = FelFgrpgory w0 T = Fo g (apepor w15 V1

As generating series are known to be unique, the theorem is proved.

Corollary 1 The feedback product satisfies the fixed point equation ¢ @dtoep =
co (dToep © (C@dToep))ﬁ-

Proof Observe that y = FC[FdToep [yIv]. Soify = FC@dToep[v] then necessarily

¥ = Fel Fapyey | Fe@dnney [V110] = Fel Figoopo(c@anoey) [010] = Fo 5 (drepotc@dgoeps [V]-

The uniqueness of generating series then proves the claim.

The tools above are now applied to compute the feedback product cr,; @droep
in (16). This will in turn render identities satisfied by the Abel series. The following
lemma is useful.

Lemma2 Ifin(9)h; =h',i=1,...,m—1forsomeh € C®then H~' = I—hN.
Proof Giventhat H = I +hN + h>N? + ... + k"~ IN"=1 observe

H = —=hN)"' = (N)"(I —hN)"H™!
= —hN)UI = (N)")™!
=1 —hN + O((hN)™)
=1—hN,

since N" = 0 whenn > m.
Theorem 3 Foranym > 2,cam =cro(l — CFN)(S_l.

Proof Starting from the formula in Theorem 2 for the feedback product with ¢ =
cFm = lcr,0,...,0] and d = (41, 81W2, R 81“”"_1) and using the definition of
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the shuffle inverse in Lemma 1, observe that

~ “1y—1
CF.m @dToep =CFm?©° ((dToep O CF,m) v )5

w—1
m—1
=Crmd I+ 8" N | ocrm
i=1
$
—1
—1
m—1 uu
=CFmo ZCF““ !
i=0

B
Now note that if 4 in Lemma 2 is identified with F., then h’ = F!_= F,wi.Sothe

o\ w—1
shuffle version of the identity in this lemma is ( ;n:_ol cp''N ’) =1 —cFN.
In which case, cF i @droep = cF.m © (I — cFN)(;l. Next, in light of (16) and (18),
itis clear thatca n = [cFm o (I — cFN)a_l]l =cro(l — cFN)(S_1 as claimed.

Example 5 Consider evaluating ca ,m = crp 6 (I — CFN)g1 when m = 3. In this
case

e¢]

crs(I—crN)y =3 K ga(xH)(D),

k=0

where
da(x1)(e) = x1e + x2(dy we) + x3(dawe)

withd; = (I —c;::N)f1 anddr, = (I —cFN)gl. Using (12) to compute the inverses
gives
(di,e) = S(a))(—cr) = —al(—cr) = —(—cp,e) =1
(di,x1) = S(a})(—cF) = —a,, (—cp) = —(—cp,x1) = 1
(dy. x2) = S(a)))(—cp) = (—al, +a} ab)(—cF)
= —(—cF, x2) + (—cp, x1){—cF,e) = 1
1 1

(d1.x3) = S(a},)(—cF) = (—a}, +a},al —a} ala} +a} al)(—cF)

= —(—cF, x3) + (—cp, x2)(—cF, &) — (—cp, x1){—cF, &) + (—cF, x1)(0, €)

=1.
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Therefore, d; = 1+ x; + x2 4+ x3 4 - - -, which from (14) should be c4 3. Similarly,
dr =1+ 2x1 + 2x + 2x3, so that

crpo(l — cFN)[;1 =14 x14+x+x3+2x1x1 +2x1x2 + 2x1x3 + 3x2x1 + 3x2%2
4 3x2x3 4+ 4x3x1 + 4x3x0 + 4x3xX3 + -+,

which is also equivalent to c4 3 as expected.

Theorem 4 Foranym > 2
m
CAm = 1 +cAmuw Z)C,’CX"YIH*I
i=1

Proof Applying Corollary 1, Theorem 3, and the fact that the mixed composition
product distributes to the left over the shuffle product gives

m
cA,m = CF 0 (dToep © CA,m)s = CF © ZCZMNI
i=0 s
wk
o0 m o m
=D xR [ DN =D [ xis [ Do ey
k=0 i=0 s k=0 i=0 s

wk

o0 m
wi—1
=2 | 2w
k=0 \i=1

Hence, the identity in question then follows directly.

Theorem 4 was first observed in functional form for the m = 2 case in [34]
(see equation (2.3)). In fact, one of the main results of this paper (Theorem 4.1) is
actually just a graded version of this result as described next.

Corollary 2 Foranym,n > 2

m
cam) =cam—Dwxi+Y Y camk)w®icamka)w - eam k).
i=2 ki+-+ki=n—1

Example 6 When m = 3 observe ca3 = 1+ ca3zw(x; + x2ca3 + x3c;‘”32).
Therefore, if a := F¢, ;[u] then

t t t
ait)=1+a() |:/ ui(r)dr +/ ur(t)a(r)dr ~|—/ u3(t)a2(t) dr:| .
0 0 0
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Defining ap, = F¢, 5(n)lul, n > 1 gives the recursion

13 13
an(t) = ap—1 (1) fo wdr+ Y ak @) fo ua(t)ary (1) dr+

ki+ky=n—1

t
Yoo ay® f u3(t)a, (1)ar (1) dr.
ki+ky+k3=n—1 0
The m = 2 case of this recursion appears in [34] as equation (1.7).

The final theorem will be generalized in Sect. 5 to provide a sufficient condition
for a center of the Abel equation.

Theorem 5 Let vy, v2,...,vn € L1[0,w] and m > 2 be fixed. Then the m + 1
degree Abel equation (4) with z(0) = 1 has the solution

1
0= ey
if there exists functions uy, uz, ..., un € L1[0, o] satisfying
_ I 510)
vi(#) = ui () 1= By [ult)
_ uz (1)
v2(t) = ua () — I = Eq [ul(0)
_ U (t)
Upn—1(t) = up—1(t) — 1 — Exl[u](t)

U (t) = up (2)

with Ex, [u](t) := [y u1(r)dt < 1on [0, w].

Proof In light of Theorem 3, it is clear that ¢4 ,, = cr o (I — cFN)gl, and thus,
¢F =ca.m o (I —cpN)s. So assume there exists u € LT [0, w] such that

up — FCF [M]”Z
uz — FCF [M]M3
V= Fg_cpnylul =
Unp—1 — FCF [u]um,
Um
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Then, observing that F..[u] = 1/(1 — Ey, [u]), it follows from (17) that

1

z(1) = FL‘A.m [v] = FL‘A.m[F([—(?FN)A‘ [u]l = FL‘A.m o(I—cpN)s [u] = F(;F[I/t] = 1—E [M](I)
X1

In the next section a Hopf algebra structure is defined on the coordinate functions.

4 Multivariable Hopf Algebra for Toeplitz Multiplicative
Output Feedback

All algebraic structures considered in this section are over the field K of charac-
teristic zero. Let X = {x, ..., x,,} be a finite alphabet with m letters. Each letter
has an integer degree deg(xx) := k. The monoid of words is denoted by X* and
includes the empty word e = § for which deg(e) = 0. The degree of a word
n =x; ---x;, € X* of length |n| := n is defined by

deg(n) := Y klnl.

k=1

Here |n|x denotes the number of times the letter x; € X appears in the word 7.

Consider the polynomial algebra H "™ generated by the coordinate functions a],; ,
where n € X* and the so called root index k € [m] := {1,...,m}, m < m. By
defining the degree

lay |l == k + deg(n),

H becomes a graded connected algebra, H = P, H™ and ||af)af( | =
ak|| + llaL ||. The unit in H is denoted b 1, and ||1]| = 0, whereas ak|| = k.
n K y e
The left- and right-shift maps, 6,; : H™ — H™ respectively 0, : H™ —
H™ for xj € X, are taken to be

P ._ 4P ) p._ 4P
9xja,] =y, 9xja,] = dpy;
with 6,1 = O, ;1 =10.On products in H () both these maps act as derivations
OXjaf”aZ = (ija,’;)az + a,’]’(éxjaZ),
and analogously for éxj. Foraword n = x;; - - - x;, € X*

9” = 9xi1 B .exin’ 977 = Xig " ‘exil'
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Hence, any element af’ € H'™ with n = x;j, -+ xi, € X* can be written

In the following it will be shown how én can be employed to define a coproduct
A H™ 5 g & g0 First, for the coordinate functions with respect to the
empty word, aé, 1 <1 < m, the coproduct is defined to be

-1
Aaé :=aé®1+l®aé+2a§®aé_k. (19)
k=1

Note that a_ is by definition primitive, i.e., Aa} = a! ® 1+ 1 ® a/. The next step
is to define A on any a; with 1 <i < m and |n| > 0 by specifying intertwining

relations between the maps éx,- and the coproduct
i—1

Aol =0, ®id+id®b, + > 0, ® AL | 0 4. (20)
j=1

The map Aék) is defined by
k) i . ik
Aé )a,’7 = a;’ae.
The following notation is used, A o éxi = (:)xi o A, where

i—1
Oy, =0y, ®id+id® 0y, + Y 0, @ AL,
j=1

1

-~-@xi1 for n = xi; -+ x;, € X*. In this setting, a, is primitive

Aa} = Aobal = Oy 0Aa) = (b, ®d+id®0y, ) (2} ®1+1®a}) = a;, ®1+1®ay, .
which follows from éxj 1 = 0. The coproduct of afcz is

Aaiz =Ao éxZaé = (:)x2 o Aa(l3 = (éxz ®id+id ® éxz + éxl ® Aél)) o Aa(l3
-1 -1 -1

=</sz2 ®1+1®ai2 +ail ®aé +Z“§2 ®aé7k —I—Za{g@ai;k +Za§l ®aelaé7k.
k=1 k=1 k=1
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The coproduct of a general aii is

i1
Adl, = Aobyal = 6y, 0 Ad = (B, ®id+id @8y, + Y 0, ® AL ) 0 Ad!
j=1
i1 - -1
= aii ®1 —|—1®aii +Zaij Rae ’ —I—Zal;i ®aé_k —i—Zaé‘ ®aii_k
=1 _ _
i—11-1

+ Z Z a”;j ® aéfjaé_k. (21
j=lk=1
Observe that the grading is preserved. A few examples may be helpful
Aa} =a} ®al +al ®a,,
A ax2 = axl ® a
A’axz = axl ® ae + aiz ® ae1 + ael ® aiz + ail ® aelae1
A’a;3 = ail ® ag + aiz ® aé

2 2 2 2 1 1 1 1 1 1 2 1 1 1.1
A’ax3 = ay, ® ag ~|—ax2 ® a, —l—ax3 ®a, +a, (X)ax3 —l—ax] ®agza, ~|—ax2 R a.a.,

where A’al = Aal — al R1-1® al is the reduced coproduct. For the element

;lcle one ﬁnds the followmg coproduct

A Aoy = =A Oexlgm e — @xl@xz o Aa

S

-1
- x2xl®1+1®axle+ax1®ax1+ax1x1®a +Z xle alik
k=1
alal =k
+Z x1®ax2 Z xlxl dede +Za12®axl +Za ®ax2x1
+Z“X1®ax1 a, —i—Zaxl@a ay;
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The general formula for words of length two is

Aaijxi =Ao éxﬁxjaé = éxi @xj ) Aa([3
j—1 i= ) - )
c@1+1@d  +Y d  @dd™+) d @d™+) d  ®a™

n=1 n=1 s=1

i—1j—1 -1 j—=11-1

l s ]_” 17]( k 1—k k _” -k
+ Z Z axnxx + Z xjxt + Z axi ® axj + a-xllxt de

s=1 n=1 k=1 n=1 k=1

j—1 j—1

-1 -1 -1
FS ok @t Tk ot 4 Yk wal e 4 DY ol
k=1 k=1

n=1 n=1

i—11-1 i—1 i—1j—11-1

-1

ai=Sgl—k k tslk '—lllfk

+Z “xjxs e de +ZZ% ®de + “xnxs de -
k=1

s=1 k=1 s=1 s=1n=1 k=1

The coproduct is then extended multiplicatively to all of H™ and A(1) :=1® 1.

Theorem 6 H' is a connected graded commutative non-cocommutative Hopf
algebra with unit map u : K — H™, counit ¢ : H™ — K and coproduct
A:H™ — HM g g0

Aay = 6, 0 Aaf. (22)

Proof H™ = D, H,fm) is connected graded and commutative by construction.
In addition, it is clear that the coproduct is non-cocommutative. What is left to be
shown is coassociativity. This is done by first proving the claim for a , which follows
from the identity

k—1 I-11-

k,
aé’ X ae P
1

k—1
Za®a6®alkp

-1
D
k=1

—1 p= k=1

—

hS]

From A(aX, ) = Ao 6y, (aX) = Oy, o A(al) it follows that

(A®id)o Aa),) = (A®id) o Oy, o Ala})
i—1 o
- (A 0fy, ®id+id®id® b, + Y Aocby, ® Agw) o Adh)
j=1
i—1 o
= (@x,- ®id+id®id® by + Y Oy, ® AS*”)(A ®id) o A(ak)
j=1

- (éxl.®id®id+id®éxi®id+id®id®éxi
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i—1 i—1
+> 0, @Al @id+) 0, ®ide Al

j=1 j=1
- L 4 -

+Y e, eal )+, @4V P @ al ) e 4) 0 A
= j=1k=1

i—1
- (éxi ®id@id+id® 6, + ) 0y, ® (Af,f‘” Qid+id® AQ‘/))

j=1
+3 Y 0 Al M eal ) de a)o A,
j=1k=1

As noted above, the last sum can be rewritten as

i—1 j—1 . o i—2i—j—1 .
YXduealMeal™ = by ® AR @ ALY
J=1k=1 j=1 k=1
so that
(0 @id@id+id@ 6, +) 0, @ (Al @id+ide AL
j=1
i—1j-1 ) o
+3 0 © 4 g Al )@ A)o A
j=1k=1
- (éx,. ®id®id+id ® Oy,
+> 0, (Al @id+ideal™+ 3 AP @Al V) )dde 4)0 Awh)
j=1 k=1

i1

= (d® A)o (0, ®id+id@b, + Y0, ® AL ) 0 Alaf)

j=1

= (id ® A) 0 Alap,).

The following was also used in the calculation above
- - NP e -
Ao al™ = (4T @id+ide Al + 3 AP @A) o4,
k=1

which follows from Ag)af; = aéaf; together with the multiplicativity of A.
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In the following, a variant of Sweedler’s notation [40] is used for the reduced
coproduct, i.e., A’ (af)) =3 af’ Y af7,,, as well as for the full coproduct

Alay) =) Sdyy, @y, =y @1+ 10 a, + A'lay).

Connectedness of H™ implies for the antipode S : H"™ — H™ the well known
recursions

Say = —alh = > S(ahal, = —al = "dl S(al,). (23)

A few examples are given first. Coproduct (19) implies for the elements aé‘ that

k
Sa* = —ak + Z(—U’ Z al...al". (24)
=2 p1t+pi=k
pj>0
For example,
Saé = —aé, Sag = —ag + aéaé, Sag' = —ag + 2aéa§ — aéaé é.

The following examples are given for comparison with (12):

Sa;l = —ail

Sa,, = —ay, +aya;

Say, = —ay, +aya; — ay agag + ay,ag

Sa}, = —a3, +2ay a

Sa)%2 = —afz + aflael — 2ailaelae1 + 2a;2ae1

Sa)%3 = —ai + Za;Baé — 2a;2aéaé + a)%zaé — afla;aé + aflag
— ZQ;Iaelae2 + ZaJhaelaelae1

The next theorem uses the coproduct formula (20) to provide a simple formula
for the antipode of H ™.

Theorem 7 For any nonempty wordn = x;, - - - xj, € X*, the antipode S : H™
H™ can be written as

k _ 5 k
Sa, = ©,(Sag), (25)



290 K. Ebrahimi-Fard and W. Steven Gray

3 -— 9
where 077 =0,

o-~-09)/5. with
i i

-1
0l =0y + Y Saz )by,
j=1

For instance, calculating

57 3 ) 3 1.2 111 3 1 2 1.2 1.1
Oy, (Sag) = 0y, (—a; + 2a.a; — agaca,) = —ay, + 2ay,ag + 2a.a;, —3ay aea,

which coincides with Sa; - Another example is

@;z(Sag) = (éx2 + S(aé)éxl)(—ag ~|—aéael) = —afz + Zaizaé + a)%la1 — Za;

1.1
e dede -

1

Proof The proof follows by a nested induction using the weight of the root index
and word length. First, formula (25) is shown to hold for words of length one. Note
that the recursions (23) can be written in terms of the convolution product, i.e.,
—S8 = P xS = S % P, which is defined in terms of the coproduct (22)

S:—mH(,;,)O(P@)S)OA:—mH(ﬁ,)O(S®P)OA.

Here m y» denotes the product in H @) and P := id — u o € is the projector that

maps the unit 1in H™ to zero and reduces to the identity on HJ(:h) =@, ™.
Formula (25) applied to a;, gives

-1 -1
_ . i~ I
6}, (Sad) = (B, + Y St iy, Sal = —al, = Y St ay .
j=1 j=1
where (24) was used. This coincides with
Say, = —mym o (P ® ) o Aay,

-1
=—mym o (P ® S)(a;l ®l+1®a, +) a, ® aéﬁ)
j=1

-1
1 !
=—ax1—g S(ae )axj.
j=1
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Now (25) applied to a)’gl gives

-1

~ ~ I—i ~

6, (Sab) = (ex, +3 sk f)exl.)sdg
j=1

-1 k—1
~ 17 ~ _—
(65 + > 8@, ) (- ak = Y arsat™)
j=1 w=1

-1 k-1

-1 k—1
I—j - I—j _
—ab, =" St yak =Y atsakTr =33 at Sl ) sk
j=1 w=1

j=lw=1

k—1
w5/ k—w
— Z a, ()MSae .
w=1

Using the induction hypothesis on the last term, namely, 6 )’q Saé‘ V= Sa)]fl_w, gives

-1 k—1 -1 k-1
~ I—j - —j —
0;,(Say) = —ay, = Y Sac Nay, =Y a¥Sai™" =" Y " a¥ Sa. )S@ai™")
j=1 w=1

j=lw=l1
k—1
— Z al Saﬁl_w.
w=1
This coincides with the antipode computed via the coproduct in (21) since

Sak = —myw o (P ® S) 0 Aak,
-1

= —m i © (P®S)<a’;, ®l+1®a, + ) a, ®al

j=1
k—1 -1 k—1 k—1

w k—w w I=j k—w w k—w
P  aed e Y Y al ed e Y ar e d),
w=1 j=lw=1 w=1

Now suppose (25) holds for all words v € X* up to length |[v| = n — 1. The final
step is to consider af}, where n = x;, ---x;, = 1x;,,1.e, |n| = n,and [ € [m].
Observe

> ) 5 )
@;, (az) = @;in S(az)
= —(‘;;Cian(,;,) o (P ® S) o Aai—;

= —m ) o (O, ®id+id®O) )o(P®S))o Aaf-]
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5 5 l
=_mH(V;’)°(P°@J/€i,, ®S+P®@;in oS)oAa,—;

in—1 . .
= —m (Poéxl.n ®S+Po Y Sal )y, ®S+P®So@xin> o Adl
j=1

in—1 . .
=~y o (P®S) 0Oy, ®id+ Y 8, ® AL +id®dy,)) 0 Adj
j=1

= —mMgG) © (P ® S) o éxin o Aai—]

= —mper) © (P ® S) oAaﬁi = Sai,.

The third equality above came from the fact that @;i is a sum of derivations. The

fourth equality is a consequence of the identity P o éxin = éx,',, o P. The step from
the fourth to the fifth equality used the induction hypothesis to get P ® @)’Ci oS =

P®So éxl-n’ which holds due to the projector P being on the left-hand side. In
addition, the following identity was used:

in—1 in—1
mymo(Po Y S i, ®S)od=mymo((PeS)0Y b ®AT T )oa,
j=1 /=

which holds due to S being an algebra morphism.

The final result is evident from the fact that the feedback structures in Figs. 1
and 2 coincide when condition (15) holds with m = 2.

Corollary 3 For the alphabet X := {x1, x2} the Hopf algebra HV coincides with
the Faa di Bruno-type Hopf algebra for single-input, single-output (SISO) output
feedback given in [20, 23, 26].

5 Sufficient Condition for a Center of the Abel Equation

Consider first a new sufficient condition for a center inspired by viewing the Abel
equation in terms of a feedback connection as described in Sect. 3.

Theorem 8 Let vy, v, ...,v, € L1[0,w] and m > 2 be fixed. Then the m + 1
degree Abel equation (4) has a center at z = 0 if there exists an R > 0 such that for
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every r < R the system of equations

_ rua(t)
v(t) = u (1) — I = rEx [l (1) (26a)
w® =unn - 0 (26b)

1 —rEy [u]l®)

riy, (1)

VUn—1() = Um—1 () — 1 — rExl[u](t) (26¢)
U (1) = up (1), (26d)
has a solution uy, uz, ..., uy € L1[0, w] with Ey, [u](t) := fé ui(r)dr < 1/r on

the interval [0, w] and Ex [u](w) = 0.
Proof The claim is proved by showing that if the system (26) has the solution u1,
us,..., upy then the Abel equation (4) with z(0) = r < R has the solution

r

20 = | — rEg [u)(0)’

In which case, z(0) = z(w) = r for all » < R so that z = 0 is a center.
Consider the case where m = 2 for simplicity. The proposed solution for (4) can
be checked by direct substitution. That is,

2

z2(t) =
(1 = rEq [ul())’

u (1),

so that

2 3 rus(t) r 2
ML +nOfO=mw - ]
X X1

3
,
w2 [1 - rExl[u](t):|

r2

= (= rEq 2P

as expected.

Recall it was shown in Theorem 5 where z(0) = 1 that z(r) = F¢,,, [v]() =
1/(1 — Ex,[ul(?)). So for sufficiently small R > 0 and given any r < R the solution
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to Eq. (4) with z(0) = r can be written in the form

2O =1 FepuIOr" =1 )" Fcy y0l0) =1 Y Fo n[010).

n=1 n=1 n=1

So letting ¢/, , = >0, ¢/, . (n), the composition condition (5) ensures periodic
solutions because

2@) =rFy, @) =7 Y () mEylv]@)
nex*

=7 Y e MES[01(q(@) =7 Y (cly 1) Ey[0]1(q(0))

neXx* neXx*

=rEg[v](g(0)) =r = z(0),

using the fact that E,,[v](g(0)) = O for all n # @. Put another way, the composition
condition gives periodic solutions by simply ensuring that E;[v](w) = 0 for every
nonempty word n € X*. In which case, it is immediate from the shuffle identity
x; ke — k!x{‘ that the moment conditions with respect to v

w
/ vi (D) EX [v](7) dt = KE, 40l@) =0, i=23....m, k=0
0 1

are satisfied. It is known for polynomial v;, however, that the moment conditions
do not imply the composition condition [22]. The following theorem indicates
a condition under which the two conditions are satisfied with respect to the u;
functions.

Theorem 9 Suppose the vy, va, ..., v, € Li1[0, w] satisfy the composition con-
dition. Let uy,ua, ..., u, € L1[0, w] be any solution to (26) with Ey, [u](t) =
f(; u1(r)dtr < 1/r on the interval [0, w]. Then the composition condition and the
moment conditions with respect to the u; are equivalent.

Proof Integrating both sides of (26) over [0, w] gives

Ey[v)(@) = Ex[ul(@) —r Y r* /0 wip1 (1) Ey [ul(v) dx
k=0

= E,[ul(w) —r Z rkk!Exl,Hx{( [u](w)
k=0

fori =1,2,...,m — 1 with E, [v](w) = E,,, [u](w). Therefore, if the v; satisfy
the composition condition then the left-hand side of this equation is zero. In which
case, the claim follows immediately.
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Continuous-Time Autoregressive m)
Moving-Average Processes in Hilbert s
Space

Fred Espen Benth and André Siiss

Abstract We introduce the class of continuous-time autoregressive moving-
average (CARMA) processes in Hilbert spaces. As driving noises of these processes
we consider Lévy processes in Hilbert space. We provide the basic definitions, show
relevant properties of these processes and establish the equivalents of CARMA
processes on the real line. Finally, CARMA processes in Hilbert space are linked to
the stochastic wave equation and functional autoregressive processes.

1 Introduction

Continuous-time autoregressive moving-average processes, or CARMA for short,
play an important role in modelling the stochastic dynamics of various phenomena
like wind speed, temperature variations and economic indices. For example, based
on such models, in [1] the author analyses fixed-income markets while in [8] and
[15] the dynamics of weather factors at various locations in Europe and Asia are
modelled. Finally, in [5, 7] and [19] continuous-time autoregressive models for
commodity markets like power and oil are studied. The versatile class of CARMA
processes can flexibly model stationarity, memory and non-Gaussian effects in data
in many areas in natural science, engineering and economics.

CARMA processes constitute the continuous-time version of autoregressive
moving-average time series models. In this paper we generalize these processes to
a Hilbert space context. Hilbert-valued CARMA processes will form a continuous-
time version of functional autoregressive processes studied by [10]. The area of
functional data analysis, or the statistics of curves and surfaces, has gained attention
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in recent years (see for example [25] for a thorough review with references).
CARMA processes in Hilbert space can be attractive for modeling futures price
curves in finance or weather dynamics in continuous space and time. These
processes also provide an interesting theoretical tool linking higher-order stochastic
partial differential equations to a “multivariate” infinite dimensional dynamics.

The crucial ingredient in the extension of the CARMA dynamics to infinite
dimensions is a “multivariate” Ornstein-Uhlenbeck process with values in a Hilbert
space. There already exists an analysis of infinite dimensional Lévy-driven Ornstein-
Uhlenbeck processes, and we refer the reader to the survey [3]. Moreover, matrix-
valued operators and their semigroups play an important role. In [14] a detailed
semigroup theory for such operators is developed. We review some of the results
from [3] and [14] in the context of Hilbert-valued CARMA processes, as well as
providing some new results for these processes.

Let us recall the definition of a real-valued CARMA process. We follow [11] and
first introduce the multivariate Ornstein-Uhlenbeck process {Z(¢)};>o with values in
R? for p € N by

dZ(r) = CpZ(t)dt + e,dL(r), Z(0) = Zy € R”. (1)
Here, L is a one-dimensional square integrable Lévy process with zero mean defined

on a complete probability space (§2, %, P) with filtration ¥ = {.%;},>0, satisfying
the usual hypotheses. Furthermore, e; is the ith canonical unit vector in R?, i =

1,..., p. The p x p matrix C), takes the particular form
0 1 0. 0
0 0 10 0
c, = . e ’ @)
0 1
—Op —Olp_] . . ..—0
for constants o; > 0,i =1,..., p.!

We define a continuous-time autoregressive process of order p by
X(1) =e[Z(1), 1 = 0, (3)

where x| means the transpose of x € RP. We say that {X (¢)};>0 is a CAR(p)-
process. For g € N with p > ¢, we define a CARMA(p, g)-process by

X()=b"Z®), t >0, 4)

IThe odd labelling of these constants stems from an interpretation of CARMA processes as
solutions to higher-order linear stochastic differential equations.
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where b € R? is the vector b = (bo, b1,...,b4-1,1,0, ..,O)—r € R”, where
by = land b; = 0,i = g+ 1,...,p — 1. Note that b = ey yields a
CAR(p)-process. Sampling the CARMA(p, g)-process {X (¢)};>0 on an equidistant
discretized time grid we get an (weak) autoregressive moving average time series
process (see [8, Eq. (4.17)] for an Euler-Maryuama approximation, yielding an
autoregressive moving average time series of order p, g.). An explicit dynamics
of the CARMA(p, g)-process {X (¢)};>¢ are (see e.g. [9, Lemma 10.1])

t
X (1) =b" exp(tCp)Zo + / b' exp((r — 5)Cp)epdL(s), ®)
0

where exp(¢C) is the matrix exponential of C ), the matrix Cp, multiplied by time .
If Cp has only eigenvalues with negative real part, then the process X admits a
limiting distribution wy with characteristic exponent (see [11])

. (o)
Ix(z) := lim logE [e‘ZX(’)] = / YL (bT exp(sC,,)epz> ds.
11— 00 0

Here, ¥ is the log-characteristic function of L(1) (see e.g. [2]) and log the
distinguished logarithm (see e.g. [21, Lemma 7.6]). In particular, if L = o B with
o > 0 constant and B a standard Brownian motion, we find

~ 1, e
Ax() = 20 /0 (b7 exp(sCpe,)’ds .

and thus X has a Gaussian limiting distribution px with zero mean and variance
o2 [ (b7 exp(sCp)ep)?ds.

When X admits a limiting distribution, we have a stationary representation of the
process X such that X (t) ~ ux forall7 € R, namely,

t
X (1) =[ b" exp((t — 5)Cp)e,dL(s), ©6)

where L is now a two-sided Lévy process. This links CARMA(p, g)-processes to
the more general class of Lévy semistationary (LSS) processes, defined in [5] as

t
X(1) := f g(t — $)o (s)dL(s), 7)

for g : Ry — R being a measurable function and o a predictable process such that
s > g(t—s)o(s) fors < tisintegrable with respect to L. Indeed, LSS processes are
again a special case of so-called ambit fields, which are spatio-temporal stochastic
processes originally developed in [4] for modelling turbulence. An ambit field in our
context can be defined as a real-valued space-time random field {X (¢, x)};>0,xeD
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of the form
t
X(I,X)=/ fg(l,s,x,y)G(s,y)L(dy,dS), (8)
—00 J D

where D C R? is a Borel-measurable subset, g is a measurable real-valued function
onRy xRy x R? x R and o is a real-valued predictable random field on R x R?.
Furthermore, L is a so-called Lévy basis, which means that it is an independently
scattered infinitely divisible random measure on By, R4+ the set of bounded
Borel sets on R4t!. Under appropriate conditions on g, o and L (see [4] and [24]),
the stochastic integral in (7) makes sense as an [to-type integral.

The infinite dimensional CARMA processes that we are going to define in this
paper will form a subclass of ambit fields, as we will see in Sect.4. We note that
CARMA processes with values in R” have been defined and analysed by [18, 22]
and recently in [16]. In [12] we find a definition of multivariate CARMA processes
which is related to our infinite dimensional approach.

2 Definition of CARMA Processes in Hilbert Space

Given p € N, and let H; fori = 1, ..., p be separable Hilbert spaces with inner
products denoted by (-, -); and associated norms | - |;. We define the product space
H := H; x ... x Hp, which is again a separable Hilbert space equipped with the
inner product (x, y) := Zle (xi, yi)i and the induced norm denoted |-| = Y 7_, |-;
forx = (x1,...,%p),y = (V1,...,yp) € H. The projection operator &; : H —
H; is defined as Z;x = x; forx € H,i =1, ..., p. Itis straightforward to see that
its adjoint &7 : H; — H is given by &'x = (0,...,0,x,0,...,0) forx € H,
where the x appears in the ith coordinate of the vector consisting of p elements. If
U and V are two separable Hilbert spaces, we denote L(U, V') the Banach space of
bounded linear operators from U to V, equipped with the operator norm || - [|op. The
Hilbert-Schmidt norm for operators in L(U, V) is denoted || - ||gs, and L2 (U, V)
denotes the space of Hilbert-Schmidt operators. If U = V, we simply write L(U)
for L(U, U).

Let A; : Hyy1—; — Hp,i = 1,...,p be p (unbounded) densely defined
linear operators, and I; : Hpyo-; — Hpy1-i,i = 2,..., p be another p — 1
(unbounded) densely defined linear operators. Define the linear operator ¢, : H —
H represented as a p x p matrix of operators

0 I, 0O ...0
0 0 I,10..0
€, — . . coeee | )
0 . )
Ap Ay A
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Since the A;’s and I;’s are densely defined, &), has domain
Dom (%)) = Dom(Ap)x(Dom(Ap—1)NDom(Ip))x...x(Dom(A1)NDom (1)),

which we suppose is dense in H. We note in passing that typically, H| = H> =
... = Hp and I; = 1d, the identity operator on H;,i =1, ..., p. Then Dom(‘fp) =
Dom(Ap) x Dom(Ap—1) X ... x Dom(A1), which is dense in H.

A family {.At)};>0 C L(H) of operators is said to be a Co-semigroup if A0) =
Id, At) As) = At +s) forany ¢, s > 0 and A¢)x — xin H whenevert | O for
all x € H. From [14, Ch. II. Thm. 1.4], we know that there exists a densely defined
linear operator ¥’ on H such that

1
Ex = lzlfg ) (ADx —x),

for all x € Dom(%), where the limit is taken in H. One says that €’is the generator
of the Co-semigroup {-A(#)};>0. The question of when a densely defined operator
% is a generator of a Cp-semigroup can be answered by the generation theorem of
Hille and Yoshida (see [14, Ch. II, Thm. 3.5]) in the contractive case: if R(\, %)
denotes the resolvent of %, then €’is a generator if and only if €’is a closed operator
and for every A > 0, A is in the resolvent set and [|AR(X, ©)llop < 1. If the densely
defined linear operator ), in (9) is the generator of a Co-semigroup, we denote this
semigroup by {7, (¢)};>0 from now on.

On a complete probability space (£2, .%, P) with filtration . = {.%#;};> satisfy-
ing the usual hypotheses, denote by L := {L(¢)};>0 a zero-mean square-integrable
H ,-valued Lévy process with covariance operator Q (i.e., a symmetric non-negative
definite trace class operator), defined as follows (see e.g. [20, Sect. 4.9]):

Definition 1 An H)-valued stochastic process L = {L(t)};>0 is called a Lévy
process if L(0) = 0, L is stochastically continuous, L(#) — L(s) is independent
of L(u) — L(v) forallt > s > u > v > 0 and the law of L(t) — L(s) depends only
ont —s.

An Hp-valued Lévy process is thus, in short, a stochastically continuous process on
H), starting at zero which has independent and stationary increments. The process
L = {L(t)};>0 is square-integrable whenever E[|L(t)|f,] < oo for all + > 0. For
a square-integrable Lévy process L = {L(t)};>0 with zero mean, it follows from
[20, Thm. 4.44] that there exists a linear operator Q € L(H)) being symmetric,
non-negative definite trace class such that

E[(L(), x)p(L(s), y)pl =t As{Ox,y)p, x,y€ Hp, t,5>0.

One refers to Q as the covariance operator of L.
Consider the following stochastic differential equation. For ¢ > 0,

dZ(r) = €,Z(t)dt + F4dL(1), Z(0) :=Zo € H. (10)
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This H-valued Ornstein-Uhlenbeck process is a special case of a more general
stochastic differential equation in H of the form

dZ(1) = €, Z(1)dt + F(Z(t))dt + G(Z(1))dL(t), Z(0) :=Zo € H, (11)

where F : H — H and G : H — Ly(H), H) are Lipschitz continuous operators.
In the case ), is the generator of a Co-semigroup, a mild solution of (11) is defined
according to [20, Def. 9.5] (see also Remark 9.4 in [20]) as follows:

Definition 2 A predictable H-valued stochastic process Z = {Z(t)};>0 is said to
be a mild solution of (11) if sup, <o 1) E[|Z(t)|2] <ooforall0 < T < oo and

t t
Z(1) =5ﬂp(z)zo+f yp(t—s)F(Z(s))derf Iyt — )G (Z(s))dL(s),
0 0

forallt > 0.
The next proposition states an explicit expression for the mild solution of (10)

Proposition 1 Assume that ¢, defined in (9) is the generator of a Co-semigroup
{Sp(O)}i=0 on H. Then the H-valued stochastic process Z given by

13
Z(1) = ., ()20 + / Tt — 5)P4dL(s)
0

is the unique mild solution of (10).

Proof We have that .7, (t — s)gm;, € L(H,, H), and moreover, since ||f@>';,||Op =1
it follows

175t — ) 2750 [lus < 7p(t — ) llopll P llopll @' * s < Ke "™V Q2|lus

by the general exponential growth bound on the operator norm of a Cy-semigroup
(see e.g. [14, Prop. 1.5.5]). Thus, for all # > 0,

t
K
Auxﬁ—mﬂdﬂ@MS%&w¢%&<w

because Q is trace class by assumption. The stochastic integral with respect to L in
the definition of Z is therefore well-defined. Hence, the result follows directly from
the existence and uniqueness theorem of mild solutions in [20, Thm. 9.29].

From now on we restrict our attention to operators %, in (9) which admit a Co-
semigroup {7, (¢)};>0. We remark in passing that in the next section we will provide
a recursive definition of the semigroup {.%,(#)};>0 in a special situation where all
involved operators are bounded except Aj.
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A CARMA process with values in a Hilbert space is defined next:

Definition 3 Let U be a separable Hilbert space. For % € L(H, U), define the
U -valued stochastic process X := {X (¢)};>0 by

X(t) = LyLi),t >0,

for Z(r) defined in (10). We call {X (¢)};>0 a CARMA(p, U, £y )-process.

Note that we do not have any g-parameter present in the definition, as in the real-
valued case (recall (4)). Instead we introduce a Hilbert space and a linear operator
as the “second” parameters in the CARMA(p, U, £y )-process. Indeed, the vector
b in the real-valued CARMA(p, q)-process defined in (4) can be viewed as a linear
operator from R” into R by the scalar product operation R” > z +— b’z € R, or,
by choosing U = H; = R, 4rz = b’z. This also demonstrates that any real-valued
CARMA(p, g)-process is a CARMA(p, R, b’-)-process according to Definition 3.
We further remark that our definition of a CARMA process in Hilbert space can
be viewed as a natural extension of the controller canonical representation of a
multivariate (i.e., finite dimensional) CARMA process introduced in [12].
From Proposition 1 we find that the explicit representation of {X (¢)};>¢ is

1
X)) =251y +/ Lyt — s)@ZdL(s), (12)
0

for + > 0. Note that by linearity of the stochastic integral we can move the
operator .27 inside. Furthermore, the stochastic integral is well-defined since .2}, €
L(H, U) and thus has a finite operator norm.

The continuous-time autoregressive (CAR) processes constitute a particularly
interesting subclass of the CARMA(p, U, £y )-processes:

Definition 4 The CARMA(p, Hy, &71)-process {X (¢)};>0 from Definition 3 is
called an Hj-valued CAR(p)-process.

The explicit dynamics of an Hj-valued CAR(p)-process becomes
1
X)) =21,y + / P p(t — )P ,dL(s), (13)
0

for + > 0. In this paper we will be particularly focused on H;-valued CAR(p)-
processes.

Remark that the process L := WZL defines an H-valued Lévy process which
has mean zero and is square integrable. Its covariance operator is easily seen to be

P0P,.
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It is immediate to see that an Hj-valued CAR(1) process is an Ornstein-
Uhlenbeck process defined on Hj, with

dX (1) = A\ X ()dr +dL(),

and thus
t
X(@) =120 +/ F1(t = s)dL(s),
0

being its mild solution.
An Hj-valued CAR(p) process for p > 1 can be viewed as a higher-order
(indeed, a pth order) stochastic differential equation, as we now discuss.

Proposition 2 Suppose that Ran(A;) C Dom(l) and Ran(l;) C Dom(l441),
and assume that there exist p — 1 linear (unbounded) operators By, By, ..., By :
H{ — Hi such that

Iy -hAy=Bylply 1 Igi1. (14)

forqg =1,..., p—1. We suppose that Dom(By) is so that Dom(Bylplp_1---1511)
= Dom(Ay). Furthermore we define the operator B, : Hy — Hj as

By:=1,---hA,. (15)

and suppose that B), is a linear (possibly unbounded) operator with domain
Dom(Bp) = Dom(Ap). Then,

14
dxX»=V) = ZquUHf)(t) dt + 1, LAL(t), (16)
g=1

where X9 (1) denotes the qth derivative of X (t), g = 1,...,p — 1.

Proof We note that I, ---I : H, — Hyand hence I, ---hA, : Hyr1-4 — Hi.
Moreover, Iy ---Iy+1 : Hpy1—4 — Hi, and therefore B, : Hy — Hj for g =
1,..., p — 1. We also observe that that Dom(A) is the domain of the operator
I --- I A,. We see further that the definition of B), is consistent with the inductive
relations in (14).

By definition, X (1) = 92, Z(t), which is the first coordinate in the vector Z(t) =
(Z1(1), ..., Zp (t))T € H.From (10) and the definition of the operator matrix &
in (9), we find that Z’l(t) = 1,Z5(1), Zé(t) =1, 1Z3(1), ..., Z;fl(t) =hZ,({1)
and finally

Zh(6) = ApZi(t) + - A Z1(t) + L'(0).



Hilbert-Valued CARMA Processes 305

Here, L'(¢) is the formal time derivative of L. By iteration, we find that Z iq) (1) =
Iply—1--- 1y g-1)Zgy1(t) forg =1,..., p — 1. Thus,

d -1
s =1, hZ,)

=1y hAZIO) + Iy A1 Zo(t) + -+ Iy DAV Zp(t) + 1 LL (1)

(p) _
VAR

=By Zi(t) + Bp1 Z) (1) + Bp2ZP () + ...+ BIZP V@) + 1, L' ().
In the last equality we made use of (14) and (15). After multiplying both sides above

with dz, we find that an H-valued CAR(p) process X (1) = &1 Z(¢) is the solution
to the pth-order stochastic differential equation (16).

Let us introduce the operator-valued pth-order polynomial 9, (%) for A € C,
0p(M) =1 — BIAP™! — BoAP™2 — ... — B, 1A — B,. (17)

Inspecting the proof of the proposition above, we see that we can express informally
the CAR(p) process { X (#)};>0 as the solution of the pth-order differential equation,

d
0, <dt> X(@t)=1,---LL (). (18)

The form of the operator-valued polynomial Q, is a consequence of the specifica-
tion of the CARMA process by the matrix operator %), in (9).

If H = ... = H), and %), is a bounded operator, then B, = I, --- LA, in (14)
whenever [, - -- b A, commutes with I, --- I;11. In this sense the condition (14)
is a specific commutation relationship on A, and the operators Io, ..., I. In the
particular case I; = Id fori = 2,..., p, then we trivially have A; = B, for g =
1,..., p. As a special case, let us for a moment suppose that p = 2, and consider
a CARMA(2,H,.Zn, )-process {X (t)};>0. As H = Hlx2 and U = H, in this case,
we represent £y, as a vector-valued operator £y, = (M;, M>), where M; €

L(Hy),i = 1,2. We assume that M; commutes with A; for all i, j = 1, 2 (recall
that A1 and A, are now bounded). By definition, X (#) = M1Z1(t) + M2Z,(¢).
Doing an informal calculation, we find, using the relationships for Z; and Z, and
the commutation assumptions,

d X(t
Qz(dt> 0

= X"(1) — A1 X'(t) — A2 X (1)
=M Z{(t) + My Z (1) — AiM 1 Z1 (1) — AiMaZ(t) — AoML Z1 (1) — AaMo Z5 (1)
= (M1Ax + M A1 Ay — A\ Mr Ay — Ao M) Z4(2)
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+ (M1A1 + MyAs + MyAT — A\My — A\ MayAy — AzMz) Z)(t)

+ (MyAy — Ay My + ML (t) + Ma L7 (t)
=ML+ ML"(t).

Indeed, for a general p € N and under the assumption that M; commutes with A ;
foralli, j =1,..., p, we can extend the above derivation to

d dy .,
Op (dt) X(@) =Ry (dt)L (1)

for the operator-valued (p — 1)th-order polynomial R, 1(A), A € C,
Rp—1(h) = MpAP™! + Mp_iAP72 4 oo+ Mo) + M. (19)

Hence, informally, a CARMA(p, H{, Zp,)-process {X (t)};>0 can, under rather
strong conditions on commutativity, be represented by an “autoregressive” poly-
nomial operator Q0 and a “moving average” polynomial operator R, 1. This is a
representation that we also find for multivariate CARMA processes, see [12].

Although the choice of /; = Id fori = 2,..., p (with Hy = ... = H)) is the
canonical choice from the point of view of the finite dimensional CARMA processes
(see [18, 22]), it may be convenient with more flexibility in the Hilbert-valued case.
For example, with our generality, we may choose the state space H), of the noise
{L(#)};>0 to be different than the state space H; of the process {X(f)};>¢. This
can accommodate situations where there is a finite-dimensional noise, but with the
process {X (t)};>¢ taking values in an infinite dimensional space. This is the case
for many models of forward rates in fixed-income markets in finance (see [13]). The
operators I; may also be viewed as a “volatility” which scales the noise in the sense
that it acts on the Hilbert-structure of L (recall (18)).

We end this section with showing that the stochastic wave equation can be viewed
as an example of a Hilbert-valued CAR(2)-process. To this end, let H, := L?(0, 1),
the space of square-integrable functions on the unit interval, and consider the
stochastic partial differential equation

Yt x) Y (1, x) N AL(z, x)

= 20
at? ax2 ot (20)

with t > 0 and x € (0, 1). We can rephrase this wave equation as

Y (1, x) 01d || Y(,x) 0
d| avern | = v | df + : 1)
|- o Lt
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with A = 82/dx? being the Laplace operator. The eigenvectors e,(x) :=
V2 sin(mnx), n € N, for A form an orthonormal basis of L2(0, 1). Intro-
duce the Hilbert space H; as the subspace of L*(0, 1) for which |f |% =
202 n?(f, en)3 < oo. Following Example B.13 in [20],

0 1d

generates a Cop-semigroup .5 (¢) on H := Hjx H,. The Laplace operator A is a self-
adjoint negative definite operator on H;. The semigroup .#>(¢) can be represented
as

(22)

F(1) = cos((=A)'21) (=AM sin((— )1
2T ) 2sin((— ) 2 cos((—A)1/2p) ‘

In the previous equality, we define for a real-valued function g the linear operator
g(A) using functional calculus, ie., g(A)f = Y 0o, g(—?n*)(f, en)2e, when-
ever this sum converges. These considerations show that the wave equation is a
specific example of a CAR(2)-process.

3 Analysis of CARMA Processes

In this section we derive some fundamental properties of CARMA processes in
Hilbert spaces.

3.1 Distributional Properties

We state the conditional characteristic functional of a CARMA(p, U, £y )-process
in the next proposition.

Proposition 3 Assume X is a CARMA(p, U, £y )-process. Then, for x € U,
. t—s
E [el(x(t)'x)l/ |35S] =exp | (Ly S ) Lo, x)u +/ 143 (9,,5”1’;(u)%x) du
0

X exp <i(/x Ly Lyt — ) PAL (), x)U> ,
0

forQ < s <t. Here, V[, is the characteristic exponent of the Lévy process L.
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Proof From (12) it holds for0 < s <1,
s t
X(t) =Ly Spt)Ly +/ Ly Sp(t — u),@;dL(u) +/ Ly Spt — u).@;’;dL(u).
0 s

The Lévy process has independent increments, and .%;-measurability of the first
stochastic integral thus yields

. s
B[00 | 7] = exp (i(fuy,,(z)zo, o +i( / Ly Syt =) PydL(w), x>U)
0

t
x E |:exp (i(/ Ly p(t — u)W;dL(u),x)U):| .

The result follows from [20, Chapter 4].

Suppose now that L = W, an H),-valued Wiener process. Then the characteristic
exponent is

Yw(h) = —;(Qh,h)p,
for h € H),. Hence, from Proposition 3 it follows that,
o [euxm,xw | ys] = exp (i(fyy,,(z)zo,xm + i(/os Ly S p(t —u) PhdW (u), x)U>
[ pt=s
X exp (-2 /O (L) P 0P 550 Ly x, x)Udu>

We find that X (¢)|.%; for s < t is a Gaussian process in Hj, with mean

E[X(1)| Z] = L)L+ /OS Wy S p(t — u)@’,‘,dL(u)
and covariance operator

Var(x 017) = [ 200 75,09, Ly,

where the integral is interpreted in the Bochner sense. If the semigroup %, (1) is
exponentially stable, then X (7)|.%; admits a Gaussian limiting distribution with
mean zero and covariance operator

lim Var(X (1)].7) =[ Ly Sy ) 50Dy (u) Ly du.
—> 00 0
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This is the invariant measure of X. We remark in passing that measures on H are
defined on its Borel o -algebra.

In [3] there is an analysis of invariant measures of Lévy-driven Ornstein-
Uhlenbeck processes. We discuss this here in the context of the Ornstein-Uhlenbeck
process {Z(t)};>o defined in (10). Assume uz is the invariant measure of {Z(¢)};>0,
and recall the definition of its characteristic exponent iz (x),

fiz(x) = logE [e“"*Z(’»] . (23)

Here, x € H and log is the distinguished logarithm (see e.g. [21, Lemma 7.6]). If
Zo ~ gz, then, in distribution, Zg = Z(t) for all t+ > 0 and it follows that the
characteristic exponent of p17z satisfies,

t
Az() = Az(S5(0%) + /O VL(Pp L5 wx)du (24)

forany x € H and ¢ > 0. Following [3], iz becomes an operator self-decomposable
distribution since,

uz = Spt)uz * i (25)

Here, ; is the distribution of fé p (u)c@;‘,dL(u), * is the convolution product of
measures and .7, (H)uz = uz o &) (t)’1 is a probability distribution on H, given
by

/H FX)(Fp O puz)(dx) = fH F(Fp()* ) pz(dx),
for any bounded measurable function f : H — R.If Z(#) ~ uz, then since
logE [ei("%z(’)’x)”] =logE [e<Z(I)"‘%x>] = Uz(Lx),

it follows that {X (#)};>¢ is stationary with distribution @y having characteristic
exponent Ly (x) = iz (£} x) forx € U.

We notice that %), is a bounded operatoron H ifandonly if A;,i =1, ..., p and
I;,j=2,..., p are bounded operators. In the case of €, being bounded, we know
from Thm. 1.3.14 in [14] that the semigroup {.%,(¢)};>0 is exponentially stable if
and only if Re(A) < O for all A € 0(%),), where o (%)) denotes the spectrum of
the bounded operator €),. Recall from Sect. 1 that a real-valued CARMA process
admits a limiting distribution if and only if all the eigenvalues of C, in Eq.2 have
negative real part. In general, by Thm. V.1.11 in [14], the semigroup {.#},(¢)};>0 is
exponentially stable if and only if {A € C|Re(A) > 0} is a subset of the resolvent
set p(6)p) of € and supge(3)=0 IR(A, €p)ll < co. Here, R(A, €)) is the resolvent
of €, for A € p(%)).
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3.2 Path Regularity

Let us study the regularity of the paths of the CAR(p) process. We have the
following proposition:

Proposition4 For p € N with p > 1, assume that €), defined in (9) is the
generator of a Co-semigroup {)(t)};>0. Then the Hy-valued CAR(p) process X
given in Definition 4 has the representation

t u
X (@) = P10y + P16, / / S pu — s)f@;‘,dL(s)du,
0 JO

forallt > 0.
Proof From [14, Ch. II, Lemma 1.3], we have that

t
) =1d + ‘Kp/ Fp(s)ds.
0

But for any x € H, it is simple to see that Qlldﬁzx = 0 when p > 1. Therefore it
holds

t
PSPy = PIE, /0 T (5) Phds.

The integral on the right-hand side is in Bochner sense as an integral of operators.
After appealing to the stochastic Fubini theorem, see [20, Thm. 8.14], it follows
from the explicit expression of X (¢) in (13)

'
X(t) =211y ~|—/ P\Sp(t — S)@Zdl,(s)
0
' 1—s
= f@lyp(t)lo—i-/ 3”1(51,/ Yp(u)f@;‘,dudL(s)
0 0
1 1
= PSP ()L + 3”1/ ‘to”,,/ Sp(u— s)@”;,dudL(s).
0 s

We know from [14, Ch. II, Lemma 1.3] that f; Sp(u — s)f@’[‘,du € Dom(%,). We

demonstrate that fot /; 'y — )P, dudL(s) € Dom(%)): First we recall that
L = BZZL is an H-valued square-integrable Lévy process with mean zero. From
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the semigroup property,

topt ropt
}ll (Yp(h)/o [ Yp(u—s)dudL(s)—/o [ Yp(u—s)dudL(s))

topt t pt
= ! / / Sp(u +h — s)dudL(s) — ! / / Sp(u — s)dudL(s)
h 0 Js h 0 Js

t 1 t+h 1 t
= / Sp( —s)dv — / p(v — s)dsdL(s)
0o b Jsin h J

1 t+h 1 s+h
= /0 P / Sp( —s)dv — P / p(v — s)dsdL(s)
t s

" h 1 h
= / / Spw)duSp(t — s) — / & p(u)dudL(s)
o hJo h Jo

h 1
= ! / Sp(u)du / p(t —s)dL(s) — L) | .
h Jo 0

By the fundamental theorem of calculus for Bochner integrals, (1/ %) f (;1 Sp(u)du—
Id when /| 0. Therefore, the limit exists and the claim follows. From this we find
that

t ot
X(@) =215,y + P16, / / S pu — s)c@;dudL(s)
0 Js
t pu
= P15 )Ly + P16y / / U — s)f@;‘,dL(s)du.
0 JO

In the last equality, we applied the stochastic Fubini Theorem (see e.g. [20,
Thm. 8.14]). Hence, the result follows.

Note that if Zg € Dom(%)), then by [14, Ch. II, Lemma 1.3] t = 9.7, (t)Zy
are differentiable. Assuming that fé St — s)gz’;dL(s) € Dom(%)), it follows
from the Proposition above that the paths r — X (#),# > 0 of X are absolutely
continuous, with weak derivative

t
X' (1) = 26,5, (1) 2o + %%p/ Fp(t — ) P5dL(s), (26)
0

for t > 0. The stochastic integral in (26) has RCLL (cadlag) paths when {.%),(¢)};>0
is contractive (see [20, Prop. 9.18]), and therefore the H;-valued CAR(p)-processes
for p > 1 have weakly differentiable paths being RCLL. If L = W, an H)-valued
Wiener process, then the stochastic integral has continuous paths in the case the
semigroup is contractive and the paths of X become continuously differentiable. We
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point out that p > 1 is very different from p = 1 in this respect, as the Ornstein-
Uhlenbeck process

t
X(1) = S1(1)Zo + / St = $)dL(s)
0

t u
— AWNZo+ L)+ f / S1(u — )AL (s)du,
0 JO

does not have absolutely continuous paths except in the trivial case when the Lévy
process is simply a drift. It is straightforward to define an H-valued Lévy process
L for which fé St — s)c@;dL(s) € Dom(%)). For example, let L be an R-
valued square-integrable Lévy process with zero mean, and define L = L g for
g € Dom(A1) N Dom(I,). Then WZL = (c@;‘,g)L € Dom(%)), and therefore

fot Zp (t—s)(@}‘,g)df(s) € Dom(%),) from [14, Ch. II, Lemma 1.3]. If we consider
the particular case of the wave equation, as presented at the end of Sect. 1, we
have A7 = 0 and I» = Id, and thus we can choose any g € H,. In this case
we can conclude that the paths of the solution of the wave equation are absolutely
continuous with weak derivative as in (26).

3.3 Semigroup Representation

We study a recursive representation of the Co-semigroup {7, (¢)};>0 with &), as
generator, where we recall 4, from (9). The following result is known as the
variation-of-constants formula (see e.g. [20, Appendix B.1.1 and Thm. B.5]) and
turns out to be convenient when expressing the semigroup for €.

Proposition 5 Let o7 be a linear operator on H being the generator of a Cy-
semigroup {Sof(t)}i>0. Assume that 8 € L(H). Then the operator of + &
Dom(<f) — H is the generator of the Co-semigroup { At)};>0 defined by

At = Foft) + ),

where

A1) = 1),

n=1

and
t
s (1) = f St — 8B (s)ds,
0

forn=0,1,2,..., with Zy(t) = L A1).
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We apply the proposition above to give a recursive description of the Cy-semigroup
of €,.

p

Proposition 6 Given the operator €, defined in (9) for p € N, where 6| = Ay is
a densely defined linear operator on H, (possibly unbounded) with Co-semigroup
{A1(D}i=0. For p > 1, assume that I, € L(H», H), A, € L(Hy, Hp) and €,
is a densely defined operator on Hy x ... x H), with a Co-semigroup {%,—1(t)}i>0,
then

Tp(t) =T () + ) P p (1),

n=1

where %o, (1) = Y;_l(t) and forn =1,2,...,

t
Fn+1,p(t) =/0 y;,r_l(t — )BT, p(s)ds.

Here, ), € L(H) is

0 1,0..0
0 00..0
B, =
Ap 0 ...0
andy;l e L(H)

1d 0 0
0

L=
. yp_l(t)
0

for Id being the identity operator on Hj.

Proof By assumption, I, € L(H>, Hy) and A, € L(Hy, Hp), and thus %, €
L(H). Define
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Then, &), + %, = €,. Moreover, {5’;71 ()}¢>0 is the Cp-semigroup of 7,. Hence,
the result follows from Proposition 5.

As an example, consider p = 3. Then we have

0 I3 0
=10 0 L
Az Ar A

First, 1 = A; is a (possibly unbounded) operator on H3, with Cy-semigroup
{Z1(t)}i>0 C L(H3). Next, let
0 I
B =

where we assume I, € L(H3z, H>) and A, € L(H,, H3) to have %, € L(H) x H3).
With

which defines a Cy-semigroup on L(H> x H3) with generator
00
ah =
-[o2]

At = ST + Y Fna(1)

n=1

we obtain

for %0, = 7§ (1) and
t
Fn+12(t) = / S t5) BrRn 2 (s)ds,n = 1,2, .. ..
0

We note that {.%%};>0 C L(Haz X H3) is the Co-semigroup with generator %> densely
defined on H, x Hsz. Finally, let

0 Iz0
PBz=] 000
A3 00
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which is a bounded operator on H after assuming I3 € L(H, H1) and A3 €
L(Hy, H3). With

1d 0 0
0

7ZO=1" s |
0

which is a Cp-semigroup on L(H) with generator

00 O
0
oy = ,
3 %,

we conclude with

L) =S5+ Y Fns(0),

n=1

where % 3(t) = Y{(t) and

t
Bns13(1) = /0 S — B3R 3(5)ds.

From this example we see that A, A3, I and I3 must all be bounded operators,
while only A1 is allowed to be unbounded. By recursion in Proposition 6, we see that
wemusthave I; € L(Hpy2—i, Hpr1-j)and A; € L(Hpy1-i, Hp),i =2,3,...,p,
and Ay : Dom(A;) — H), can be an unbounded operator with densely defined
domain Dom (A1) C Hp.

We remark that Ch. III in [14] presents a deep theory for perturbations of
generators &/ by operators . Matrix operators of the kind %), for p = 2 has been
analysed in, for example [23], where conditions for analyticity of the semigroup
{A(1)}i>0 is studied.

4 Applications of CARMA Processes

In this Section we will look at an Euler discretization of the Hilbert-valued CAR(p)
dynamics, and relate this to the functional autoregressive processes studied by [10].
Next, we discuss the wave equation in our context of our analysis, and establish
a relationship to ambit fields. In many applications, like in finance or turbulence
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say, continuous-time models are often preferred. The infinite dimensional CARMA
processes may be an attractive class in this respect. In particular, these processes
may provide insight into analysis of data monitored continuously in time, such as
traffic flow or weather variables. We remark that this aspect has been mentioned as
a future perspective of functional data analysis by [25, Section 6].

Recall Proposition 1, and let#; := i -6 fori =0, 1,...and a given § > 0. Define
further z; := Z(t;). By the semigroup property of {<#},(¢)};>0 it holds,

lit1

ziy1 = Sp(tis1)20 + Sp(tiy1 — )P ,dL(s)
0

t
= 7, (8)S (12 + yp(a)/ Fp(ti — ) P5dL(s)
0

Lit1
+ Fp(tig1 — $)P4dL(s)

t

= 78z + €,

with

fit1
€ = yp(l‘,'_H - S)@jjdl,(s).

1

The process above has the form of a discrete-time AR(1) process. Obviously,
“p(8) € L(H) and by the independent increment property of the H,-valued
Lévy process L, {€;}7° is a sequence of independent H-valued random variables.
Furthermore, E[€;] = 0 due to the zero-mean hypothesis of L. Finally, we can
compute the covariance operators of €; by appealing to the It6 isometry (cf. [20,
Cor. 8.17))

fit1
E[(e;, x)(€;, y)] = / (QPp S, tiy1 — ) PX, Pp S (tiy1 — $) PTy)ds
ti
8
- [ 507,02,7,0 Zix v,
where X,y € H. Thus, €; has covariance operator 2, independent of i given by
8
9. = / f@lyp(s)f@’;Qﬁpr”;(s)e@Tds.
0

Therefore, {€;}72, is an iid sequence of H-valued random variables. Hence, the
H -valued time series {z;};2, is a so-called linear process according to [10].

Let us now focus on the Hj-valued CAR(p) dynamics in Definition 4, and see
how this process can be related to a times series in H;. To this end, recall the
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operator-valued polynomial Q,(2) introduced in (17) and the formal pth-order
stochastic differential equation in (18). Let As be the forward differencing operator
with time step § > 0. Moreover, we assume Ag’ to be the nth order forward
differencing, defined as

n

Asf@) = Z (Z) (=D*f(t + (n — k)8)

k=0

for a function f and n € N. Obviously, A; = Aj;. Introduce the discrete time grid
t; :=1i6,i =0,1,2,..., and observe that

1 1
SA(SIp s L(5) = s Ip -+ L(L(ti+1) — L(;)).

Assuming that the increments of L belongs to the domain of I, - - - I>, we find that

1
€ = 5Ip"'12(L(ti+l) — L)) (27)
fori = 0,1,2,... define an iid sequence of Hj-valued random variables. We
remark that this follows from the stationarity hypothesis of a Lévy process saying
that the increments L(#;+1) — L(¢;) are distributed as L(§). The random variables

€, = Q, 1,..., will be the numerical approximation of the formal expression
I, --- L L(t;). Finally, we define (formally) a time series {x;}7°, in H by
As
Qp< s >Xi=6i- (28)

In this definition, we use the notation x; = x(#;) when applying the forward differ-
encing operator As. The polynomial Q) involves the linear operators By, ..., By
that may not be everywhere defined. We define the domain Dom(B) C H; by

Dom(B) := Dom(By) N ---N Dom(Bp), 29)

which we assume to be non-empty. This will form the natural domain for the time
series {x;}52,,.

Proposition 7 Assume that for any yi,...,y, € Dom(B), Biy1 + ---Bpy, €
Dom(B). If {€;};2, C Dom(B) with €; defined in (27) and xo, ...,xp—1 €
Dom(B), then {xi}?io is an AR(p) process in Hy with dynamics

p
Yivp = ) Byxivip-g) + 87
q=1
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where

q
B —k
B, =P\ B =y (P T s =1.... . p
q<)<q+2k<)q_kq p

k=1

and Id is the identity operator on H.

Proof First we observe that the assumption By yi + -+ - + By, € Dom(B) for any
Yi,...,¥p € Dom(B) is equivalent with Biy| + --- + Bpy, € Dom(B) for any
Y1, ..., Yp € Dom(B) since B is a linear combination of By, ..., B,. Thus, by the
assumptions, we see that x; € Dom(B) foralli = 0, 1,2... and the recursion for
the time series dynamics is well-defined.

We next show that the time series {x;};_, is indeed given by the recursion in the
Proposition. From the definition of O, and the forward differencing operators, we
find after isolating x; 4, on the left hand side and the remaining terms on the right
hand side in the definition in Eq. (28) that

p p—1 P—q
p pP—q
Xitp = — Z(_l)q< )xi+<pq> +Y 8B, Z(—l)k< ' )xz'+(qu>
q q q=1 k=0
+8poxi + 87¢;.
Identifying terms for x; (p—1), Xi+(p—2), . - . » X; yields the result.

The time series {x;}:°, defined in (28) can be viewed as the numerical approxima-
tion of the Hj-valued CAR(p) process X (¢). Notice that for small § we find that
»(8) ~ 8%, + 1d. Using this approximation in the explicit representation of Z(¢)
in Proposition 1 will yield the same conclusion as in our discussion above.

We remark that if the operators By, ..., By are bounded, then Dom(B) = H;.
In this case, the time series {x; ?io will be everywhere defined on Hj, and we do
not need to impose any additional “domain preservation” hypothesis.

Let us consider an example where p = 3, and Hy = H, = Hj3. Suppose that
I; = Id fori = 1,2, 3 and recall from the discussion in Sect.2 that in this case

B, = A, forq =1, 2, 3. Using Proposition 7 yields that
xiy3 = Gld+ Apxipo + (A2 — 2A1 = 3Id)xj41 + Ad + Ay — Ax + A3)x; + €

when § = 1. Here, ¢, = L(ti+1) — L(#;) and thus being distributed as L(1). This
formula is the analogy of Ex. 10.2 in [9]. Indeed, Proposition 7 is the generalization
of [8, Eq. (4.17)] to Hilbert space.

The Hi-valued AR(p)-process in Proposition 7 is called a functional autore-
gressive process of order p (or, in short-hand notation, FAR(p)-process) by [10].
For example, [17] apply such models in a functional data analysis of Eurodollar
futures, where they find statistical evidence for a FAR(2) dynamics. We remark that
[17] defines FAR(p) processes using the observer canonical form rather that the
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controller canonical form as we use. At this point, we would also like to mention
that the stochastic wave equation considered in Sect. 1 will be an AR(2) process
with values in H; (or a FAR(2)-process). Indeed, since in this case A} = 0, I, = 1d
and Ay = A, the Laplacian, we find that B; = 0 and B> = A, and hence,

Xigo = 2ldxiy1 — (Id — 82 A)x; + 8%,

fori =0,1,2... Obviously, this recursion is obtained by approximating the wave
equation by the discrete second derivative in time.

Recalling from (22) the semigroup {-#2(¢)};>0 of the wave equation, we see
from (13) that it has the representation (with initial condition Zo = 0)

t
X (1) =/ (=) Y2 sin((— )Vt — 5))dL(s).
0

Following the analysis in [6], X will be a Hilbert-valued ambit field. Ambit fields
have attracted a great deal of attention as random fields in time and space suitable
for modelling turbulence, as we recall from the definition and discussion in Sect. 1.
As L is a L?(0, 1)-valued Lévy process, one can represent it in terms of the basis
{en}22 |, where e, (x) = V2 sin(nx), as

L(t,x) =) ta(t)en(x),

n=1

with £, (t) :== (L(t,-),en)2,n = 1,2, ... being real-valued square-integrable Lévy
processes with zero mean (see [20, Sect. 4.8]). Thus, the stochastic wave equation
has the representation

V2 [ .
X(t,x) = Z o / sin(rn(t — 5))dl, (s) sin(rnx).
n=1 0

But with Z(dy, ds) := (L(ds), e;)2dy, we obtain an expression for X (¢, x) similar
to the definition of an ambit field from Sect. 1. Note that L is not necessarily a Lévy
basis in this context. Hilbert-valued CARMA(p, U, £y )-processes provide us with
a rich class of ambit fields, as real-valued CARMA processes are specific cases of
Lévy semistationary processes (see e.g. [5, 8, 9]).
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Pre- and Post-Lie Algebras: The )
Algebro-Geometric View s

Gunnar Flgystad and Hans Munthe-Kaas

Abstract We relate composition and substitution in pre- and post-Lie algebras to
algebraic geometry. The Connes-Kreimer Hopf algebras and MKW Hopf algebras
are then coordinate rings of the infinite-dimensional affine varieties consisting of
series of trees, resp. Lie series of ordered trees. Furthermore we describe the Hopf
algebras which are coordinate rings of the automorphism groups of these varieties,
which govern the substitution law in pre- and post-Lie algebras.

1 Introduction

Pre-Lie algebras were first introduced in two different papers from 1963. Murray
Gerstenhaber [13] studies deformations of algebras and Ernest Vinberg [29] prob-
lems in differential geometry. The same year John Butcher [2] published the firstin a
series of papers studying algebraic structures of numerical integration, culminating
in his seminal paper [3] where B-series, the convolution product and the antipode of
the Butcher—Connes—Kreimer Hopf algebra are introduced.

Post-Lie algebras are generalisations of pre-Lie algebras introduced in the last
decade. Bruno Vallette [28] introduced the post-Lie operad as the Koszul dual of
the commutative trialgebra operad. Simultaneously post-Lie algebras appear in the
study of numerical integration on Lie groups and manifolds [21, 25]. In a differential
geometric picture a pre-Lie algebra is the algebraic structure of the flat and torsion
free connection on a locally Euclidean space, whereas post-Lie algebras appear
naturally as the algebraic structure of the flat, constant torsion connection given by
the Maurer—Cartan form on a Lie group [24]. Recently it is shown that the sections
of an anchored vector bundle admits a post-Lie structure if and only if the bundle is
an action Lie algebroid [22].
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B-series is a fundamental tool in the study of flow-maps (e.g. numerical integra-
tion) on Euclidean spaces. The generalised Lie-Butcher LB-series are combining
B-series with Lie series and have been introduced for studying integration on Lie
groups and manifolds.

In this paper we study B-series and LB-series from an algebraic geometry point
of view. The space of B-series and LB-series can be defined as completions of
the free pre- and post-Lie algebras. We study (L)B-series as an algebraic variety,
where the coordinate ring has a natural Hopf algebra structure. In particular we
are interested in the so-called substitution law. Substitutions for pre-Lie algebras
were first introduced in numerical analysis [6]. The algebraic structure of pre-
Lie substitutions and the underlying substitution Hopf algebra were introduced
in [4]. For the post-Lie case, recursive formulae for substitution were given in [18].
However, the corresponding Hopf algebra of substitution for post-Lie algebras was
not understood at that time.

In the present work we show that the algebraic geometry view gives a natural
way to understand both the Hopf algebra of composition and the Hopf algebra of
substitution for pre- and post-Lie algebras.

The paper is organised as follows. In Part 1 we study fundamental algebraic
properties of the enveloping algebra of Lie-, pre-Lie and post-Lie algebras for
the general setting that these algebras A are endowed with a decreasing filtration
A = Al D A2 D ..., This seems to be the general setting where we can define
the exponential and logarithm maps, and define the (generalised) Butcher product
for pre- and post-Lie algebras. Part 2 elaborates an algebraic geometric setting,
where the pre- or post-Lie algebra forms an algebraic variety and the corresponding
coordinate ring acquires the structure of a Hopf algebra. This yields the Hopf algebra
of substitutions in the free post-Lie algebra. Finally, we provide a recursive formula
for the coproduct in this substitution Hopf algebra.

Part 1: The Non-algebro Geometric Setting

In this part we have no type of finiteness condition on the Lie algebras, and pre- and
post-Lie algebras. Especially in the first Sect. 2 the material will be largely familiar
to the established reader.

2 The Exponential and Logarithm Maps for Lie Algebras

We work in the most general setting where we can define the exponential and
logarithm maps. In Sect.2.2 we assume the Lie algebra comes with a decreasing
filtration, and is complete with respect to this filtration. We define the completed
enveloping algebra, and discuss its properties. This is the natural general setting for
the exponential and logarithm maps which we recall in Sect. 2.3.
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2.1 The Euler Idempotent

The setting in this subsection is any Lie algebra L, finite or infinite dimensional over
a field k of characteristic zero. Let U (L) be its enveloping algebra. This is a Hopf
algebra with unit 1, counit € and coproduct

A:UL) - UL) @ U(L)

defined by A(¢) = 1 ® £+ £ ® 1 for any £ € L, and extended to all of U(L) by
requiring A to be an algebra homomorphism.

For any algebra A with multiplication map nug : A ® A — A, we have the
convolution product x on Homy (U (L), A). For f, g € Hom; (U (L), A) it is defined
as

frxg=uao(f®g oAyuy.

Let 1 be the identity map on U(L), and J = 1 — n o €. The Eulerian idempotent
e: U(L) — U(L) is defined by

*2 J*3

e=1log"(1) =log"(noe+J)=J — 5 + ;

Proposition 2.1 The image ofe : U(L) — U(L) is L € U(L), and e is the identity
restricted to L.

Proof This is a special case of the canonical decomposition stated in 0.4.3 in [27].
See also Proposition 3.7, and part (i) of its proof in [27]. |

Let Sym“(L) be the free cocommutative conilpotent coalgebra on L. It is the
subcoalgebra of the tensor coalgebra 7¢(L) consisting of the symmetrized tensors

Zlg(l)@)lg(z)@-“lg(n) e L®", li,...l, e L. (1)

oeS,

The above proposition gives a linear map U (L) 5 L. Since U(L) is a cocommu-
tative coalgebra, there is then a homomorphism of cocommutative coalgebras

U(L) -5 SymC(L). )

We now have the following strong version of the Poincaré-Birkhoff-Witt theorem.
Proposition 2.2 The map U (L) = Sym© (L) is an isomorphism of coalgebras.

In order to show this we expand more on the Euler idempotent.
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Againforly, ..., I, € Ldenoteby (I1, ..., [,) the symmetrized productin U (L):

1
ol Z lolo@) Lo, (3)

T oeSs,

and let U,(L) < U(L) be the subspace generated by all these symmetrized
products.

Proposition 2.3 Consider the map given by convolution of the Eulerian idempo-
tent:

e*P

o U(L) — U(L).

a. The map above is zero on Uy (L) when q # p and the identity on U, (L).
b. The sum of these maps

8*2 8*3
exp”P(e) =noe+e+ 5 + 31 +--

is the identity map on U(L). (Note that the map is well defined since the maps
e*?P [/ p! vanish on any element in U (L) for p sufficiently large.)

From the above we get a decomposition

U(L) = @UH(L).

n>0

Proof This is the canonical decomposition stated in 0.4.3 in [27], see also Proposi-
tion 3.7 and its proof in [27]. |

Proof of Proposition 2.2 Note that since e vanishes on U, (L) for n > 2, by the
way one constructs the map «, it sends the symmetrizer (/1, ..., 1) € U, (L) to the
symmetrizer (3) in Sym (L). This shows « is surjective. But there is also a linear
map, the surjective section 8 : Sym{ (L) — U,(L) sending the symmetrizer (3) to
the symmetric product (1, ..., /). This shows that & must also be injective. m]

2.2 Filtered Lie Algebras

Now the setting is that the Lie algebra L comes with a filtration

L=L'>2L’>L*>...
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such that [L!, L/] € L*/. Examples of such may be derived from any Lie algebra
over k:

1. The lower central series gives such a filtration with L? = [L,L] and LPt! =
[LP, L].

2. The polynomials L[h] = @,>1Lh".

3. The power series L[h]] = I1,>1Lh".

Let Sym,, (L) be the symmetric product of L, that is the natural quotient of L&"
which is the coinvariants (L®")S for the action of the symmetric group S,. By the
definition of Sym®(L) in (1) there are maps

SymS (L) = L®" — Sym, (L),

and the composition is a linear isomorphism. We get a filtration on Sym, (L) by
letting

FP(Sym,(L))= Yy L...L"
i1+ tin 2 p

The filtration on L gives an associated graded Lie algebra grL = @®;>1L;/L;+1.
The filtration on Sym,, (L) also induces an associated graded vector space.

Lemma 2.4 There is an isomorphism of associated graded vector spaces

Sym, (gr L) —> grSym, (L). (4)

Proof Note first that there is a natural map (where d denotes the grading induced
by the graded Lie algebra gr L)

Sym,, (gr L)y — FdSymn (L)/FdHSymn (L). 5)

It is also clear by how the filtration is defined that any element on the right may be
lifted to some element on the left, and so this map is surjective. We must then show
that it is injective.

Choose splittings L/Li*! 2 Lof L — L/Lt fori = 1,...p, and let
L; = s;(L'/L'*"). Then we have a direct sum decomposition

LZLI@LZ@“'@L,;@"“-

11

This gives an isomorphism L —> gr L which again gives a graded isomorphism

IR

Sym,, (L) — Sym,,(grL). (6)
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Since in general Sym,, (A @ B) is equal to @;Sym; (A) ® Sym,,_; (B) we get that

Symn(L) :eail ipSil(L1)®"'®Sip(Lp)s (7)

,,,,,

where we sum over all compositions where ) "i; = n.

Claim

Fi8,(L) = &,

.....

ipSiy (L) ®---®S;,(Lp),

where we sumoverall ) ij =nand ) j-i; >d.

This shows that the composition of (6) and (5) is an isomorphism. Therefore the
map in (5) is an isomorphism.

Proof of Claim. Clearly we have an inclusion 2. Conversely let a € F?Sym,, (L).
Then a is a sum of products a,, - - - ar, where ar; € L’ and er > d. But then
each ar; € ®r>r jL,, and so by the direct sum decomposition in (7), each a;, - - “ay,
lives in the right side of the claimed equality, and so does a. O

We have the enveloping algebra U(L) and the enveloping algebra of the
associated graded algebra U(gr L). The augmentation ideal U(L)4 is the kernel

kerU(L) —> k of the counit. The enveloping algebra U (L) now gets a filtration of
ideals by letting F' = U(L); and

FPH = FP.U(L)4 + (LPT),

where (LP*1) is the ideal generated by L?*!. This filtration induces again a graded
algebra

grU(L) = @Fi/Fi+1.

There is also another version, the graded product algebra, which we will encounter
later

g =][F/F*"

Proposition 2.5 The natural map of graded algebras

1

U(grL) — grU(L),

is an isomorphism.

Proof The filtrations on each Sym{,(L) induces a filtration on Sym°(L). Via the
isomorphism « of (2) and the explicit form given in the proof of Proposition 2.2 the
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filtrations on U (L) and on Sym¢, (L) correspond. Hence

gra:grU(L) = grSym¢ (L)

is an isomorphism of vector spaces. There is also an isomorphism B and a
commutative diagram

U(grl) L Sym€(gr L)

l |

grU(L) g, gr Sym€(L).

By Lemma 2.4 the right vertical map is an isomorphism and so also the left vertical
map. ]

The cofiltration
- UL)/F" - UL)/F"" = -
induces the completion

U(L) =limU(L)/F?.
14

This algebra also comes with the filtration FP. LetL = 1(&1 L/LP.
P

Lemma 2.6 The completed algebras are equal:
U@ =0,
and so this algebra only depends on the completion L.

Proof The natural map L — L induces a natural map U(L) U (I:). Since L
and L have the same associated graded Lie algebras, the two downward maps in the
commutative diagram

grU(L) erU(L)

~ 7

U(grlL)
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are isomorphisms, showing that the upper horizontal map is an isomorphism. But
given the natural map y this easily implies that the map of quotients

U(L)/FPHU(L) 4R UL)/FPHU(L)

is an isomorphism, and so the completions are isomorphic. O

We denote the d’th graded part of the enveloping algebra U (gr L) by U(grL)y.
The following gives an idea of the “size” of U (L).

Lemma 2.7

er"U() =UrL) =[] UerLa.
deZ

Proof The left graded product is

g0y =[] Fr/Fr.
p=0

But by Proposition 2.5 FP /FPH! = U(gr L) » and so the above statement follows.
0O

Example 2.8 Let V = @,>1V; be a graded vector space with V; of degree i, and let
Lie(V) be the free Lie algebra on V. It then has a grading Lie(V) = @4>1Lie(V)q
coming from the grading on V, and so a filtration F” = @g>,Lie(V)s. The
enveloping algebra U (Lie(V)) is the tensor algebra 7 (V). The completed envelop-
ing algebra is

U(Lie(V)) = T(V) := ]—[ T(V)g.
d

Let L, be the quotient L/ LP*! which is a nilpotent filtered Lie algebra. We

get enveloping algebras U (L)) with filtrations F JU(L p) of ideals, and quotient
algebras

UM(Ly) = U(L,)/F/TU(Ly).
Lemma 2.9

0(L) =lim U/ (Lp).
JP
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Proof First note that if j < p then U”(Lp) — Uj(Lp) surjects. If j > p, then
U’ (L) — U’ (L)) surjects. Hence it is enough to show that the natural map

U(L)/FPT — U(Lp)/Fp+1U(Lp) =UP(L))

is an isomorphism. This follows since we have an isomorphism of associated graded

vector spaces:
(gr (U(L)/FP* ') <) = (erU(L))<p = U(grL)<,

=U(grLp<p =(@U(Lp)<p
= (gr U(Lp)/Ferl)SP

2.3 The Exponential and Logarithm

The coproduct A on U (L) will send
FP 2 1@ FP+ FL@FP 4. 4 FP @ L.

Thus we get a map
O(L) — U(L)/F**~' 25 U(L)/F? ® U(L)/F".

Let
ULHQU(L) :=limU(L)/F? @ U(L)/F¥

p

be the completed tensor product We then get a completed coproduct
0Ly -2 00 (L).

Note that the tensor product

UL ®UL) < UWRUL).

An element g of U (L) is grouplike if A(g) = g ® g in U(L) ® U(L). We denote
the set of grouplike elements by G (U (L)). They are all of the form 1 4 s where s is

in the augmentation ideal
U(L)4 = ker(U(L) - k).



330 G. Flgystad and H. Munthe-Kaas
The exponential map
N exp A
ULy — 14+U(L)+

is given by

2 x3

IR TR

X

exp(x) =1+4+x + )

The logarithm map

~ I N
1+ 0@ 25 0y

is defined by

log(1 + 5) s* + s
s frd S —_ —_— . e
g 273
Proposition 2.10 The maps
N exp N
ULy =214+UWL)+
log

give inverse bijections. They restrict to inverse bijections

~ €Xp ~
L = GWU(L))
log

between the completed Lie algebra and the grouplike elements.

Proof :[‘hat log(exp(x)) = x and exp(log(1+s)) = 1+s, are formal manipulations.
If £ € L itis again a formal manipulation that

Aexp(£)) = exp(?) - exp(0),

and so exp(¥) is a grouplike element.
The maps exp and log can also be defined on the tensor products and give inverse
bijections

. A n o~ exp n A n o~
UL)+QUL)+UL)RU L)y = 1@ 1+ U@L &U(L) + UL)QU(L)4.
log
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Now let s € G(Ij (L)) be a grouplike element. Since A = AmL) is an algebra
homomorphism

exp(A(log(s))) = A(exp(logs)) = A(s) = 5 ® .
Since 1 ® s and s ® 1 are commuting elements we also have
exp(log(s) ® 1 + 1 ® log(s)) = (exp(log(s)) ® 1) - (1 ® exp(log(s))) = s @ s.
Taking logarithms of these two equations, we obtain
A(log(s)) =log(s) ® 1+ 1 ® log(s),

and so log(s) is in L. O

3 Exponentials and Logarithms for Pre- and Post-Lie
Algebras

For pre- and post-Lie algebras their enveloping algebra comes with two products e
and . This gives two possible exponential and logarithm maps. This is precisely the
setting that enables us to define a map from formal vector fields to formal flows. It
also gives the general setting for defining the Butcher product.

3.1 Filtered Pre- and Post-Lie Algebras

Given a linear binary operation on a k-vector space A
¥ AQrA—> A
the associator is defined as:
ax(x,y,2) = Xk (y*2) = (X ky) * 2.

Definition 3.1 A post-Lie algebra (P,[,],1>) is a Lie algebra (P, [,]) together
with a linear binary map > such that

s x>y zl=xy 2+ [y, x>2]
° [an’]DZ=al>(xayaz)—a|>(yaxvz)
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It is then straightforward to verify that the following bracket
[x.yl=x>y—y>x+[x,y]

defines another Lie algebra structure on P.
A pre-Lie algebra is a post-Lie algebra P such that bracket [, ] is zero, so P with
this bracket is the abelian Lie algebra.

Example 3.2 Let XR" be the vector fields on the manifold R”. It comes with the
natural Levi-Cevita connection V. Write f = Y | f'0; and g = Y _, g'9; for
two vector fields, where 9; = d/dx;. Let

freg=Vig=Y f1;¢).

iJj

Then AR" is a pre-Lie algebra with this operation. Hence also a post-Lie algebra
with trivial Lie-bracket [, ] equal to zero.

Example 3.3 Let M be a manifold and XM the vector fields on M. Let g be a finite
dimensional Lie algebra and A : ¢ — XM be a morphism of Lie algebras. Denote
by QO(M, g) the space of smooth maps M — g. This is a Lie algebra by

[x, yI(u) = [x (), y(u)].

The vector fields XM act on the functions Q°(M, k) by differentiation: For f €
XM and ¢ € QUM, k) we get fo € QY(M, k). Hence XM acts on Q°(M, g) =
QUM k) % g.

Now define the operation

QUM g) x QU(M, g) => (M, g)
Xy [u e (Wxu)y)@)].

Then Q°(M, g), [, ], > becomes a post-Lie algebra by [24, Prop.2.10].

If G x M — M is an action of a Lie group G on M then for each u € M we get
amap G — M and on tangent spaces g — T, M. This gives a map to the tangent
bundle of M: g x M — TM and map of Lie algebras g — AXM. Hence in this
setting we get by the above a post-Lie algebra Q0(M, g).

If M = G and G x G — G is the Lie group operation, then Q°(G, g) naturally
identifies with the vector fields XG by left multiplication, and so these vector fields
becomes a post-Lie algebra. In the special case that G = R" with group operation
R" x R" — R” sending (a, b) — a + b, we get the pre-Lie algebra of Example 3.2
above.



Pre- and Post-Lie Algebras: The Algebro-Geometric View 333

We now assume that P is a filtered post-Lie algebra: We have a decreasing
filtration

P=P'2P2...,
such that
[PP, P9) C PPTY, PP pdC pPta,

Then we will also have [P?, P4]] € PP™4. If u and v are two elements of P such
thatu — v € P"!, we say they are equal up to order .

Again examples of this can be constructed for any post-Lie algebra over a field k
by letting P! = P and

PPl = PP > P+ P> PP [P, PP].

Alternatively we may form the polynomials P[h] = @,>1 Ph", or the power series
Pl[hll = =1 PRH".

In [10] the enveloping algebra U(P) of the post-Lie algebra was introduced.
It is both the enveloping algebra for the Lie algebra [, ] and as such comes with
associative product e, and is the enveloping algebra for the Lie algebra [, ]| and
as such comes with associative product *. The triangle product also extends to a
product > on U (P) but this is not associative.

3.2 The Map from Fields to Flows

By Example 3.2 above the formal power series of vector field XR"[[x] is a pre-Lie
algebra, and from the last part of Example 3.3 we get a post-Lie algebra XG[[/] of
series of vector fields. Using this perspective there are several natural ways to think
of filtered post-Lie algebras and the related objects.

* The elements of P may be thought of as formal vector fields, in which case we
write Prielq.

* The grouplike elements of U(P) may be thought of as formal flows.

* The elements of P may be thought of as principal parts of formal flows, see
below, in which case we write Pioy.

Let us explain how these are related. In the rest of this subsection we assume that
P = P is complete with respect to the filtration. The exponential map

exp* A
Pficia —> U(P) (¥
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sends a vector field to a formal ﬂAow, a grouplike element in U (P). (Note that the
notion of a grouplike element in U (P) only depends on the shuffle coproduct.)
We may take the logarithm

GO Py 2% p. 9)

Soif B € G(U(P)) we get b = log®(B). We think of b also as a formal flow,
the principal part or first order part of the formal flow B. It determines B by B =
exp®(b). Note that in (8) the exponential is with respect to the * operation, while
in (9) the logarithm is with respect to the e operation.

__When P is a pre-Lie algebra A, then U (P) is the completed symmetric algebra
Sym(A) and log® is simply the projection Sym(A) — A.If B is a Butcher series
parametrized by forests (see Sect.6.3), then b is the Butcher series parametrized
by trees. Thus b determines the flow, but the full series B is necessary to compute
pull-backs of functions along the flow.

We thus get a bijection

log® o exp*
D : Pfieta — Pfiow (10

which maps vector fields to principal part flows. This map is closely related
to the Magnus expansion [8]. Magnus expresses the exact flow as exp*(rv) =
exp® (®(tv)), from which a differential equation for ®(#v) can be derived.

Example 3.4 Consider the manifold R" and let XR" be the vector fields on R". Let
f= Zizo fih' on R" be a power series of vector fields where each f; € AR". It
induces the flow series exp*(Af) in (z(\XR" []). Since AR" is a pre-Lie algebra,
the completed enveloping algebra is Sym(AR”[[A]]). Thus the series

exp*(hf) =1+ Y Figh'

i>d>1

where the F; 4 € Sym,(XR"[[h]]) are d’th order differential operators. (Note that

the principal part b is the d = 1 part.) It determines a flow \If}{ : R" — R” sending
a point P to P(h). For any smooth function ¢ : R” — R the pullback of ¢ along
the flow is the composition ¢ o lI/,{ : R" — R and is given by

exp*(hf)gp =1+ Y Fra(@)h',

i>d>1

see [17, Section 4.1] or [23, Section 2.1]. In particular when ¢ is a coordinate
function x,, we get the coordinate x,(h) of P(h) as given by

xp(h) = exp*(hf)x, = Z F; dxph =x,+ Z F;, 1xph’

i>d>1
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since higher derivatives of x, vanish. This shows concretely geometrically why the
flow is determined by its principal part.

For a given principal flow b € Py, computing its inverse image by the map (10)
above, which is the vector field log* o exp®(b) is called backward error in numerical
analysis [14, 19].

Fora,a € Pfieia let

a+a’ = log*(exp*(a) * exp*(a’)),

a product which is computed using the Baker-Campbell-Hausdorff (BCH) formula
for the Lie algebra [, ]. With this product Pf;.q becomes a pro-unipotent group.
Transporting this product to Pj,, using the bijection ® in (10), we get for b, b’ €
Pfiow a product

bib' =log®(exp®(b) * exp® (b)),

the composition product for principal flows.

Example 3.5 We continue Example 3.4. Let g = Zizo gih' be another power series
of vector fields, exp*(hg) its flow series, and \Ilf : R" — R” the flow it determines.

Let ¢ be the principal part of exp*(hg). The composition of the flows \IJ,f o \IIJ is
the flow sending ¢ to

exp”(hg) (exp” (hf)$) = (exp®(hg) * exp™(hf))$.
The principal part of the composed flow is
log® (exp*(hg) * exp*(hf)) = log®(exp®(c) * exp® (b)) = c i b,

the Butcher product of ¢ and b.

Denote by # the productin Py, given by the BCH-formula for the Lie bracket
[’ ]’

x 'y = log®(exp®(x) @ exp®(y)).
Proposition 3.6 For x, y in the post-Lie algebra Py, we have
xfty=x+ (exp'(x) >y).

Proof From [10, Prop.3.3] the product A * B = } 5 4) A(1)(Aq2) > B). Since
exp®(x) is a group-like element it follows that:

exp® (x) * exp® () = exp® (x) o (exp” (x) > exp®(y)) .



336 G. Flgystad and H. Munthe-Kaas

By [10, Prop.3.1] A> BC = ZA(A)(A(U > B)(A@ > C) and so again using that
exp®(x) is group-like and the expansion of exp®(y):

exp®(x) > exp®(y) = exp® (exp®(x) > y).

Hence

xty =log® (exp'(x) o (exp*(x) > exp'(y))) = log® (exp®(x) ® exp® (exp®(x) > ¥)).

O

In the pre-Lie case [, ] = 0O, therefore ¢ = + and we obtain the formula derived
in [9]

xfgy=x+exp®(x)>y.

3.3 Substitution

Let EndposiLie(P) = HompesiLie(P, P) be the endomorphisms of P as a post-
Lie algebra. (In the special case that P is a pre-Lie algebra, this is simply the
endomorphisms of P as a pre-Lie algebra.) It is a monoid, but not generally a vector
space. It acts on the post-Lie algebra P.

Since the action respects the brackets [, ], [, ] and >, it also acts on the
enveloping algebra U(P) and its completion U (P), and respects the products *
and e. Hence the exponential maps exp* and exp® are equivariant for this action,
and similarly the logarithms log* and log®. So the formal flow map

D : Pheld — Prow

is equivariant for the action. The action on Pgoy (Which is technically the same as
the action on Pgelq), is called substitution and is usually studied in a more specific
context, as we do in Sect. 7. An element ¢ € Endyosiic(P) comes from sending a
field f to a perturbed field f’, and one then sees how this affects the exact flow or
approximate flow maps given by numerical algorithms.

Part 2: The Algebraic Geometric Setting

In this part we have certain finiteness assumptions on the Lie algebras and pre-
and post-Lie algebras, and so may consider them and binary operations on them in
the setting of varieties. The first three subsections of the next Sect. 4 will be quite
familiar to the reader who knows basic algebraic geometry.
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4 Affine Varieties and Group Actions

We assume the reader is familiar with basic algebraic geometry of varieties and
morphisms, like presented in [16, Chap.1] or [7, Chap.1,5]. We nevertheless briefly
recall basic notions. A notable and not so standard feature is that we in the last
subsection define infinite dimensional varieties and morphisms between them.

4.1 Basics on Affine Varieties

Let k be a field and S = k[x1, ..., x,] the polynomial ring. The affine n-space is
Al ={(a1,...,an) la; € k}.
Anideal I C S defines an affine variety in A}
X=Z()={pe gl f(p)=0, for f eI}
Given an affine variety X C A7, its associated ideal is
LX) ={f eS| f(p)=0, for p € X}.

Note that if X = Z([) then I € Z(X), and Z(X) is the largest ideal defining the
variety X. The correspondence

Z
ideals in k[x1, ..., x,] & subsets of A}
T

is a Galois connection. Thus we get a one-to-one correspondence

. -1 .
image of Z «—  image of Z
= varieties in A}

Remark 4.1 When the field k is algebraically closed, Hilbert’s Nullstellensatz says
that the image of 7 is precisely the radical ideals in the polynomial ring. In general
however the image of Z is only contained in the radical ideals.

The coordinate ring of a variety X is the ring A(X) = k[x1, ..., x,]/Z(X). A
morphism of affine varieties f : X — Y where X C A} and Y C A’ is a a map
sending a point a = (ay, ..., a,) to a point (f1(a), ..., fix(a)) where the f; are
polynomials in S. This gives rise to a homomorphism of coordinate rings

fEAY) — AX)

yi— fix), i=1,...,m
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In fact this is a one-one correspondence:
{morphisms f : X — Y} iy {algebra homomorphisms f* : A(Y) — A(X)}.

The zero-dimensional affine space A2 is simply a point, and its coordinate ring is
k. Therefore to give a point p € A} is equivalent to give an algebra homomorphism
k(x1,...,xn] — k.

Remark 4.2 We may replace k by any commutative ring k. The affine space Ay is
then k". The coordinate ring of this affine space is k[x1, ..., x,]. A point p € Ap
still corresponds to an algebra homomorphism k[x1, ..., x,] — k. Varieties in Aﬁ
may be defined in the same way, and there is still a Galois connection between
ideals in Kk[x1, ..., x,] and subsets of Aﬁ, and a one-one correspondence between
morphisms of varieties and coordinate rings.

The affine space A} comes with the Zariski topology, whose closed sets are
the affine varieties in A} and whose open sets are the complements of these. This
induces also the Zariski topology on any affine subvariety X in Aj.

If X and Y are affine varieties in A} and A}’ respectively, their product X x Y
is an affine variety in AZJ”" whose ideal is the ideal in k[x1, ..., Xp, Y1, -- . Ym]
generated by Z(X) + Z(Y). Its coordinate ring is

AX x ) = A(X) @ A(Y).

If Aisaring and f # Oin A, we have the localized ring A y whose elements are
all a/f" where a € A. Two such elements a/f" and b/f™ are equal if f*(f™a —
f"b) = 0 for some k. If A is an integral domain, this is equivalentto f"a — f"b =
0. Note that the localization A y is isomorphic to the quotient ring A[x]/(xf — 1).
Hence if A is a finitely generated k-algebra, A 7 is also a finitely generated k-algebra.
A consequence of this is the following: Let X be an affine variety in A} whose ideal
is I = Z(X) contained in k[xq, ..., x,], and let f be a polynomial function. The
open subset

D(f)y={peX|f(pp#0cX

is then in bijection to the variety X’ € AZH defined by the ideal I + (x,+1f — 1).
This bijection is actually a homeomorphism in the Zariski topology. The coordinate
ring

AX") = A xn 1]/ Gonr f = 1) = AX) g

Hence we identify Ay as the coordinate ring of the open subset D(f) and can
consider D(f) as an affine variety. Henceforth we shall drop the adjective affine
for a variety, since all our varieties will be affine.
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4.2 Coordinate Free Descriptions of Varieties

For flexibility of argument, it may be desirable to consider varieties in a coordinate
free context.

Let V and W be dual finite dimensional vector spaces. So V. = Homy (W, k) =
W*, and then W is naturally isomorphic to V* = (W*)*. We consider V as an
affine space (this means that we are forgetting the structure of vector space on V).
Its coordinate ring is the symmetric algebra Sym(W). Note that any polynomial
f € Sym(W) may be evaluated on any pointv € V, since v: W — k gives maps
Sym, (W) — Symy (k) = k and thereby a map Sym(W) = @4Sym, (W) — k.

Given an ideal I in Sym(W), the associated affine variety is

X={veV]|f(v)=0,for fel}CV.
Given a variety X C V we associate the ideal
IX) ={f e Sym(W)| f(v) =0, forve X} C Sym(W).

The coordinate ring of X is A(X) = Sym(W)/Z(X).

Let W! and W2 be two vector spaces, with dual spaces V! and V2. A map
f : X' — X? between varieties in these spaces is a map which is given by
polynomials once a coordinate system is fixed for V! and V2. Such a map then gives
a homomorphism of coordinate rings f* : Sym(W?2)/I1(X?) — Sym(W")/I(x"),
and this gives a one-one correspondence between morphisms f between X' and X2
and algebra homomorphisms f* between their coordinate rings.

4.3 Affine Spaces and Monoid Actions

The vector space of linear operators on V is denoted End(V). It is an affine space
with End(V) = A", and with coordinate ring Sym(End(V)*). We then have an
action

End(V) xV -V (11
(@, v) = @ (v).
This is a morphism of varieties. Explicitly, if V has basis e, ..., e, an element in

End(V) may be represented by a matrix A and the map is given by:
(Aa (vla ] vn)t) = A- (vla LRI vn)ta

which is given by polynomials.
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The morphism of varieties (11) then corresponds to the algebra homomorphism
on coordinate rings

Sym(V*) — Sym(End(V)*) ®; Sym(V™*).

With a basis for V, the coordinate ring Sym(End(V)*) is isomorphic to the
polynomial ring k[f;;1; j=1,....n, Where the #;; are coordinate functions on End(V),
and the coordinate ring Sym(V*) is isomorphic to k[x, ..., x,] where the x; are
coordinate functions on V. The map above on coordinate rings is then given by

Xi = Zt,-ij.
J

We may also consider the set GL(V) € End(V) of invertible linear operators.
This is the open subset D(det(t;;)) of End(V) defined by the nonvanishing of the
determinant. Hence, fixing a basis of V, its coordinate ring is the localized ring
k[t,-j]det((,,.j)), by the last part of Sect.4.1. The set SL(V) € End(V) are the linear
operators with determinant 1. This is a closed subset of End(V) defined by the
polynomial equation det((#;;)) — 1 = 0. Hence the coordinate ring of SL(V) is the
quotient ring k[#;;1/(det((#;;)) — 1).

Now given an affine monoid variety M, that is an affine variety with a product
morphism p : M x M — M which is associative and unital. Then we get an algebra
homomorphism of coordinate rings

AM) 25 AM) @ AM).

Since the following diagram commutes

MxMxM Y vxm

| |

MxM —E5 M,

we get a commutative diagram of coordinate rings:

AM) @ A(M) @ AM) < —- A(M) ® A(M)

1@4 TA

AM) ® AMM) <2 AWM.

The zero-dimensional affine space Ag is simply a point, and its coordinate ring is k.
A character on A(M) is an algebra homomorphism A(M) — k. On varieties this
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gives a morphism P = Ag — M, or a point in the monoid variety. In particular

the unit in M corresponds to a character A (M) —> k, the counit. Thus the algebra
A(M) with A and € becomes a bialgebra.
The monoid may act on a variety X via a morphism of varieties

MxX—> X. (12)
On coordinate rings we get a homomorphism of algebras,
A(X) = A(M) @ AX), (13)

making A(X) into a comodule algebra over the bialgebra A(M).
In coordinate systems the morphism (12) may be written:

(mla e ,mr) X (-xla e axn) = (fl(ma X)a f2(m’ X)’ .. ')‘
If X is an affine space V' and the action comes from a morphism of monoid varieties

M — End(V), the action by M is linear on V. Then f; (m, v) = Zj Sijm)v;. The
homomorphism on coordinate rings (recall that V = W*)

Sym(W) — A(M) ®; Sym(W)

is then induced from a morphism

W— AM) @ W

xXj > Y fij(w) @ xi

i
where the x;’s are the coordinate functions on V and u are the coordinate functions
on M.
We can also consider an affine group variety G with a morphism G — GL(V)

and get a group action G x V — V. The inverse morphism for the group, induces
an antipode on the coordinate ring A(G) making it a commutative Hopf algebra.

4.4 Infinite Dimensional Affine Varieties and Monoid Actions

The infinite dimensional affine space AR° is [[;. k. Its elements are infinite
sequences (aj, az, . ..) where the a; are in k. Its coordinate ring is the polynomial
ring in infinitely many variables S = k[x;, i € N].

An ideal [ in S, defines an affine variety

X=V{U)={acA®| f(a) =0, for f € I}.
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Note that a polynomial f in S always involves only a finite number of the variables,
so the evaluation f(a) is meaningful. Given an affine variety X, let its ideal be:

I(X)y={f €S| f(a)y=0fora e X}.

The coordinate ring A(X) of X is the quotient ring S/Z(X). The affine subvarieties
of AP° form the closed subsets in the Zariski topology on AZ°, and this then induces
the Zariski topology on any subvariety of A°.

A morphism f : X — Y of two varieties, is a map such that f(a) =
(fi@@), f2(a),...) where each f; is a polynomial function (and so involves only
a finite number of the coordinates of a).

Letting k[y;, i € N] be the coordinate ring of affine space where Y lives, we get
a morphism of coordinate rings

fPAY) = AX)
yi = fi(%)
This gives a one-one correspondence
{morphisms f : X — Y} <« {algebra homomorphisms fPAY) — AX)).

For flexibility of argument, it is desirable to have a coordinate free definition
of these varieties also. The following includes then both the finite and infinite-
dimensional case in a coordinate free way.

Let W be a vector space with a countable basis. We get the symmetric algebra
Sym(W). Let V. = Homy (W, k) be the dual vector space, which will be our affine
space. Given an ideal I in Sym(W), the associated affine variety is

X=VI)={veV]|f(v) =0, for f € I}.

The evaluation of f on v is here as explained in Sect.4.2. Given a variety X we
associate the ideal

IX) ={f € Sym(W) | f(v) =0, forv e X}.

Its coordinate ring is A(X) = Sym(W)/Z(X). We shall shortly define morphism
between varieties. In order for these to be given by polynomial maps, we will need
filtrations on our vector spaces. Given a filtration by finite dimensional vector spaces

O)=WocW W, c...CW.
On the dual space V we get a decreasing filtration by Vi =ker((W)* > (W;_1)*).

The affine variety V/ V! = (W;_1)* has coordinate ring Sym(W;_1). If X is a
variety in V its image X; in the finite affine space V/V' need not be Zariski
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closed. Let X; be its closure. This is an affine variety in V/V’ whose ideal is
Z(X) N Sym(Wi—1).

A map f : X1 — X, between varieties in these spaces is a morphism of varieties
if there exists decreasing filtrations

Vi=VW/2oViDe, Va=V,2V;D-

with finite dimensional quotient spaces, such that for any i we have a commutative
diagram

L

and the lower map is a morphism between varieties in V;/ Vli and V,/ Vzi.
We then get a homomorphisms of coordinate rings

£ Sym(WP)/Z(X2,0) — Sym(WH/Z(X1,), (14)
and the direct limit of these gives a homomorphism of coordinate rings
% Sym(W?)/Z(X2) — Sym(W')/Z(X1). (15)
Conversely given an algebra homomorphism f* above. Let
WECWyCWic. -
be a filtration. Write W' = @;cykw; in terms of a basis. The image of Wl.2 will

involve only a finite number of the w;. Let Wl.1 be the f.d. subvector space generated
by these w;. Then we get maps (14), giving morphisms

Xiiv1 — X2,i41

| !

X1, — X2,

In the limit we then get a morphism of varieties f : X; — X». This gives a one-
one correspondence between morphisms of varieties f : X; — X, and algebra
homomorphisms f*.

Let X! and X? be varieties in the affine spaces V! and V2. Their product X! x X?
is a variety in the affine space V! x V2 which is the dual space of W! @ W2, Its
coordinate ring is A(X' x X?) = A(X") @ A(X?).
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If M is an affine monoid variety (possibly infinite dimensional) its coordinate
ring A(M) becomes a commutative bialgebra. If M is an affine group variety, then
A(M) is a Hopf algebra. We can again further consider an action on the affine space

MxV —=V.
It corresponds to a homomorphism of coordinate rings
Sym(W) — A(M) @ Sym(W),

making Sym(W) into a comodule algebra over A(M). If the action by M is linear on
V, the algebra homomorphism above is induced by a linear map W — A(M) ®; W.

S Filtered Algebras with Finite Dimensional Quotients

In this section we assume the quotients L, = L/ LP*! from Sect.2.2 are finite
dimensional vector spaces. This enables us to define the dual Hopf algebra U¢(K)
of the enveloping algebra U(L). This Hopf algebra naturally identifies as the
coordinate ring of the completed Lie algebra L. In Sect.5.3 the Baker-Campbell-
Hausdorff product on the variety L is shown to correspond to the natural coproduct
on the dual Hopf algebra U¢(K). In the last Sect. 5.4 the Lie-Butcher product on a
post-Lie algebra is also shown to correspond to the natural coproduct on the dual
Hopf algebra.

5.1 Filtered Lie Algebras with Finite Dimensional Quotients

Recall that L is the quotient L/ LP*! from Sect. 2.2. The setting in this section is &
is a field of characteristic zero, and that these quotients L, are finite dimensional as
k-vector spaces. We assume that the Lie algebra L is complete with respect to this
cofiltration, so we have the inverse limit

L=L=1limL,.
<—
p

The dual K” = Homy(Lp, k) is a finite dimensional Lie coalgebra. Let K =
1'11)1 K? be the direct limit. Recall that the quotient algebra
p

U'(Ly) = U(Ly)/FTU(Ly).
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The dual U/ (Lp)* is a finite dimensional coalgebra U;?(K P), and we have
inclusions

. c
US(KP) —S= US, (KP)

<| E

+1 < g 1
US(KPHY S U, (kP

We have the direct limits
c Py — 13 c p c 1 c p
U°(K?) .—lg)nt(K ), U“K) ._li)nt(K ).
J i-p
Lemma 5.1 Let T°(K) be the tensor coalgebra. It is a Hopf algebra with the shuffle
product. Then U(K) is a Hopf sub-algebra of T¢(K).

Proof U/ (Lp) is a quotient algebra of T'(L,) and T (L), and so U]‘f(K,,) is
a subcoalgebra of T°(Kp) and T°(K). The coproduct on U(L)), the shuffle
coproduct, does not descend to a coproduct on U/ (L ). But we have a well defined
map

U (L) — UML) @ U(L,)
compatible with the shuffle coproduct on 7' (L ). Dualizing this we get

U}'(Kp) ® U/‘f(Kp) — Ufj(Kp)
and taking colimits, we get U°(K) as a subalgebra of 7¢(K) with respect to the
shuffle product. O

Proposition 5.2 There are isomorphisms

a. L = Hom (K, k) of Lie algebras,
b. U(L) = Homy(U(K), k) of algebras. A
c. The coproduct on U€(K) is dual to the completed product on U (L)

US(K) 2% US(K) @ USK), UL)SUL) —> U(L).

Proof

a. Since L is the completion of the L?, it is clear that there is a map of Lie algebras
Homy (K, k) — L. We need only show that this is an isomorphism of vector
spaces.
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It is a general fact that for any object N in a category C and any indexed
diagram F : J — C then

Hom(lim F(—), N) Z lim Hom(F(—), N).

Applying this to the category of k-vector spaces enriched in k-vector spaces
(meaning that the Hom-sets are k-vector spaces), we get

N

_ ; P — 1 p -1 P —
Homk(K,k)_Homkﬂg)nK ,L)_l(inHom(K ,k)_1<£nL =1L.

b. This follows as in a. above.
c. This follows again by the above. Since tensor products commute with colimits
we have

US(K) ® US(K) = limU§ (K?) @ U§ (K?).
p,J

Then
Hom (U (K) ® U“(K), k) =Homy (lim U (K ") ® U5 (K "), k)
=lim U/ (L") ® U/(L") = U(L)®U (L).
p.Jj
Oa

The coalgebra U¢(K) is a Hopf algebra with the shuffle product. It has unit 5
and counit €. Denote by x the convolution product on this Hopf algebra, and by 1
the identity map. Write 1 = n o € + J. The Euler idempotent

e:U(K) = U°(K)
is the convolution logarithm
e=log*) =log*(noe+J)=J —J*2)2+ 33—,

Proposition 5.3 The image of U°(K) U °(K) is K. This inclusion of K C
U“(K) is a section of the natural map U¢(K) — K.

Proof This follows the same argument as Proposition 2.1. O

This gives a map K — U°(K). Since U°(K) is a commutative algebra under
the shuffle product, we get a map from the free commutative algebra Sym(K) —
U°(K).
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Proposition 5.4 This map

1 Sym(K) —> U°(K) (16)
is an isomorphism of commutative algebras. (We later denote the shuffle product by
L)

Proof By Proposition 2.2 there is an isomorphism of coalgebras

U(Lp,) — Sym°(L)p)

and the filtrations on these coalgebras correspond. Hence we get an isomorphism

UI(L,) —> Sym®I(L,).

Dualizing this we get
Sym;(K?) —> US(KP).

Taking the colimits of this we get the statement. O

In Homy (U(K), k) there are two distinguished subsets. The characters are
the algebra homomorphisms Hom g, (U°(K), k). Via the isomorphism of Propo-

sition 5.2 they corresponds to the grouplike elements of U(L). The infinitesimal
characters are the linear maps « : U(K) — k such that

a(uv) = e(w)a(v) + a(u)e(v).

We denote these as Homy,,r (U (K), k).

Lemma 5.5 Via the isomorphism in Proposition 5.2b. these characters correspond
naturally to the following:

a. Homp,p(U(K), k) = Hom (K, k) = L.
b. Homaig(U¢(K), k) = G(U(L)).

Proof

a. The map U°(K) i> K from Proposition 5.3 has kernel k & U“’(K)';r"'z, by
Proposition 5.4 above, where LU denotes the shuffle product. We then see that
any linear map K — k induces by composition an infinitesimal character on
U¢(K). Conversely given an infinitesimal character « : U¢(K) — k then both k
and U°(K )'fz are seen to be in the kernel, and so such a map is induced from a
linear map K — k by composition with ¢.
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b. That s : US(K) — k is an algebra homomorphism is equivalent to the
commutativity of the diagram

US(K)® U°(K) —=U‘(K) .

k ®x k k a7

But this means that by the map

UL) — UWL)&U(L)

S s s.

Conversely given a grouplike element s € U (L), it corresponds by Proposi-
tion 5.2b. to s : U°(K) — k, and it being grouplike means precisely that the
diagram (17) commutes. |

On Homy (U¢(K), k) we also have the convolution product, which we again
denote by *. Note that by the isomorphism in Proposition 5.2, this corresponds to
the product on 0(L). Let Homy (U¢(K), k)4 consist of the & with «(1) = 0. We
then get the exponential map (we write this map without a x superscript since it is a
product on the dual space)

Homg (US(K), k)4 —2 ¢ + Homp(U(K), k)4
given by
exp(a) = € +a + a2/ 2+ a3 31+

This is well defined since U°(K) is a conilpotent coalgebra and «w(1) = 0.
Correspondingly we get

1
€ + Homy (U (K), k)5 —5 Homy (U(K), k)4

given by

O{*Z *3

1 = — — ..
ogle +o) =« ) + 3

Lemma 5.6 The maps
exp

Homy(US(K), k)4 = € + Hom (U (K), k)4
log
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give inverse bijections. They restrict to the inverse bijections
. exp .
Homp,s (U (K), k) = Homa;a(U(K), k).
log

Proof Using the identification of Proposition 5.2 the exp and log maps above
correspond to the exp and log maps in Proposition 2.10. O

Since Sym(K) is the free symmetric algebra on K, there is a bijection

Homye (Sym(K), k) —> Homy (K, k). The following shows that all the various
maps correspond.

Proposition 5.7 The following diagram commutes, showing that the various hori-
zontal bijections correspond to each other:

Homy(K, k) —— Homaje(Sym(K), k)

H v

Homi(K, k) =5 Homaio(UC(K), k)

;J J;

L LN GU (L))

Proof That the lower diagram commutes is clear by the proof of Lemma 5.6. The
middle (resp. top) map sends K — k to the unique algebra homomorphism ¢ (resp.
¢’) such that the following diagrams commute

K—U‘K), K-—=Sym(K).

NN

k k

Since the following diagram commutes where v is the isomorphism of algebras

K —Sym(K) ,

N

U“(K)

the commutativity of the upper diagram in the statement of the proposition follows.
O
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5.2 Actions of Endomorphisms

Let E = Endy ;. ¢o(K) be the endomorphisms of K as a Lie co-algebra, which also
respect the filtration on K .

Proposition 5.8 The Euler map in Proposition 5.3 is equivariant for the endomor-
phism action. Hence the isomorphism V : Sym(K) — U°(K) is equivariant for the
action of the endomorphism group E.

Proof The coproduct on U°(K) is clearly equivariant for £ and similarly the
product on U€(K) is equivariant, since U°(K) is a subalgebra of 7°(K) for the
shuffle product. Then if f, g : U°(K) — U°(K) are two equivariant maps, their
convolution product f x g is also equivariant.

Since 1 and 7 o € are equivariant for E, the difference J = 1 — 1 o € is so also.

The Euler map ¢ = J — J*?/2+ J*3/3 — ... must then be equivariant for the action
of E.

Since the image of the Euler map is K, the inclusion K < U¢(K) is equivariant
also, and so is the map ¥ above. O

As a consequence of this the action of E on K induces an action on the dual Lie
algebra L respecting its filtration. By Proposition 5.2 this again induces a diagram
of actions of the following sets

ExU(L) — U(L)

l !

ExL —— L. (18)

5.2.1 The Free Lie Algebra

Now let V = @;>1V; be a positively graded vector space with finite dimensional
parts V;. We consider the special case of the above that L is the completion I:E:(V)
of the free Lie algebra on V. Note that Lie(V) is a graded Lie algebra with finite
dimensional graded parts. The enveloping algebra U (Lie(V)) is the tensor algebra
T(V).

The graded dual vector space is V® = ®V* and the graded dual Lie co-algebra
is Lie(V)®. The Hopf algebra U¢(Lie(V)®) is the shuffle Hopf algebra T (V®).

Since Lie(V) is the free Lie algebra on V, the endomorphisms E identifies
as (note that here it is essential that we consider endomorphisms respecting the
filtration)

Endp e co (Lie(V)®, Lie(V)®) = Homye(Lie(V), Lie(V)). (19)

This is a variety with coordinate ring &y = Sym(V ® Lie(V)®), which is a
bialgebra. Furthermore the diagram (18) with L = Lie(V) in this case will be a
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morphism of varieties: Both E, L and U(L) come with filtrations and all maps are
given by polynomial maps. So we get a dual diagram of coordinate rings

Sym(Lie(V)®) —— &y ® Sym(Lie(V)®)

| !

Sym(T(V)®) —— Ev @ Sym(T(V)®)

But since the action of E is linear on Iji\e(V) and f(V), this gives a diagram

Lie(V)® —— & ® Lie(V)®

! |

TC(V®) —— &y @TE(V®)

and so the isomorphism Sym(Lie(V)®) =, T¢(V®) is an isomorphism of
comodules over the algebra Ey .

5.3 Baker-Campbell-Hausdorff on Coordinate Rings

The space K has a countable basis and so we may consider Sym(K) as the
coordinate ring of the variety L = Homy(K, k). By the isomorphism

Sym(K) —> U°(K) of Proposition 5.4 we may think of U¢(K) as this coordinate
ring. Then also U¢(K) ®; U¢(K) is the coordinate ring of L x L.
The coproduct (whose dual is the product on U (L))

US(K) =5 US(K) & US(K),

will then correspond to a morphism of varieties L x L — L. The following explains
what it is.

Proposition 5.9 The map L x L — L given by
(a, b) > log®(exp°®(a) e exp® (b))
is a morphism of varieties, and on coordinate rings it corresponds to the coproduct
US(K) =% US(K) ® US(K).

This above product on L is the Baker-Campbell-Hausdorff product.
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Example 5.10 Let V = @,>1V; be a graded vector space with finite dimensional
graded parts. Let Lie(V) be the free Lie algebra on V, which comes with a natural
grading. The enveloping algebra U (Lie(V)) is the tensor algebra 7 (V). The dual
Lie coalgebra is the graded dual K = Lie(V)®, and U(K) is the graded dual
tensor coalgebra T(V®) which comes with the shuffle product. Thus the shuffle
algebra T (V®) identifies as the coordinate ring of the Lie series, the completion
Iji\e(V) of the free Lie algebraon V.

The coproduct on T(V®) is the deconcatenation coproduct. This can then be
considered as an extremely simple codification of the Baker-Campbell-Hausdorff
formula for Lie series in the completion Iji\e(V).

Proof If X — Y is a morphism of varieties and A(Y) i) A(X) the corresponding
homomorphism of coordinate rings, then the point p in X corresponding to the

algebra homomorphism A (X) RNy maps to the point ¢ in Y corresponding to the

algebra homomorphism A(Y) ik given by ¢* = ¢ o p*.
Now given points a and b in L = Homg (K, k). They correspond to algebra

homomorphisms from the coordinate ring U*(K) LY k, the unique such extending
a and b, and these are a = exp(a) and b = exp(b). The pair (a,b) € L x L
corresponds to the homomorphism on coordinate rings

exp(a) ® exp(b) : US(K) @ US(K) *28 k @ k = k.

Now via the coproduct, which is the homomorphism of coordinate rings,

US(K) 2% UC(K) @ US(K)

this maps to the algebra homomorphism exp(a) e exp(b) : U(K) — k. This is the
algebra homomorphism corresponding to the following point in L:

log®(exp(a) e exp(b)) : K — k.

5.4 Filtered Pre- and Post-Lie Algebras with Finite
Dimensional Quotients

We now assume that the filtered quotients P/PP*!, which again are post-Lie
algebras, are all finite dimensional. Let their duals be O, = Homi(P/ PP k)

and Q = h_I)n Qp, which is a post-Lie coalgebra. We shall assume P = P is

p
complete with respect to this filtration. Then P = Hom(Q, k), and Sym(Q) is the
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coordinate ring of P. There are two Lie algebra structures on P, given by [, ] and
[, I of Definition 3.1. These correspond to the products e and * on the enveloping
algebra of P. We shall use the first product e, giving the coproduct A, on U°(Q).
For this coproduct Proposition 5.4 gives an isomorphism

Ve : Sym(Q) —> US(Q). (20)

Due to the formula in Proposition 3.6 the product

PxP-sp

on each quotient P/ P!, is given by polynomial expressions. It thus corresponds to
a homomorphism of coordinate rings

Sym(Q) —5 Sym(Q) ® Sym(0Q). 21

Proposition 5.11 Via the isomorphism v, in (20) the coproduct Ay above corre-
sponds to the coproduct

U°(Q) =5 U°(Q) ® US(Q).

which is the dual of the product x on U (P).

Remark 5.12 In order to identify the homomorphism of coordinate rings as the
coproduct A, it is essential that one uses the isomorphism 1, of (20). If one uses

another isomorphism Sym(Q) —> U¢(Q) like the isomorphism 1, derived from
the coproduct A, the statement is not correct. See also the end of the last remark
below.

Remark 5.13 (The Connes-Kreimer Hopf algebra) For the free pre-Lie algebra T¢
(see the next Sect. 6) this identifies the Connes-Kreimer Hopf algebra Hcx as the
coordinate ring Sym(TC® ) of the Butcher series T¢ under the Butcher product.

As a variety the Butcher series Tc is endowed with the Zariski topology, and the
Butcher product is continuous for this topology. In [1] another finer topology on Te
is considered when the field k = R or C.

Remark 5.14 (The MKW Hopf algebra) For the free post-Lie algebra Pc (see
Sect. 6) it identifies the MKW Hopf algebra T(OT?) as the coordinate ring
Sym(Lie(OT¢)®) of the Lie-Butcher series f’c = I}(OTC). A (principal) Lie-
Butcher series £ € 13C corresponds to an element Lie(OT¢)® —Z> k. This lifts via
the isomorphism v, of (20) to a character of the shuffle algebra T(OT?) —Z> k.

That the lifting from (principal) LB series to character of the MKW Hopf algebra
must be done using the inclusion Lie(OT¢)® < T(OT?) via the Euler map of



354 G. Flgystad and H. Munthe-Kaas

Proposition 5.3 associated to the coproduct A,, is a technical point which has not
been made explicit previously.

Proof of Proposition 5.11 Given points a, b € P. They correspond to linear maps

0 a—’b> k. Via the isomorphism 1/, these extend to algebra homomorphisms

Uc(Q) ﬂ k, where a = exp®(a) and b = exp®(b). The pair (a,b) € P x P
then corresponds to a homomorphism of coordinate rings

exp®(a) @ exp®(b) : U(Q) Q U°(Q) @; k®rk=k.

Now via the coproduct associated to *, which is the homomorphism of coordinate
rings,

U°(Q) =5 US(Q) ® US(Q)

this maps to the algebra homomorphism exp®(a) * exp®(b) : U(Q) — k. This is
the algebra homomorphism corresponding to the following point in P:

log®(exp®(a) * exp® (b)) : Q — k.

6 Free Pre- and Post-Lie Algebras

This section recalls free pre- and post-Lie algebras, and the notion of substitution in
these algebras. We also briefly recall the notions of Butcher and Lie-Butcher series.

6.1 Free Post-Lie Algebras

We consider the set of rooted planar trees, or ordered trees:

OT = {.,I,V,i'\?,\},b,---},

and let kOT be the k-vector space with these trees as basis. It comes with an
operation >, called grafting. For two trees ¢ and s we define ¢ > s to be the sum
of all trees obtained by attaching the root of ¢ with a new edge onto a vertex of s,
with this new edge as the leftmost branch into the vertex of s.

If C is a set, we can color the vertices of OT with the elements of C. We then
get the set OT¢ of labelled planar trees. The free post-Lie algebra on C is the free
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Lie algebra Pc = Lie(OT¢) on the set of C-labelled planar trees. The grafting
operation is extended to the free Lie algebra Lie(OT¢) by using the relations from
Definition 3.1. Note that Pc has a natural grading by letting Pc 4 be the subspace
generated by all bracketed expressions of trees with a total number of d vertices. In
particular Pc is filtered.

The enveloping algebra of Pc identifies as the tensor algebra 7' (OT¢). It was
introduced and studied in [25], see also [23] for more on the computational aspect
in this algebra. Its completion identifies as

T(0OT¢) = ]_[ T(OT¢)a.
d>0

6.2 Free Pre-Lie Algebras

Here we consider instead (non-ordered) rooted trees

TR XV E LU TR N

On the vector space kT we can similarly define grafting . Given a set C we get
the set T¢ of trees labelled by C. The free pre-Lie algebra is Ac = kT¢, [5]. Its
enveloping algebra is the symmetric algebra Sym(7¢), called the Grossman-Larson
algebra, and comes with the ordinary symmetric product - and the product *, [26].

6.3 Butcher and Lie-Butcher Series

Recall the pre-Lie algebra AR" of vector fields from Example 3.2, and the
corresponding power series XR"[1]]. Let f € AR" be a vector field and A, the free
pre-Lie algebra on one generator e. By sending e — f we get a homomorphism of
pre-Lie algebras A, — AR" which sends a tree 7 to the associated elementary
differential f7, see [15, Section III.1]. If f € AR"[h]] we similarly get a
homomorphism of pre-Lie algebras A, — AR"[[A]]. The natural grading on A,
by number of vertices of trees |t| of a tree 7, gives a filtration and we get a map of
complete pre-Lie algebras Ay — AR"[A]. If we let o — f - h where f € AR" is
a vector field, then

Z a(T)T > Z a(t) fTA

teT teT

and the latter is called a Butcher series. Often this terminology is also used about
the abstract form on the left side above.
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In the general setting of a Lie group G. By Example 3.3, XG is a post-Lie algebra,
and so is also the power series XG[[1]. Let f € XG be a vector field and P, the free
post-Lie algebra on one generator e. By sending e — f we get a homomorphism
of post-Lie algebras P, — XG which sends a tree t to the associated elementary
differential f7, see [18, Subsection 2.2]. We also get a map of enveloping algebras
T(0OT,) — U(XG) which sends a forest w to an associated differential operator
f“. The natural grading on P, by number of vertices of trees |t| of a tree 7, gives a
filtration. Sending e — f-h we get a homomorphism of complete post-Lie algebras
ﬁ. — XG[h]. The image of an element from 13. is a Lie-Butcher series in XG[ h]].
Note that there is however not a really natural basis for P, = Lie(OT,). Therefore
one usually consider instead the map from the completed enveloping algebra to the
power series of differential operators (F, below denotes ordered forests of ordered
trees)

T(0T,) — U(XG[h])
Y B@aor Y Blw)fh

w€eF, weF,

and the latter is a Lie-Butcher series. The abstract form to the left is also often called
a LB-series.

6.4 Substitution

In the above setting, we get by Sect. 3.2 a commutative diagram of flow maps

~ Dp A
Pofield ——  Peflow

l l

[
XG[h]gelda —= XGlhlow-

The field f is mapped to the flow ® x5 (f). By perturbing the vector field f —
f + 8, itis sent to a flow @y, (f + ). We assume the perturbation § is expressed
in terms of the elementary differentials of f, and so it comes from a perturbation
e — o+ & = 5. Since Hom(e, P,) = EndpostLie(Ps) this gives an endomorphism
of the post-Lie algebra. We are now interested in the effect of this endomorphism
on the flow, called substitution of the perturbed vector field, and we are interested in
the algebraic aspects of this action. We study this for the free post-Lie algebra Pc,
but most of the discussions below are of a general nature, and applies equally well
to the free pre-Lie algebra, and generalises the results of [4].
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7 Action of the Endomorphism Group and Substitution in
Free Post-Lie Algebras

Substitution in the free pre-Lie or free post-Lie algebras on one generator gives, by
dualizing, the operation of co-substitution in their coordinate rings, which are the
Connes-Kreimer and the MKW Hopf algebras. In [4] they show that co-substitution
on the Connes-Kreimer algebra is governed by a bialgebra H such that the Connes-
Kreimer algebra Hcg is a comodule bialgebra over this bialgebra H. Moreover
Hck and H are isomorphic as commutative algebras. This is the notion of two
bialgebras in cointeraction, a situation further studied in [12, 20], and [11].

In this section we do the analog for the MKW Hopf algebra, and in a more general
setting, since we consider free pre- and post-Lie algebras on any finite number
of generators. In this case Hcg and H are no longer isomorphic as commutative
algebras. As we shall see the situation is understood very well by using the algebraic
geometric setting and considering the MKW Hopf algebra as the coordinate ring of
the free post-Lie algebra. The main results of [4] also follow, and are understood
better, by the approach we develop here.

7.1 A Bialgebra of Endomorphisms

Let C be a finite dimensional vector space over the field k, and Pc the free post-
Lie algebra on this vector space. It is a graded vector space Pc = P - Pc.a
graded by the number of vertices in bracketed expressions of trees, and so has finite
dimensional graded pieces. It has a graded dual

P& = @gHomi (Pcq. k).

Let {/} be a basis for Pc. It gives a dual basis {{*} for Pc@. The dual of PC® is the
completion

Pc = Homi(PE, k) = lim P, <q.
d

It is naturally a post-Lie algebra and comes with a decreasing filtration ﬁg“ =
ker(Pc — Pc.<a).
Due to the freeness of Pc we have:

Homy (C, Pc) = HomposLie(Pc, Pc) = EndpostLie(PC)-

Denote the above vector space as E¢. If we let {c} be a basis for C, the graded dual
EZ = C @ PZ hasabasis {ac(l) = c @ I*}.



358 G. Flgystad and H. Munthe-Kaas

The dual of E ? is EC = Homy (E ®, k) which may be written as C* ® ﬁc- This
is an affine space with coordinate ring

Ec :=Sym(EE) = Sym(Homy (C, Pc)®) = Sym(C & PY).
The filtration on 13C induces also a filtration on EC.
A map of post-Lie algebras ¢ : Pc — Pc induces a map of post-Lie algebras
¢ : Pc — Pc. We then get the inclusion

EC = HompostLie(Pc, ﬁC) - HompostLie(ﬁCs ﬁC)

Ifo, v € Ec, we get a composition ¥ o ¢AS, which we by abuse of notation write as
Y o ¢. This makes E¢ into a monoid of affine varieties:

Ec x Ec = Ec.

It induces a homomorphism on coordinate rings:
Ao

Ec — Ec R Ec.
This coproduct is coassociative, since o on EC is associative. Thus £c becomes a
bialgebra.

Note that when C = (e) is one-dimensional, then
£, = Sym(P®) = T¢(OT?)
as algebras, using Proposition 5.4. The coproduct A, considered on the shuffle
algebra is, however, neither deconcatenation nor the Grossman-Larson coproduct.
For the free pre-Lie algebra A, instead of P,, a description of this coproductis given
in [4, Section 4.1/4.2].
7.1.1 Hopf Algebras of Endomorphisms
The augmentation map Pc — C gives maps
Homy (C, Pc) — Homg(C, C)

and dually

Homy(C, €)® € Homy(C, Pc)® = C @ PY.

Recall that a.(d) are the basis elements of Homy (C, C)® (the coordinate functions
on Homy (C, C)), where ¢ and d range over a basis for C. We can then invert D =
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det(ac(d)) in the coordinate ring Ec. This gives a Hopf algebra £5 which is the
localized ring (£c) p. Another possibility is to divide ¢ by the ideal generated by
D — 1. This gives a Hopf algebra EL = Ec/(D — 1). A third possibility is to divide
Ec out by the ideal generated by the a.(d) — §..4. This gives a Hopf algebra 5151' In
the case C = {e} and P, is replaced with the free pre-Lie alegbra A,, both the latter
cases give the Hopf algebra H in [4, Subsection 4.1/4.2].

7.2 The Action on the Free Post-Lie Algebra

The monoid E¢ acts on Pc, and Ec acts on I3C. So we get a morphism of affine
varieties

Ec X ﬁc N ﬁc 22)
called substitution.

Let He = Sym(ng ) be the coordinate ring of Pc. We get a homomorphism of
coordinate rings called co-substitution

He 25 €0 @ He (23)

Note that the map in (22) is linear in the second factor so the algebra homomor-
phism (23) comes from a linear map

PC@ — & ® PC® .
The action » gives a commutative diagram

ECxEcxpcﬁEcxPC

ox1| |+

E c X f’c #) ﬁc
which dually gives a diagram

Ec®Ec®He «—— Ec ®@Hc

| |

Ec ®He —— Hc.

This makes H¢ into a comodule over £c, in fact a comodule algepra, since all
maps are homomorphisms of algebras. The Butcher product § on Pc¢ is dual to



360 G. Flgystad and H. Munthe-Kaas

the coproduct A, : Hc — Hc ® Hc by Proposition 5.11. Since Ec gives an
endomorphism of post-Lie algebra we have fora € Ec and u, v € Pc:

ax (ugv) = (a xu)fi(a » v).
In diagrams

A A A A 1 1/\ A A A A A
EchcxPCxpcﬁEcxPCxEcxPC;x’wchPC

diagxlxlT ln

A A A 1 : A A A
Ec x Pc x Pc Xk Ec x Pc LN Pc

which dually gives a diagram

1®T®1 Av®Ay
Ec®ECQHCOHe «—— EcQHRECRHe < Hce ® He

l I

1 * *
Ec@He @He L2 Ec ® He A e

This makes H ¢ into a comodule Hopf algebra over £c. We also have
ax(ur>v)=(axu)>(axv)

giving corresponding commutative diagrams, making H¢ into a comodule algebra
over Ec.

7.2.1 The Identification with the Tensor Algebra

The tensor algebra T (OT¢) is the enveloping algebra of Pc = Lie(OT¢). The
endomorphism of post-Lie co-algebras Endpos[Lie,CO(PgB ) identifies by Eq. (19) as

EC = Hompogsiie(C, ﬁc). It is an endomorphism submonoid of EndLie(PC® )
By Sect.5.2.1 the isomorphism H¢ = Sym(P&) —> T(OT¢) is equivariant
for the action of E¢ and induces a commutative diagram

He B Ec@He

;l l;

7¢0T%) 2% &0 @ T¢(OTE) 24)

Thus all the statements above in Sect. 7.2 may be phrased with 7°¢ (OT?) instead of
Hc as comodule over Ec.
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7.3 The Universal Substitution

Let K be a commutative k-algebra. We then get PC@ x = K ® PC@ , and
correspondingly we get

EEy. Mok =Sym(PEy)., Ec.k =Sym(EE ).

Let the completion ﬁC, K = Hom(Pc@ x> K). (Note that this is not K ® 13C but
rather larger than this.) Similarly we get Ec,K. The homomorphism of coordinate
rings He,xk — Ec,xk @k Hc,x corresponds to a map of affine K-varieties (see
Remark 4.2)

EC,K X Isc’K — fA’C,K. (25)

A K-point A in the affine variety EC, k then corresponds to an algebra homo-
. A* . ~
morphism &c.x —> K, and K-points p € Pc g corresponds to algebra

homomorphisms Hc, x Ay's
In particular the map obtained from (25), using A € EC, K:

Pc.k RN Pc.k (26)
corresponds to the morphism on coordinate rings
He,xk = He,k ®k Ec i tod” Hexk ®k K =Hek (27)
which due to (26) being linear, comes from a K -linear map
PEy — P&y
Now we let K be the commutative algebra ¢ = Sym(E ? ). Then
Ec.xk = K ® Sym(EZ) = Sym(EZ) ® Sym(EY).
There is a canonical algebra homomorphism
Ecxk > K (28)
which is simply the product

Sym(EE) ® Sym(EE) > Sym(EE).
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Definition 7.1 Corresponding to the algebra homomorphism 1 of (28) is the point
U in Ec. x = Homi(Ck, Pc k). This is the universal map (here we use the
completed tensor product):

C—C®PE&PC) (29)

sending

CHCc® Yoo rel=>) alel
[ basis !
element of P¢

Using this, (26) becomes the universal substitution, the K -linear map

R U, A
Pcx — Pck.

Let H = Hom(C, Pc)®, the degree one part of K = £c, and Pc.y = H ®x Pc.
Note that the universal map (29) is a map from C to Pc g.

Ifa € Ecisa specific endomorphism, it corresponds to an algebra homomor-
phism (character)

K =& ok
aD)=c@I* — alc ).

Then U, induces the substitution f’c ey ﬁc by sending each coefficient a.(I) € K
toa(c ®I*) € k.

The co-substitution H¢ i) Ec ® Hc of (23) induces a homomorphism
EcQHe - Ec®Ec®He = Ec @ Hc

which is seen to coincide with the homomorphism (27) when K = &¢. The universal
substitution therefore corresponds to the map on coordinate rings which is the co-
substitution map, suitably lifted.

Recall that the tensor algebra 7' (OT¢) identifies as the forests of ordered trees
OFc. We may then write T“’(OT?) = OF?. By the diagram (24) the co-substitution

A, — ul .
Hc.xk — Hc, k identifies as a map OF? x — OF? x and we get a commutative
diagram and its dual
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U

T A A
OF?K — OF?’K ., Pck Pck .
A N R
Pk P& OF¢c x ——=OFc x
We may restrict this to ordered trees and get
UT A U A
OFg x —> OTg ;. OTc¢x —> OFc k.

We may also restrict and get

Ckx — ﬁC,K — OAFC,K,
with dual map

U':OFg y — P&y — Cx (30)

For use in Sect. 7.4.1, note that (29) sends C to ﬁC,H where H = Homy (C, Pc)® C
K is the graded dual of Ec. A consequence is that OF? - OF? x 1s mapped to
Ci S CxbyU'.

7.4 Recursion Formula

The universal substitution is described in [18], and we recall it. By attaching the
trees in a forest to a root ¢ € C, there is a natural isomorphism

OTc ZO0Fc®C
and dually
OFE ® C* —> OT 31)
Here we denote the image of ® ® p as w ~ p.

Proposition 7.2 ([18]) The following gives a partial recursion formula for U *T, the
universal co-substitution followed by the projection onto the dual ordered trees:

Ul =Y Ul ~ U @),
Ap (o)
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Proof Recall the following general fact. Two maps V i) W and W* i) V* are
dual iff for all v € V and w* € W* the pairings

(v, Y (W) = (P (v), w*).
We apply this to ¢ = U, and

A ureu!
¥ 1 OFE p =5 OFE ¢ ®OF¢  “— OFE , ® C —> OTE 4.

We must then show that
Yo Ul @D) A U @) = (U.0), 0)
Ap(w)
Solett = f > c. Using first the above fact on the map (31) and its dual:

Yt Ul @) A U @) =D (fec Ul (0P) @ U'(0?))
A () Ap(0)

= > (AU @) (e, U (@)

Ap(w)

=3 W), 0D - (), 0?)

Ap ()

(Uu(f)®U(0), Ap ()
=(U.(f) > U(c), w)

=(U«(f > o), 0) = (U«(1), w)

We now get the general recursion formula, Theorem 3.7, in [18].

Proposition 7.3

Ulw) = Z Ul (@) - U*T(wz)-
As(w)

Proof Given a forest f -t where ¢ is a tree. We will show

U(f1).0) = Y (f1.UT @) - U} (@2)).

Ao(w)



Pre- and Post-Lie Algebras: The Algebro-Geometric View 365
We have:

(Uu(f1), @) = (Uu(f) - Uu(1), ).
Since concatenation and deconcatenation are dual maps, this is

= Y {Uf) @ Un(t), 01 ® a2)

Ac(@)

= Z (Uu(f), @1) - (Us(2), w2)
Ac(@)

=3 (LU @) - 1, UL @)
Ac(@)

. T . ..
Since U, (w2) is a dual tree, this is:

= Z (ft, U*T(a)1) . Uf(U)Z))-

Ao(w)
O
7.4.1 The Case of One Free Generator
Now consider the case that C = (e) is a one-dimensional vector space. Recall

~

the isomorphism ¢ : & = T(OT®) as algebras but the coproduct on this is

different from H, = T (OT®). To signify the difference, we denote the former by

T°(OT§9). It is the free algebra on the alphabet a4 (¢) where the ¢ are ordered trees.

Multiplication on £, = Sym(P®) corresponds to the shuffle product on 7°(OTP).
The coproduct

Ho i go Rk Ho

may then by Sect. 7.2.1 be written as

T(OT®) 25 T°(0T®) ® T(OT®) = K @ T(OT®).

The two bialgebras T(OT.®) and T°(OT.®) are said to be in cointeraction, a notion
studied in [4, 12, 20], and [11].
The element U’ (0®) is in CI*( = K. By the comment following (30) it is in
C% = Homy(e, P.)® @ o* = P&.
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Then U’ (w'?) is simply the image of »® by the natural projection T(OT?®) —
P.®. We may consider U’ (w?®) as an element of K < T°(OT§9) via the
isomorphism ¥ above. We are then using the Euler idempotent map

T(0T®) 5 T(0T®) = T7°(0T9),

so that U (0w®) = 7(0®).

Let B4 be the operation of attaching a root to a forest in order to make it
a tree. By a decorated shuffle LI below we mean taking the shuffle product of
the corresponding factors in K = T°(OT®). By the decorated - product we
mean concatenating the corresponding factors in T (OT®). Then we may write the
recursion of Proposition 7.3 as:

Proposition 7.4

T
Ay (w) = W3 24 A (w1) @ U, (02)
= W35 24 A4 (1) ® B (A(0") @ m(@P)
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Extension of the Product of a Post-Lie )
Algebra and Application to the SISO e
Feedback Transformation Group

Loic Foissy

Abstract We describe both post- and pre-Lie algebra gs;so associated to the affine
SISO feedback transformation group. We show that it is a member of a family of
post-Lie algebras associated to representations of a particular solvable Lie algebra.
We first construct the extension of the magmatic product of a post-Lie algebra to its
enveloping algebra, which allows to describe free post-Lie algebras and is widely
used to obtain the enveloping of gs;so and its dual.

1 Introduction

The affine SISO feedback transformation group Ggsrso [9], which appears in
Control Theory, can be seen as the character group of a Hopf algebra 5;s50; let
us start by a short presentation of this object (we slightly modify the notations of

[9D.
1. First, let us recall some algebraic structures on noncommutative polynomials.

a. Let x1, x2 be two indeterminates. We consider the algebra of noncommutative
polynomials K(x, x2). As a vector space, it is generated by words in letters
X1, x2; its product is the concatenation of words; its unit, the empty word, is
denoted by .

b. K(x1, x2) is a Hopf algebra with the concatenation product and the deshuffling
coproduct Ay, defined by A, (xi) = x; ® 0+ @ ® x;, fori € {1,2}.
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c. K(x1, x2) is also a commutative, associative algebra with the shuffle product
L: for example, if i, j, k, I € {1, 2},

XiXji W XpX] = XiXjXpX] + XiXpXiX] + XiXpX| X7 4+ XpXiXiX] + XpXiX| X + XpX[XiXi.
J J J J J J J

2. The vector space K(x1, x2)2 is generated by words x;, ...x;.€;, where k > 0,
i1,...,ik, j € {1,2}, and (€1, €2) denotes the canonical basis of K2,
3. As an algebra, %50 is equal to the symmetric algebra S(K(xq, x2>2); its

product is denoted by w and its unit by 1. Two coproducts A, and A, are
defined on #%;50. For all h € 550, we put Ay(h) = Ay(h) — 1 ® h and
Ae(h) = Ae(h) — 1 ® h. Then:

e Foralli € {1,2}, Ax(Pe;) = Pe; ® 1.

e Forall g € K(x1, x2), foralli € {1, 2}:
Ay 00y, (g€;) = (Ox; ® Id) 0 Asx(gei) + (Ox, ® ) 0 (Ax ® Id)(A(8)€i B €2),
Ay 00x,(g€;) = (0r, ® ) 0 (A ® Id) (AL (8)€i B €1),

where 0, (he;) = xhe; for all x € {x1, x2}, h € K(x1, x2), i € {1, 2}. These
are formulas of Lemma 4.1 of [9], with the notations a,, = wey, by, = weq,
00 = Oy,, 01 = Oy, and A = A,.

o forall g € K(x1, x2):

Ae(ger) = (Id @ 1) o (Ax @ 1d)(Ai(g)(e1 ® €1)),
Ad(g€2) = Asx(g€2) + (Id Q@ p) 0 (A4 @ Id)(Aw(8) (2 ® €1)).

This coproduct A, makes 7550 a Hopf algebra, and A, is a right coaction on
this coproduct, that is to say:

(Ae®@1Id) o Aqg =(Id @ As) 0 Ay, (A ®Id)o Ay = (Id ® A,) 0 A,

. After the identification of fe; with the unit of J#5;50, we obtain a commutative,

graded and connected Hopf algebra, in other words the dual of an enveloping
algebra 2A(gsis0).

Our aim is to give a description of the underlying Lie algebra gs;so. It turns out

that it is both a pre-Lie algebra (or a Vinberg algebra [1], see [4] for a survey on
these objects) and a post-Lie algebra [5, 10]: it has a Lie bracket,[—, —] and two
nonassociative products * and e, such that for all x, y, z € gsrso:

Xk gly,zZl=@*xy)xz2—xx(y*2) —(x*x2)xy +xx(2*Y),
alx, y1*z = alx xz, y1 + alx, y xz];

(xey)ez—xe(yez)=(xez)ey—xe(zey).
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The Lie bracket on gsrso corresponding to Gsrso iS 4[—, —1«:

Vx,y € 95150, alx, ylx = alx,y]+x*xy—y*x=xey—yeox.

Let us be more precise on these structures. As a vector space, gsiso =
K(x1, x2)2, and:

0ifi = j,
Vi g € Kix1,x2), Vi, j € (1,2}, ulfei.gejl=1—fluigeifi =2andj =1,
fuwgeifi=1and j =2.

The magmatic product * is inductively defined. If f, g € K(x1, x2) andi, j € {1, 2}:

Pe; x gej =0, x2fe x ger = x2(f€ * gey) +x2(f W g)e;,
x1feixgej =x1(fe€; xgej), xafei x ger = xa(fe; * gea) +x1(f LW g)e;.

The pre-Lie product e, first identified in [9], is given by:
Vg € Kixi,x2), Vi, j € {1,2}, fei @gej = (f LG 1€j + fei x ge;j.

We shall show here that this is a special case of a family of post-Lie algebras,
associated to modules over certain solvable Lie algebras.

We start with general preliminary results on post-Lie algebras. We extend the
now classical Oudom-Guin construction on prelie algebras [6, 7] to the post-Lie
context in the first section: this is a result of [2] (Proposition 3.1), which we prove
here in a different, less direct way; our proof allows also to obtain a description of
free post-Lie algebras. Recall that if (V, %) is a pre-Lie algebra, the pre-Lie product
x can be extended to S(V) in such a way that the product defined by:

VigeS(WV), fag=) fxglg?

is associative, and makes S(V) a Hopf algebra, isomorphic to %(V). For any
magmatic algebra (V, %), we construct in a similar way an extension of * to 7'(V)
in Proposition 1. We prove in Theorem 1 that the product ® defined by:

VfgeT(V), fog=) fxghg®

makes 7 (V) a Hopf algebra. The Lie algebra of its primitive elements, which is
the free Lie algebra Zie(V) generated by V, is stable under * and turns out to
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be a post-Lie algebra (Proposition 2) satisfying a universal property (Theorem 2).
In particular, if V is, as a magmatic algebra, freely generated by a subspace W,
Zie(V) is the free post-Lie algebra generated by W (Corollary 1). Moreover, if
V = ([—, —1, %) is a post-Lie algebra, this construction goes through the quotient
defining 2(V, [—, —1), defining a new product & on it, making it isomorphic to the
enveloping algebra of V with the Lie bracket defined by:

Vx,yeV, [x,ylx=[x,y] +xxy —y*x.
For example, if x1, xp,x3 € V:

X1 ® x2x3 = x1x2X3 + (X1 * x2)x3 + (X1 % x3)x2 + (X1 *x2) * X3 — X1 * (X2 * X3)

X1X2 ® X3 = X1Xx2X3 + (X1 * x3)x2 + X1 (x2 * x3).

In the particular case where [—, —] = 0, we recover the Oudom-Guin construction.

The second section is devoted to the study of a particular solvable Lie algebra
ga associated to an element ¢ € K. As the Lie bracket of g, comes from
an associative product, the construction of the first section holds, with many
simplifications: we obtain an explicit description of Z(g,) with the help of a product
<« on S(g,) (Proposition 6). A short study of g,-modules when a = (1,0, ...,0)
(which is a generic case) is done in Proposition 8, considering g, as an associative
algebra, and in Proposition 9, considering it as a Lie algebra. In particular, if
K is algebraically closed, any g, modules inherits a natural decomposition in
characteristic subspaces.

Our family of post-Lie algebras is introduced in the third section; it is remines-
cent of the construction of [3]. Let us fix a vector space V, (ay, ...,an) € K" and
a family Fi, ..., Fy of endomorphisms of V. We define a product * on T(V)N,
such that forall f,g e T(V),x € V,i,je{l,...,N}:

De; x gej =0,
xfexgej =x(fe xgej) + Fi(x)(f W e,

where (€1, ..., €y) is the canonical basis of K" and W is the shuffle product of
T (V). The Lie bracket of T(V)" that we shall use here is:

VfgeT(V), Vi, jell,...,N}, 4 fei, gejl = (f Wg)aiej — aje;).
This Lie bracket comes from an associative product ,LLI defined by:

Vf,geT(V), Vi,jel{l,...,N}, fei s Wge; = a;(f LWL ge;.
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We put ¢ = %+ ,LU. We prove in Theorem 3 the equivalence of the three following
conditions:

o (T(V)V, o) is a pre-Lie algebra.
o (T(V)N, 4[—, =], %) is a post-Lie algebra.
e Fj,..., Fy defines a structure of g,-module on V.

If this holds, the construction of the first section allows to obtain two descriptions
of the enveloping algebra of Z(T (V)N), respectively coming from the post-Lie
product * and from the pre-Lie product e: the extensions of % and of e are
respectively described in Propositions 13 and 14. It is shown in Proposition 15
that the two associated descriptions of AT (V)N are equal. For gsrso, we take
a=(1,0),V = Vect(x1, xp) and:

Fl = 00 ’ P = 01 ’
01 00

which indeed define a g(j,0)-module. In order to relate this to the Hopf algebra
J5150 of [9], we need to consider the dual of the enveloping of T (V)N . First,ifa =
(1,0, ...,0), we observe that the decomposition of V' as a g,-module of the second
section induces a graduation of the post-Lie algebra 7(V)Y (Proposition 16),
unfortunately not connected: the component of degree 0 is 1-dimensional, generated
by ¥e;. Forgetting this element, that is, considering the augmentation ideal of the
graded post-Lie algebra T (V)N, we can dualize the product ® of S (T (V)N in order
to obtain the coproduct of the dual Hopf algebra in an inductive way. For gs;50, we
indeed obtain the inductive formulas of %50, finally proving that the dual Lie
algebra of this Hopf algebra, which in some sense can be exponentiated to Gs;s0,
is indeed post-Lie and pre-Lie.

Notations

1. Let K be a commutative field. The canonical basis of K" is denoted by

(61, ey E,,).
2. For all n > 1, we denote by [n] the set {1, ..., n}.
3. We shall use Sweeder’s notations: if C is a coalgebra and x € C,

AV =A@ =) sV ex®,

AP = (A®Id)o A(x) = me Rx? @x?.

2 Extension of a Post-Lie Product

We first generalize the Oudom-Guin extension of a pre-Lie product in a post-Lie
algebraic context, as done in [2]. Let us first recall what a post-Lie algebra is.
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Definition 1 A (right) post-Lie algebra is a family (g, {—, —}, *), where g is a
vector space, {—, —} and x* are bilinear products on g such that:
* (g,{—,—}) is aLie algebra.
e Forallx,y,z € g:
xx{y,z}=@*y)*xz—x*x(y*2) — (x*x2)xy+x*x(z2%y), (D
e ytxz={x*xz, y}+{x,y*xz} (2

2.If (g, {—, —}, %) is post-Lie, we define a second Lie bracket on g:

Vx,yeg {x,yhh={x,y}+x*xy—y=xx.
Note that if {—, —} is 0, then (g, *) is a (right) pre-Lie algebra, that is to say:

Vx,y,z€g, (0xy)kxz—x*x(y*x2) =@x*x2)*xy—x*x(z*xy). 3)

2.1 Extension of a Magmatic Product

Let V be a vector space. We here use the tensor Hopf algebra T'(V). In this section,
we shall denote the unit of 7 (V) by 1. Its product is the concatenation of words,
and its coproduct Ay, is the cocommutative deshuffling coproduct. For example, if
X1,x2,x3 € V:

An(x1x2x3) = x1x00x3 @ 1 + x1x2 @ x3 + x1x3 @ X2 + x2X3 ® X1

+ X1 @ xx3+x2 ®x1x3 +x3 @ x1x2 + 1 & x1x2x3.

Its counit is denoted by ¢: ¢(1) = l andif k > 1 and x1,...,xx € V,e(x1...x¢)
=0.

Proposition 1 Let V be a vector space and x : V ® V. —> V be a magmatic
product on V. Then % can be uniquely extended as a map from T (V) @ T(V) to
T (V) such that forall f,g,h e T(V),x,y e V:

. fxl=f.

o 1% f=e(f)L

s xx(fy)=@x*x flxy—xx(f*y).
s U xh=Y (£ h0) (g5h?),
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Proof We first inductively extend « from V@ T(V)to V. Ifn > 0,x, y1,...,ys €
V, we put:

xifn =0,

xxy ifn=1,

n—1
X*Y]..oyp = .
TGOk = Dk e ik ) ) i 2 2,
;;/ eV =1 ev%@ll)
v v

This product is then extended from 7 (V) ® T (V) to T (V) in the following way:

e Forall feT(V),1xf=¢e(f)l.
e Foralln > 1,forallxy,...,x, €V, feT(V):

Grecx) sk f =Y s fO) o f0) e VO
v v

This product satisfies all the required properties.

Examples If x1, x2, x3,x4 € V:

X1 % (x2x3x4) = ((x1 * x2) * x3) * x4 — (X1 * (X2 % x3)) * x4 — (X1 * (X2 * x4)) * x3

+ 1 % (02 % x4) % x3) — (X1 % x2) * (X3 % x4) + x1 * (X2 * (X3 * Xx4)).

Lemma 1

. Forallk e N, V® % T (V) C V&,

LForall f,g e T(V), e(f xg) =¢e(f)e(g).

LForall f,g e T(V), Aw(f xg) = Aw(f) * A(g).
Forall f,g e T(V),yeV, fx(gy)=(f*g) xy— f*(gx*y).

CForall f,g.h e T(V), (fxg)xh =3 f* ((g % h<1>) h<2>).

[ N O R S

Proof 1. and 2. Immediate.
3. We prove it for f = x1...x,, by induction on n. If n = 0, then f = 1.
Moreover, Ay (1 x g) = e(g)Aw(l) =¢e(g)l ® 1, and:

AN * Au@ =Y 1xg P @1xg® =e(sV)e (¢?) 101 =201 & 1.
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Ifn = 1,then f € V.In this case, from the second point, fxg € V,so Ay, (f*g) =
f*xg®14+1Q f*g. Moreover:

An(fH)*Aw@ =1 +1® f)* Awl(g)
=Zf*g(1)®8<g(2))1+Zs<g(1))l®f*g(2)
=f*xg®1+1Q® f*g.

Ifn > 2,weput fj =x1...x,—1 and f, = x,,. By the induction hypothesis applied
to f1:

Au(f*9) =) Au ((ﬂ #gV) (S g<2>))
= Au(fixg®) Au(frx8?)
=3 (A" D) (A" V) @ (17 eM@) (K7 % )?)
=Y (DY *gV @ (i) xg?
= Au(f) * Aus(g).

We used the cocommutativity of A,y for the fourth equality.

4. We prove it for f = x1...x,, by induction on n. If n = 0 or 1, this is
immediate. If n > 2, we put fi = x1...x,—1 and fo = x,. The induction
hypothesis holds for fi. Moreover:

fren =3 (firg?) ( frx g(z)) %y

)-
3 ((7+40) 5 y) (5e5) -
)

P =30 (e (0 y)) (Frs®)+ 3 (F45®) (_f2 \ (gm : y)) .

5. We prove this for & = z; ...z, and we proceed by induction on . It is direct
ifn =0o0r1.1fn >2,weputh; = zy...z,—1 and hy = z,. From the fourth point:

(f*g)xh=(f*g) *h)xhy— (f*g)* (h*hy)

= Z (f * ((g * h<11)) h<12))> xhy — Z f* ((g * (hy * hz)(l)) (hy * hz)(z))
e (GRS ECERED
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S (e (0 0)) 7 42)

- () o)) () (5 +0)
DWA(CEDTINES W (RTINS
X () 47 1)

=Y ((g i (1 hg)) hg2>> T ((g ; (h;whz)) h;2>>
57 () (7 02)) 4 01 (o))
-5 (o (0 00))2) - S e () 4 1)
S (o () e (o))

As Au(hy) = hy ® 1+ 1@ ha, Aw(h) = 0 @ hY + ¥ (Y @ h{Pha, so
the result holds for 4.

2.2 Associated Hopf Algebra and Post-Lie Algebra

Theorem 1 Let * be a magmatic product on V. This product is extended to T (V')
by Proposition 1. We define a product ® on T (V) by:

Vf.g e T(V), f®g=2(f*g“))g 2.

Then (T(V), ®, Aw) is a Hopf algebra.
Proof Forall f € T(V):

1®f2(1*f“)) s =28(f(“) fO=f @l=(fxDl="f
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Forall f,g,h € T(V), by Lemma 1(1-5):

(f®g ®h= Z <f * ((g(n *h(l)) h(z))) <g(2) x h(3)) B
f®(@g®h) = Z (f " ((g(n *hu)) h(a))) <g(2) X h(z)) @

As Ay, is cocommutative, (f ® g) ®h = f ® (g ® h), so (T(V), ®) is a unitary,
associative algebra.
Forall f, g € T(V), by Lemma 1(1-3):

An(feg =) fPegVer®e?.

Hence, (T'(V), ®, A.,) is a Hopf algebra.
Remark By Lemma 1:

e Forall f,g,h e T(V),(f*xg)xh = fx(g®h): (T(V),x*)isaright (T(V), ®)-
module.

e By restriction, for all n > 0, (VO x)isa right (T'(V), ®)-module. Moreover,
forall n > 0, (V®", %) = (V,*)®" as a right module over the Hopf algebra
(T(V),®, Ay).

Examples Let x1, xp,x3 € V.

X1 ® x3x3 = x1x2x3 + (X1 * x2)x3 + (X * x3)x2 + (X1 * x2) * X3 — X1 * (X2 * x3)

X1x2 ® x3 = x1x2x3 + (X1 * x3)x2 + x1(x2 * x3).

The vector space of primitive elements of (T (V), ®, Ay,) is ZLie(V). Let us now
describe the Lie bracket induced on Zie(V) by ®.
Proposition 2

1. Let x be a magmatic product on V. The Hopf algebras (T (V), ®, Ay,) and
(T(V), ., Aw) are isomorphic, via the following algebra morphism:

b : (T(V),.,Aw) — (T'(V), ®, Aw)
e x1...xk€V®k—>x1®...®xk.

2. Lie(V)xT (V) C Lie(V). Moreover, (Lie(V), [—, —], %) is a post-Lie algebra.
The induced Lie bracket on ZLie(V) is denoted by {—, —}:

Vi geZielV), {f.gls=[fgl+fxg—gxf=feg—¢ef+f*xg—gx [

The Lie algebra (Lie(V), {—, —}s) is isomorphic to Lie(V).
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Proof

1.

There exists a unique algebra morphism ¢, : (T(V),.) — (T'(V), ®), sending
any x € V on itself. As the elements of V are primitive in both Hopf algebras,
¢+ is a Hopf algebra morphism. As V& « T'(V) € V®* forall k > 0, we deduce
that for all xq, ..., xx4; € V:

X1 .o Xk ® Xgt1 - o Xkl = X1 - ..Xk+ + asum of words of length < k + 1.
Hence, if x{,...,xx € V:
Ge(x1...X,) = X1 ®...® Xk = X1 ...Xk + asum of words of length < k.

Consequently:

e If Kk > 0 and xq,...,x;¢ € V, an induction on k proves that xj...x; €
¢« (T (V)), so ¢ is surjective.

e If f is a nonzero element of T(V), let us write f = fo + ... + fi, with
fi € V® foralli and f; # 0. Then:

() = fr +termsin K@ ... @ VD,

80 ¢« (f) # O: ¢y is injective.

Hence, ¢, is an isomorphism.

. Direct computations prove that Zie(V) is a post-Lie algebra. Consequently,

{—, —}« is a second Lie bracket on Ze(V). In (T(V), ®), if f and g are
primitive:

f®wg—g®f=fg+fxg—gf —gxf={f g

So, by the Cartier-Quillen-Milnor-Moore’s theorem, (T (V), ®, Ay)) is the
enveloping algebra of (Zie(V), {—, —}«). As it is isomorphic to the enveloping
algebra of Ze(V), namely (T (V), ., Aw), these two Lie algebras are isomor-
phic.

Let us give a combinatorial description of ¢..

Proposition 3 Ler (V, %) be a magmatic algebra, and x1, ..., x; € V.

Let I ={iy,...,ip} C k], withiy < ... <ip. Weput:
x7 = (. (g % xpy) * xp3) % ..) kx;, € V.

Let P be a partition of [p]. We denote it by P = {P1,..., Py}, with the
convention min(Py) < ... < min(P,). We put:

* % * ®p
xP—xPl---xP,,EV .
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Then:

P = Y. xp

P partition of [k]

Proof By induction on k.

Examples Let x1,xp,x3 € V.
s (x1x2x3) = x1x2x3 + (X1 * X2)x3 + (x1 * x3)x2 + X1 (X2 * x3) + (X1 * X2) * X3.

Theorem 2 Let (V, %) be a magmatic algebra and let (L, {—, —}, %) be a post-Lie
algebra. Let ¢ : (V,x) —> (L, %) be a morphism of magmatic algebras. There
exists a unique morphism of post-Lie algebras ¢ : Lie(V) —> L extending ¢.

Proof Let ¢ : Zie(V) —> L be the unique Lie algebra morphism extending ¢.
Letus fix 7 € Zie(V). We consider:

Ap=1{h e Zie(V) | Vf € ZLieV), ¥(f xh) =¥ () » ¥ ()}

If f, g € Ap, then:

V(LS. gl xh) = (f *h. b1+ [f. g *h])
={Y(f*h), v (@} +{¥ (), ¥(g*h)}
={W () *v ), ¥ (@} +{V (), ¥(g) ¥ ()}
={ (). ¥ (@} * ¥ (h)
=V (f, gD > ¥ (h).

So[f, gl € Ap:forall h € Lie(V), Ay is a Lie subalgebra of Zie(V). Moreover, if
h € V,as yv = ¢ is amorphism of magmatic algebras, V C Aj; as a consequence,
ifheV,A,=Ye(V).

LetA={he %e(V) | Ay = Le(V)}). Weput Lie(V), = Lie(V)NVE; let
us prove inductively that Zie(V),, € A for all n. We already proved that V C A,
so this is true for n = 1. Let us assume the result at all rank k¥ < n. Let h €
ZLie(V),. We can assume that h = [h1, hy], with hy € Le(V)i, ho € Le(V)y—k,
1 < k < n — 1. From Lemma 1 and Proposition 2, | f * hy € Ze(V); and
hy x hy € ZLe(V)y—k, so the induction hypothesis holds for A, ko, k1 * hy and
hy % hi. Hence, forall f € T(V):

Y(f *h) =Y(f *[h1, ha])
=v((fxh)xhy— fx(hy*xhy) — (fxhy)*h) + f*(haxhy))
= (W () x Y (h1) x Y (ha) — ¥ (f)* (Y (hy) x ¥ (h2))
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— (W () *xYh2)) x ¥ (hy) + Y (f) * (W (h2) x ¥ (h))

=Y (f) *{Y(h1), ¥(h2)}

=Y (f) >y (h).
As a consequence, Zie(V), C A. Finally, A = Ze(V),so forall f, g € Ze(V),
Y(fxg) =v(f)*¥(g).

Corollary 1 Let V be a vector space. The free magmatic algebra generated by V
is denoted by #Mag(V). Then Lie(Mag(V)) is the free post-Lie algebra generated
by V.

Remark Describing the free magmatic algebra generated by V is terms of planar
rooted trees with a grafting operation, we get back the construction of free post-Lie
algebras of [5].

2.3 Enveloping Algebra of a Post-Lie Algebra

Let (V, {—, —}, %) be a post-Lie algebra. We extend * onto 7 (V) as previously
in Proposition 1. The usual bracket of Zie(V) € T(V) is denoted by [f, g] =
fg—gf, and should not be confused with the bracket {—, —} of the post-Lie algebra
V.

Lemma 2 Let I be the two-sided ideal of T (V) generated by the elements xy —
yx —{x,yLx,yeV.ThenI xT(V) C I and T(V) 1 = (0).

Proof Let us first prove that forall x, y € V, forall h € T(V):

{x,y}*h=Z{x*h<1>,y*h<2>}.

Note that the second member of this formula makes sense, as V « T(V) C V by
Lemma 1.

We assume that 4 = z7 ...z, and we work by induction on n. If n = 0, then
h=land{x,y}xl={x,y}={x*1,yx1}.Ifn =1,thenh € V,s0 Ay (h) =
h®l+1Qh.

{x, y}xh = {xsh, y}+{x, yxh} = {xsh, yx1}+{x*1, yxh} = Z{x*h(l), yxh @},

Ifn > 2,weputh) = z1...z,—1 and k2 = z,. The induction hypothesis holds for
hl, h2 and h1 * hz:

{x, v} h = ({x, y} % h1) % hy — {x, y} 5 (h1 * h2)

=Y feeniVy e nP sy = 3 L b Ly ()@
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et eme i on) )
+Z{x*h§1), (y*hgz)) o — y % (hgz) *h2>}
=Z{x*h(1),y*h(2)].

Consequently, the result holds for all 4 € T (V).
LetJ = Vect(xy—yx—{x,y} | x,ye V). Forallx,y € V,forallh € T(V):

(xy —yx —{x, yD*h
= Z (x * h(1)> (y * h(2)> — (y * h(1)> (y * h(2)> — {x s« h@y s h(z)} elJ.

SoJ«xT(V)C J.IfgeJ, fi, fr.h € T(V):

(figf)xh =3 (fixdV) (1) (fxn®) e 1.

~ -

-

eJ

So I T (V) C I. Aninduction on n proves that T(V) % (T (V)JV®") = (0) for all
n>0.SoT((V)*xI=(0).

As a consequence, the quotient 7(V)/I inherits a magmatic product *. More-
over, I is a Hopf ideal, and this implies that it is also a two-sided ideal for ®. As
T (V)/I is the enveloping algebra Z(V, {—, —}), we obtain Proposition 3.1 of [2]:

Proposition 4 Let (g, {—, —}, %) be a post-Lie algebra. Its magmatic product can
be uniquely extended to 2(g) such that for all f, g, h € 2(g), x,y € g.

. fxl=f

o 1xf=e(f)l

* fr@y)=(fxgxy—fx(g*y).

s (fe)xh=Y (f * h(l)) (g * h(2)), where A(h) = Y. h'V @ h® is the usual
coproduct of 2(g).

We define a product ® on 2(g) by f xg =) (f * g(l)> g@. Then (U(g), ®, A)
is a Hopf algebra, isomorphic to (g, {—, —}«).

Proof By Cartier-Quillen-Milnor-Moore’s theorem, (2/(g), ®, A) is an enveloping
algebra; the underlying Lie algebra is Prim(%2(g)) = g, with the Lie bracket
defined by:

X yle=x®y-—y®x=xy+xxy—yx—y=*x.

This is the bracket {—, —} .
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Remarks

1. If g is a post-Lie algebra with {—, —} = 0, it is a pre-Lie algebra, and 2(g) =
S(g). We obtain again the Oudom-Guin construction [6, 7].

2. By Lemma 1, (74g), *) is aright (Z(g), ®)-module. By restriction, (g, *) is also
aright (2(g), ®)-module.

2.4 The Particular Case of Associative Algebras

Let (V,<) be an associative algebra. The associated Lie bracket is denoted by
[—, —]«. As (V,0, <) is post-Lie, the construction of the enveloping algebra of
(V, [—, —]«) can be done: we obtain a product < defined on S(V') and an associative
product « making (S(V), «, A) a Hopf algebra, isomorphic to the enveloping
algebra of (V, [—, —].).

Lemma3 Ifxy,...,xk, y1,...,y1 € V:

k
X1...Xk<Y1...)] = Z l—[ Xi l—[xe(i)<1yi >
i=1

0:[11—>[k] \i¢Im(®)
xl...xk<y1...yl=z Z 1_[ Xi HYj 1_[)69(,')4)1,'
I 6:1[k] \i¢Im(6) jel iel

The notation 0 : A — [k] means that the sum is over all injections 6 from A to [k],
for A=1orA=1[I.

Proof Direct computations.

Examples Let x1, x2, y2, y2 € V.

X1x2 4 y1y2 = x1x2y1y2 + (X1 < ypxay2 + (x1 < y2)x2y1 +x1(x2 < yp)y2
+x1(x2<y2)y1 + (1 ayD) e < y2) + (k1 < y2)(x2 < y1).
Remark The number of terms in xq...x; <yy ...y is:
min(k,l)

2 (:)0)

see sequences A086885 and A176120 of [8].
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3 A Family of Solvable Lie Algebras

3.1 Definition

Definition 2 Letus fixa = (ay,...,ay) € K. We define an associative product
<on KV:

Vi, j € [N], € <€; = aje;.
The associated Lie bracket is denoted by [—, —]4:
Vi, j € [N], €. €jla = aje; — aje;.

This Lie algebra is denoted by g,,.

Remark Let A € My y(K), and @ € K¥. The following map is a Lie algebra
morphism:

9a.tA — Ya
x — Ax.

Consequently, if a # (0, ..., 0), g, is isomorphic to g o,....0)-
Definition 3 Let A = (V). The elements of A will be denoted by:

fi
f= = fle1 4+ ...+ fnen.
IN

For all i, j € [N], we define bilinear products ;LLl and LL; :

fiwgr fig;
VigeT(WV)N, fiwg= : . fwjg= :
fillgn fvuwg;

In other words, if f, g € T(V), forall k,/ € [N]:
feri W ge =8k (f W Qe fex Wj ger =38;(f W g)ex.

Ifa = (a1,...,ay) € KN,weputal_l_l =a1W +...4+ay yU and W, =
ap Wy +...4+any Wy .
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Proposition 5 Let f, g € KN. Forall f, g, h € A:

(f We @ Wp h=f Wy (g Wp h), (f Wy gpll h=f W, (gpLl h),
(fawg Wp h=faw (g Wp h), (fall gpllh=f,W (gplh),
flW, g=gq f

Proof Direct verifications, using the associativity and the commutativity of LLI.

Definition 4 Let a € K. We define a Lie bracket on A:

VigeA, dlfigl=fallg—gall f=g Wy f— [ Wy g

This Lie algebra is denoted by g/,.
Remark If A is an associative commutative algebra and g is a Lie algebra, then

A ® g is a Lie algebra, with the following Lie bracket:

ViigeA x,yeg, [fRx,g®yl= fg®I[x,yl]

Then, as a Lie algebra, g/, is isomorphic to the tensor product of the associative
commutative algebra (7 (V), LL1), and of the Lie algebra g_,. Consequently, if a #
(0, ...,0), g, is isomorphic to g(; o ¢)-

3.2 Enveloping Algebra of g,

Let us apply Lemma 3 to the Lie algebra g,:

Proposition 6 The symmetric algebra S(g,) is given an associative product 4 such
that forall iy, ..., ik, j1,..., Ji € [N]:

1<) qel p¢l

€ ...€ AEj ...€j = Zk(k—l)...(k—|l|+l) (l_[ajq) (Hejp) €iy -+ - €

The Hopf algebra (S(g4), 4, A) is isomorphic to the enveloping algebra of g,.

The enveloping algebra of g, has two distinguished bases, the Poincaré-Birkhoff-
Witt basis and the monomial basis:

ZU, 1= = Sk = ZU, 1= = Sk =

Here is the passage between them.
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Proposition 7 Letus fixn > 1. Forall I = {i1 < ... < ix} C [n], we put:

AMD =G =1 ... —Fk), wd) = (=D = Diaiz +1)... Gk +k —2).

<
We use the following notation: if [n]\ I = {q1 < ... < qi}, 1_[ €, = €i, 4... 4

q¢l
€igy Then:

ei1<...<6;n=ZA(1) l_[aip l—[éiq )

1<(n] pel q¢l
<

€y ... €, = Z w(l) l_[a,-p Heiq
1C[n] pel q¢l

Proof Induction on n.

3.3 Modules Over g1,9,...,0)

Proposition 8

1. Let V be a module over the associative (non unitary) algebra (g1 ,0,...,0), <). Then
V=vVOgvD with:

* cqv=vifve VO and e v =0ifv e y O,
o Foralli >2,¢veVDifve Vv andev=0ifi e VO,

2. Conversely, let V.= V) @ VO be a vector space and let f; : VD — v©
forall2 < i < N. One defines a structure of (g(1,0,...,0), <)-module over V :

vifve VD, . fiw) ifve v,
€1.0 = ifi >2, €.v=
0ifve v, 0ifvev®,

Shortly:

o |oo
"“lora |

Proof Note thatin g(1.0,...,0), € <€; = 01, j€;.

) 0 fi
Vi >2, € .
’—’E’[oo}
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1. In particular, €1 <€1 = €1. If F; : V — V is defined by Fi(v) = €;.v, then:
Fio Fi(v) = €1.(€1.v) = (€1 < €1).v = €.v = F1(v),

so F) is a projection, which implies the decomposition of V as V©® @ V(. Let
x € VD andi > 2. Then Fi(€;.v) = €1.(¢;.v) = (€1 <€)).v =0,s50 €¢;.v € VO,
Letx € VO Thenej.v = (¢, <€)).v =€¢.Fi(v) =0,s0€.v=0.

2. Leti >2andj € [N].IfveVD:
€1.(e1.v) = v =€1.0, €.(e1.v) = fi(v) =€.v, €;.(6.v) =¢€;.fi(v) =0.v.
IfveVO:

€1.(e1.v) =0 =¢€1.v, €.(€1.v) =0 =¢;.v, €j.(6,.v) =0=0.v.

So V isindeed a (g(1,0,....0), <)-module.

Proposition 9 (We assume K algebraically closed) Let V be an indecomposable
Sfinite-dimensional module over the Lie algebra g(1.0,...0). There exists a scalar A
and a decomposition:

v=vOg. . ov®w

such that, for all0 < p < k:
* € (V(p)> C VP) and there exists n > 1 such that (€] — (A + P)Id)lnv(p) = (0).
e Ifi =2 € (V(p)) C V=D \with the convention V=D = (0).
Proof First, observe that in the enveloping algebra of g(1,0,...,0),if i > 2 and A € K:
€ (€1 —A) =¢€je1+€ —rei =€ie1 + (1 —L)e; = (61 — A+ 1) €.
Therefore, foralli > 2, foralln € N, for all A € K:
i 4 — NV =(—-r+ DV «q.

Let V be a finite-dimensional module over the Lie algebra g(1,o,...,0). We denote
by E; the characteristic subspace of eigenvalue A for the action of €;. Let us prove
thatforall A € K, if i > 2, ¢;(E)) C E;—1.If x € E,, there exists n > 1, such that
(1 — Ald)¥".v = 0. Hence:

0=¢i.((e1 = A" v) = (e — (A — DId)" .(¢;.v),

so€ € E)_1.
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Let us take now V an indecomposable module, and let A be the spectrum of the
action of €. The group Z acts on K by translation. We consider A’ = A + Z and
let A” be a system of representants of the orbits of A’. Then:

= @ @EAJrn

reA” \neZ
- _ -

Vi

By the preceding remarks, V; is a module. As V is indecomposable, A” is reduced
to a single element. As the spectrum of € is finite, it is included in a set of the form
{A, A+ 1,..., 1+ k}. We then take VP) = E; ., for all p.

Definition 5 Let V be a module over the Lie algebra g,. The associated algebra
morphism is:

U(ga) = (S(ga), ) —> End(V)

oy . V —-V
€ —>
vV —> €.0.
Forall iy,...,ix € [N], we put Fj, = ¢y (€ ... €,); this does not depend on

the order on the indices i .
By Proposition 7:
Proposition 10 Foralliy,...,i, € [N]:

Fijo...0F, = > T Ta, | Fijyooiy

1C[n], pel
NJ={ji<...<ji}

Fiiin= Y uO|[]a,|Fjo...0F,.

1C][n], pel
NJ={ji<...<ji}

When V is a module over the associative algebra (g4, <), these morphisms are
easy to describe:

Proposition 11 Let V be a module over the associative algebra (gq4, <); it is also
a module over the Lie algebra (g4, [—, —la). For all k > 2, i1,...,ix € [N],
El ix — 0.

,,,,,

Proof As V is a module over the associative algebra (g,, <), for any i1, i» € [N]:

Fiy o Fi, = aj, Fj;.
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We proceed by induction on k. If k = 2, €;,€;, = €, € €, — aj,€;,, SO:
Fiyiy = Fiy o Fiy —ai Fiy = ai Fiy — aiy Fiy = 0.

Let us assume the result at rank k. Then €;...€;,,, = €, ...€;, < €, —
kaj,, € ... € and Fy e = Fiy oo Fiy —kag Fiy iy = 0.

..........

k+1

4 A Family of Post-Lie Algebras

4.1 Construction

Let us fix a vector space V, a family of N endomorphisms (F1, ..., Fy) of V and
a = (ay,...,ay) € KN. We define inductively a product * on 7 (V)": for all
figeT(V)N,x eV, ie[N],

Peixg =0, xfxg=x(f*xg)+F)(fWwig+...+Fy@)(fLWng).
We define a second product e on 7(V)V:

VigeT(V)V, feg=fxg+[fa g

Examples Letx,y,zeV,geT(V),i, je€[N]. Then:

X€; * gej = Fj(x)géj,

xyei x gej = (xFj(y)g + Fj(x)(y W g))ei,
xyzei x gej = (xyFj(2)g + xFj(y)(zWw g) + Fj(x)(yz W g))e;.
Proposition 12 Let x1, ..., Xk, y1,..., 1 € V,i,j € [N].
my (o)

X1 .. XK€ kY. . VI€j = Z Z <1d®(m) ®F® 1d®(k+l_”)) 0. (X1 .. XEYL - VDEG

oeSh(k,l) p=1

Proof Induction on k.

Remark Let *; be the pre-Lie product of 7 (V, F}), described in [3]. For all f, g €
T(V),foralli, j € [N]:

feixgej = (f *j e



390 L. Foissy

Corollary 2 Forall f,g,h € T(V)V, foralli € [N]:

(fiwgxh=(f*xh);Ww g+ f ;W (gxh),
(fwigxh=(f*xh)w; g+ fw; (g*h),
(fwg)xh=(f*xh)ywg+ fL(gxh).

Proof Induction on the length of f.
Theorem 3 The following conditions are equivalent:

1. (T(V)N, @) is a pre-Lie algebra.
2.9, = (T(V)N, u[—, =1, %) is a post-Lie algebra.
3. V is a module over the Lie algebra g,, with the action given by €;.v = F;(v).

Proof By Corollary 2, forall f, g, h € g, alf, gl*xh = 4[f*h,gl+ 4lf, g *hl.
l.<=2.Let f, g, h eg.

(feg)eh—fe(geh)—(feh)eg+ fe(heg)
=(fx@xh—fx(gxh)—(f*xh)yxg+ f*(hxg)—f*alg hl

So (g;, e) is pre-Lie if, and only if, (g/a, al—, —1, %) is post-Lie.
2.— 3.Letx,y,ve Vandi, j, k € [N]. Then:

xei x yej = Fi(x)ye;, xye; x z€ = x Fy(y)zei + Fr(x)(y W 2)€;.

xe€; x yzep = Fp(x)yzei,
Hence:

(x€; * yej) x zep = Fj(x)Fr(y)zei + F o Fj(x)y LU z¢;,
xe; * (yej x zeg) = Fj(x) Fr(y)ze€i,

x€i alyej. zer] = (aj Fr(x)(y W 2) — ap Fj(x)(y W 2))e.
The post-Lie relation (2) gives:
(ajFrp(x) —ap Fj(x))(y Wz) = (Fjo F — Fr o Fj)(x)(y LI 2).
Let y = z be a nonzero element of V. Then y LW z # 0, and we obtain that for all

xeV,ajFr(x) —apFj(x) = (Fj o Fy — F o Fj)(x): V is a g,-module.
3. = 2. The post-Lie relation (2) is proved by an induction on the length of f.
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Example The post-Lie algebra gs;so is associated to a = (1,0), V =

Vect(x1, x2) and:
00 01
F1—<01>, Fz—(oo).

As Fy and F, define a module over the Lie algebra g1 ), even in fact over the
associative algebra (g(1,0), <), we obtain indeed a post-Lie algebra. For all f, g €
T(V),foralli,j € {l,2}:
Pe; x gej =0, xafei * ger = xa(fe * ger) +x2(f W Qe
x1feixgej = x1(fe; x gej), xafe x ger = xa(fe * gea) +x1(f LW g)e;.

4.2 Extension of the Post-Lie Product

We now extend the post-Lie product of g/, to the enveloping algebra %(g],). As this
Lie bracket is obtained from an associative product < = 4LLI , we can see 2(g,,) as
(S(g)), 4, A). The post-Lie product * is extended to %/(g,,), and we obtain a Hopf
algebra (Z(g), ®, A), isomorphic to 2Ag,,, «[—, —1«), with:

Vg €9 alf.gls =ulf gl +frg—gxf=fag+frg—gal f—g*f.

As e is a pre-Lie product, it can also be extended to S(g) and gives a product ©,
making S(g,,) a Hopf algebra isomorphic to 24(g,, [—, —1s)-

Remark Let f, g € g/,.

[fi8le=fog—gef
=fallg+frg—gal f—gxf

alf. gl+ fxg—gxf

alfs gl

So[—, —le = al—, —]x

The following result allows to compute f * gj ... gk by induction on the length
of f:
Proposition 13 Letx € V, k> 1, f,g1,...,gc € T(V)V, i € [N].

Dei % (g1 € ... 4 g) =0,

«
xfx(g €. Ag) = > Fjo...0Fj(x) (f*Hgi) W, g --- Wj g

I={i) <...<i}<[k], i¢l
Jsees JIEIN]
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Pei * (g1...8k) =0,

xfx(gr...8) = Z Fjy. i (x) (f*l_[gi) Wy & --- Wj g

I={iy <...<i}<[k], i¢l
J1s-s JIEIN]

Proof Induction on k.

Proposition 14 Letk > 1, f, g1, ..., g € T(V)VN. Then:

k
fogi . gk=r*g1 ... g+ Y (f*81...8p 18pt1---8k)alll &p.
p=1

Proof Induction on k.
Proposition 15 On S(g)), ® = ©.

Proof Let f, g € S(g,); let us prove that f ® ¢ = f © g. We assume that f =

fiooifeo8 = 81,...,8, with fi,..., fk,81,...,8 € g¢,, and we proceed by
inductionon k. If k = 0, then f = land f ® g = f © g = g. Let us assume
the result at all ranks < k. We proceed by induction on /. If / = 0, then g = 1 and
f®g=f ©®g= f.Letus assume the result at all ranks < /. We put:

AN=fR1+1f+f f", Al@=¢g01+1Q0g+¢®¢g".

The induction hypothesis on & holds for f” and f” and the induction hypothesis on
[ holds for g’ and g”. From:

Af®g—fOg) = f(l) @ g(l) ® f(2) @ g(2) _ f(l) o) g(l) ® f(2) o) g(Z),
these two induction hypotheses give:
Af@g—-fO0g=(®g-fORI+1R(f@®@g—-f0Og).
Sof®g— fOge Prim(S(g,)) = g,. We obtain:

r(feg=r|) (f*l_[gi) «[]e;

<[l iel jel

S1D> (fl*l_[gi)--- fiox [Ta | <]

[[1=Iu...uly iel i€l iely
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k
=7 Yo I fxTTsi+ 22 | fox T1 si]aws,

[[]=J1u...uJg p=1 iely Jp€Jp ieJp\ljp}

| s (MheTTs

[[=Ju..u; \ p=1 iel,
= ((free®). (sies®))
=n(feg)
=7n(f0Og.

Asfog—fOgeg,, f®g=f0Og

4.3 Graduation

We assume in this whole paragraph that ¢ = (1,0,...,0) and V is finite-
dimensional. We decompose the g,-module V as a direct sum of indecomposables.
By Proposition 9, decomposing each indecomposables, we obtain a decomposition
of V of the form:

v=vOg. . ov®h

with (V<P>) c v and F; (V<P>) c VD foralli > 2, forall p € [K].

We put V, = V&+1=p) for all p € [k + 1]. This defines a graduation of V,
which induces a connected graduation of 7' (V). For this graduation of V, Fj is
homogeneous of degree 0 and F; is homogeneous of degree 1 for all i > 2. We
define a graduation of g, = T(V)V:

N

V=0, (@)n =TVt ® P T (V)16
i=2

For this graduation, the product (q,9,....0)LU is homogeneous of degree 0. Proposi-
tion 12 implies that % is homogeneous of degree 0; summing, e is also homogeneous
of degree 0. Hence:

Proposition 16 The decomposition of V in indecomposable g1 o,...0)-modules
induces a graduation of the post-Lie algebra g/(l 0....0)"
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We put:

k+1
P(X) = Zdim(Vp)Xp e K[X].
i=1

the formal series of g(l’owo) is:

o0
R(X) =) dim((g(,0,..0)p X"
p=1
X _1+(N—1)X

+(N_1)1—P(X) T 11— P(X)

T 11— PXX)

Note that R(0) = 1: indeed, (g/(l,o,m,O))O = Vect(¥e1). The augmentation ideal of

9(1,0,“,0) is:
@100+ =TV x TN,

This is a graded, connected post-Lie algebra.

Example For the SISO case, V| = Vect(xp) and Vo = Vect(x1). The formal
series of gsrso is:

RasoX) = X _1qaxqax? P +8xt+13x°
siso( )_1—X—X2_ +2X +3X"+5X° +8X" +13X° + ...

Hence, (dim(gs1s0)n)n>o0 is the Fibonacci sequence A000045 [8]. For example:

(gsrso)o = Vect (Per),
(gs1so)1 = Vect(xz€1, Ve2),
(9s150)2 = Vect(xi€1, x2x2€1, X2€2),

(9s5150)3 = Vect(x1x2€1, X2X1€1, X2X2X2€1, X1€2, X2X2€2).

5 Graded Dual

We assume in this section that a = (1,0, ..., 0). The augmentation ideal of g; is
denoted by (g},)+; recall that (g))o = Vect (Jer).

* As (g,)+ is a graded, connected Lie algebra, its enveloping algebra %/((g],)+) is
a graded, connected Hopf algebra, and its graded dual also is. We denote it by
Ay .
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* As an algebra, % is identified with S((g},)*)/{%e1). We identify (g))* with
T (V*)N via the pairing:

(f1... fe€irx1...xi€5) = & j0 1 fr(x1) . .. fie(xk).

* The coproduct dual of ® = ® is denoted by A,.

* The dual of the product L; defined on g, is denoted by A j » defined on
(g,)* = T(VHN.

*  We define a coproduct A, on S ((g;)i), dual of the right action *. Therefore, this
is right coaction of (J#, A,) on itself:

(A ® Id) 0 Ay = (Id ® Ad) 0 As.

Notations

1. Forall y € V*, we define 6y : (g,)* —> (g,)* by 6,(f) = yf.
2. Forall x € (J)+, weput Ag(x) = Ag(x) —1®x and Ay (x) = Ax(x) — 1 ®x.
Forall g, f, f1,..., fi € (g,)%:

(A(@). O f1... fi) = (& f*fi-.. fa)

5.1 Deshuffling Coproducts

Proposition 17 Forallg € T(V), foralli € [N], A w; (gex) = A(g)(er ® €;).
Proof Let f1, fo € T(V),i1,i2 € [N].

(Aw; (g€, fi€i, ® fa€ir) = (g€k, fiei, W) fa€iy)
= 8i,,j(g€k, f1 W faei,)
= 8ip,j0i1 k(g f1 W f2)
= 8ip,j0i1.k(Aw(g), f1 ® f2)
= {AL(Q)(ex B €)), fi€i, ® fa€iy).

As the pairing is nondegenerate, we obtain the result.

Notations We define inductively, forl > 0, ji, ..., ji € [N]:

ALU(}) == Id,
i = (A '—Uj1 ® 1d®(l_l)) oA L
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Forall g € T(V*), foralli € [N]:
Aw;

L (ga) = A0 ® €, ®...®€)):;

forall f1,..., fieT(V):

(Awj ;@ N @8 fir1) = (g fi Wj - Wy fit1)-

5.2 Dual of the Post-Lie Product

Dualizing:
Proposition 18 In 6, = S((g),)*)/(¥e1):
e Foralli € [N], Ay(Pe;) = 0e; @ 1 + 1 ® Ve;.
e Forally e V¥ g € (g,)*:
Aoly(@ =) > Orr ;) ®mWo(A®Id) oAy (),
=0 ji,....ji€[N]
where we denote by |1 the sum of the iterated products of Hy :

. T(Hy) — Hy
’ g1®.. 88 — &1...8k-

In order to obtain a better description of the coproduct A,, we are going to
identify the following three objects:

S((g)D)

N

S((g)")/ (Der) SU(g) ")/ Per — 1)

Both identification sends x € (g;,)* to its class. Let us reformulate Proposition 18
in the vector space S((g,)*)/{(de; — 1):

A00ge=3" 3 <9F; L0 @ W o (A @ IDAL (R @€ ® ... ® €;)

......

—(Z Yo O ®We (AR IDAL@a ¢ .. ®e,,>)<1®@e1>.

120 ji,.... ji€[N]
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Finally, identifying in S((g),)%):
Proposition 19 Forall jy, ..., ji € [N], we put:

Gt = Firvooit = Fjroji1-

In S((g)})/ (Per — 1):

e Foralli € [N], Ac(Pe;) = Pe; ® 1.
* Forally € V*, forall g € (g,)%:

Ay o0 9)7(g) = Z Z (9(;*_1 j](y) [ [,L) o (A* [ Id) oA W,
1>0 ji,..., j1€[N]

i (&)

Example For gs;50, as V is a module over the associative algebra (g(1,0), <), if
[ >2,Fj, . j = 0byProposition 11,s0 G, ... j, = 0. Moreover:

10 00 01
10 00 01
Gw=Fw—F1=(OO>, G1=F1=(01), G2=F2=(00)~
10 00 00
G*: ) G*Z ) G*: .
4 (00) ! (01) 2 (10)

The coproduct A, on S((gSISO)i) is given by:

.....

e Foralli € [2], A«(P€;) = Ve; ® 1.
e Forall g € K(x1, x2), foralli € [2]:

Ay 06y, (g€i) = (Ox; ® 1d) 0 Ax(g€i) + (Ox, ® 1) 0 (A4 @ Id)(AL(g)€i ® €2),
Ay 00x,(g€i) = (Ox, ® ) 0 (Ax ® 1d)(A(g)€i @ €1).

These are forn~1ulas of Lemma 4.1 of [9], where a,, = wep, by, = weq, Oy = by,
01 =0y, and A = A,.

5.3 Dual of the Pre-Lie Product

Notations We denote by A, the coproduct on T (V*) ® (VN ~1 dual to the
product (L. As (W = W%, A, = ACL(L”I , and for all g € T(V), for all
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i €[N]

A (ge) = Aw(g) (€l ® ).

Dualizing:

Proposition 20 In S((g),)%)/(0e1), for all g € (g,)%:

Ae(g) = Ax(@) +(Ud @ ) o (Ax @ Id) o A 1y ().

Rewriting this formula in S((g),)%)/(%e; — 1):

As(ger) = Asx(ger) + (Id @ p) o (Ax ® Id)(Awi(g) (€1 ® €1))
= Ax(gen) + (1d @ ) o (A @ Id)((A(g) — 8 ® D) (€1 B €1))
= Ax(ge)(1 ®@ (1 = Per)) + (Id @ p) o (Ax ® 1d)(Aw(g) (€1 ® €1))
={dQp)o (A« ® Id)(Awi(g)(e1 ® €1)).

Identifying in S((g},)% ):
Proposition 21 In S((g,)%)/(We1 — 1), if g € T(V*):

Ao(ger) = (Id @ p) o (A @ 1d)(Aw(g) (€1 B €1)),
i =2, Au(ge) = Ax(gei) +(Id @ p) o (A @ Id) (AL (g) (€ ® €1)),

with the convention Ye1 = 1. We put Ae(g) = Auo(g) + 1 ® g forall g € (g,)% and
extend Ao to S((g,,)%) as an algebra morphism. This coproduct makes S((g,)%)
a Hopf algebra, isomorphic to the graded dual of the enveloping algebra of

((ge)+> [= =1

Remark These are mutatis mutandis the formulas of Lemma 4.3 in [9].
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Infinite Dimensional Rough Dynamics )

Check for
updates

Massimiliano Gubinelli

Abstract We review recent results about the analysis of controlled or stochastic
differential systems via local expansions in the time variable. This point of view
has its origin in Lyons’ theory of rough paths and has been vastly generalised
in Hairer’s theory of regularity structures. Here our concern is to understand
this local expansions when they feature genuinely infinite dimensional objects
like distributions in the space variable. Our analysis starts reviewing the simple
situation of linear controlled rough equations in finite dimensions, then we introduce
unbounded operators in such linear equations by looking at linear rough transport
equations. Loss of derivatives in the estimates requires the introduction of new
ideas, specific to this infinite dimensional setting. Subsequently we discuss how the
analysis can be extended to systems which are not intrinsically rough but for which
local expansion allows to highlight other phenomena: in our case, regularisation by
noise in linear transport. Finally we comment about other application of these ideas
to fully-nonlinear conservations laws and other PDEs.

1 Introduction

In this short note we want to review recent results in the analysis of the rough
dynamics of certain partial differential equations (PDEs). The adjective rough refers
to the fact that the description of such dynamics does not rely on differential
equations but on local expansion in the time variable. This shift of point of view
has originated in the seminal work of Lyons on rough paths [16] and subsequent
developments [7, 12, 13]. Rough path theory deals with the study of controlled
differential systems under the action of non—smooth inputs. The low regularity of
the input signals does not allow a differential description of the change in time of
the system. Instead, in order to describe such systems, one has to rely on truncated
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series expansions of the solutions. The short time description allow weaker norms
to be used to control analytically the problem. Sometimes they also encode essential
informations on the dynamics which cannot be recovered from the differential
description. Consistency conditions links the various terms of these expansions and
make rough paths a theory where analysis has to be supplemented by algebraic and
combinatoric considerations. Recently Hairer [15] has given a vast generalization
of rough paths by showing how to provide a local (space—time) description of the
relations encoded in PDEs via the notion of regularity structures.

In order to keep the analysis at a relatively simple level we will not discuss
regularity structures and we will stick to rough dynamics of PDEs. That is we
will focus on dynamics in which we will need only a local expansion in time to
give a detailed description of the system. The spatial dependence of the system will
be described in a classical (infinite dimensional) setting, e.g. by means of Banach
spaces of functions or distributions.

2 Linear Rough Equations

Consider the following controlled linear differential equation in R

dy(®) = Aay(Hdx® (1), y(0) =yo ey

where y € C([0, 1]; RY) is the unknown, x € C'([0, 1]; R™) is the control and
(Ag)a=1,...,m a family of linear transformations of RN (summation over repeated
indexes is implied). In order for this formulation to make sense we need that x is
differentiable (or at least of bounded variation). This formulation is useless if we
want to study the behaviour of y when we feed as input x an approximation B?®
of a sample path of a Brownian motion B (for example) and try to remove the
approximation by taking the limit B® — B. In order to gain a description which can
be taken along in this limit we resort to a series expansion of the solution

t t N
y(t) = yo+ Aayo/ dx®(s) + AaAﬁyo/ / o’ (u)dx®(s) + - -- 2
0 o Jo

where the - - - stays for terms featuring higher order iterated integrals of the control
x. Iterated integrals X%!""%2 (s, t) are defined recursively by

t t
X% (s, 1) = / dx“'(r), X* ot (g, 1) = / X* o (s, P)dx* 1 (r).
) S

In the series expansion the flow property of Eq. (1) is encoded by Chen’s relations
among the iterated integrals [3]:

n
X (s 1) = Z X (s, ) XU (g ) 3)
k=0
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where we let X% % (s, u) = 1if i > j. One key insight of rough path theory is the
fact that the series expansion can be truncated at some level and still provide enough
information to reconstruct the function y if we can guarantee that the remainder is
small enough. Namely if we assume that there exists y > 0 such that

X% (5, 1) < Clt — s|*, 4)

forallk = 0, ..., n where n is such that (n + 1)y > 1 then there exists only one
continuous function y subject to the initial condition y(0) = y¢ and such that

V() = y(8) = (AaX (s, 1) + -+ + Ag, -+ A XU (5, 1)) y(s) + O(t — 5| "F7)
&)

forall 0 < s < t. This formulation shows that the input x affects the solution y only
via the iterated integrals X. The given of a family of maps (X% ** (s, 1))y, ()
satisfying (3) and (4) up to a certain level n defines a y -Holder rough path. In many
situations this allows to plug into the equation very general inputs x for which a
suitable rough path X can be identified. For example, quite general approximations
of the Brownian motions B¢ give rise to iterated integrals B which converge in the
appropriate Holder—like topology to the step-2 (Stratonovich) Brownian rough path
B above the Brownian motion B (i.e. such that its first component B = B¢ for
a=1,...,M)[12].
Equation (5) has the form

8y(s,1) = G(s,1) + y*(s, 1), ly*(s, 0] S It —sI° (6)
where 8y (s, t) := y(t) — y(s) for some z > 1. The key argument in the analysis is
the observation that Eq. (6) is rigid, in the sense that bounds on G determines both
bounds on 8y and y© in a unique way. Indeed given G it can exists at most one pair

(y, y%) solving this equation. Explitic bounds on y* depends on the coherence §G
of G, namely on the combination

8G(s,u,t) =G(s,t) —G(s,u) — G(u,t), s<u<t.

In particular we have a sewing lemma:

Lemma 1 (Sewing Lemma) Assume that there exists a constant L such that
|8G(S,M,t)| <L|t_slza Sgugta (7)

for some z > 1. Then there exists a unique y such that Eq. (6) holds and moreover
there exists a universal constant C, such that

Y, ) < C.L|t —s[°,  s<t.
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Remark 1 Similar results hold for general regular controls w(s, t) replacing |t — s|
in the above estimates, namely functions for which

w(s,u) +o,t) <ols, ), s<u<t,
lw(s, )| — 0, as |t —s| — 0.

If we call coherent a germ G which satisfy Eq.(7) then the sewing lemma
essentially states that coherent germs can be uniquely integrated, that is there exists
a unique function y (up to constants) for which the germ gives the local expansion
up to an error of size |t — s|' .

In the case of Eq. (5) the germ depends itself on y and reads

G(s, 1) = (AaXY(s, 1) + -+ Ag, - Ay XU (5, 1))y (5), s <t.

Its coherence §G can be computed via simple algebraic manipulations and Chen’s
relations (3) for the iterated integrals X. Using the regularity hypothesis (4) to
control the size of the iterated integrals and the Eq. (5) to replace the instances of §y
we can reduce the estimate of the coherence to a control of the size of y and of y*
where y%(s, 1) denotes the O (|t — 5|7 term in the r.h.s. of Eq. (5). Namely,

18G (s, u, 1)

s<u<t |s —t|* s<t |t —s|¢

[y*(s, 1)
< Cxa [sumy(m +sup ,
t

where z = (n + 1)y > 1. An application of the sewing lemma gives

[y"(s, )]

s<t |t —s|¢ s<t |t —s|?

|y¥(s. 1)
S Cxaz [Sltlply(t)l + sup } :
In order to be able to conclude a bound on y? from this relation we need a small
constant in front of the y? contribution in the r.h.s. This can be accomplished in many
ways, one possibility is to localize the above estimates over intervals |s — ¢| < T
where T > 0 is a small constant. Careful bookkeping shows that this gains at least a
power of TV

Vs, D)

s.ili—s|<r 1E—8IF

i(s,
< Cxaz |:Sup|y(t)| +1¥  sup ly*( )I}
t

sifi—s|<e 10— s
and choosing t small enough (depending on X, A, z) we obtain the key bound

Vs, )]

s.ili—sl<e 1T —S[?

< 2Cx.a.zsup [yl ®)
t



Infinite Dimensional Rough Dynamics 405

where Cx 4 ; is a constant which depends on the norm of A as a bounded operator
and on that of X as a y-Holder rough path. From a this bound and an approximation
argument via ODEs existence and uniqueness of solutions to (5) easily follows.

3 Unbounded Drivers

There is no substantial difficulty in generalising the rough equation (5) to an infinite
dimensional setting. We can take y as a path in a Banach space V and x in another
space W and (Aq)y as a suitable bounded linear maps. Care must be exercised in
the construction of the iterated integral taking values in appropriate completion of
the algebraic tensor products W®" in order for the pairings with the powers of Ay
to make sense in (5) (see e.g. [12]). In a different direction, we can consider the
situation where the operators (Ay ), themselves are not bounded. For simplicity we
will assume that x still takes values in a finite—dimensional space RM and to be
definite we concentrate on the case where y solves the linear transport equation

dy(t,8) = Vo©Vy(@, HIW, o pa o ©
y(0,8) = yo(&),

where y € C([0, 11; L>(R%)), yo € L2(R?), (V4 V)a=1....n is a family of bounded
vector fields on R?. Here we do not want to assume smoothness of the solution
(which in general will not hold) and the action of the vectorfields V,, V is understood
in the weak sense by integrating this relation agains smooth functions of the space
variable £. When x is smooth this equation can be understood as a standard transport
type PDE or in the L? context as a differential equation involving the unbounded,
type dependent, family of operators H () = x“(¢)V,V for t € [0, 1]. Uniqueness
of solutions holds under a Lipshitz condition on V (for example via the method of
caracteristics).

It is not at all obvious how to describe solutions y in such a way that x appears
only via iterated integrals X as in the finite dimensional setting. Following formally
the above series expansion strategy we can still obtain the Eq. (5). We will consider
only the case when y > 1/3 in order to simplify some formulas. Our discussion
will retain the basic features of the general problem. The equation for y has to be
understood as a distributional equality:

8y(s, (@) = y() (A (s, 1) + A** (s, 1)) + ¥(s, 1) (9) (10)

where ¢ € C® (]Rd) is a compactly supported test function, §y(s, t) = y(t) — y(s),
y(1)(¢) denotes the pairing of ¢ with the L? function y(¢) given by the L? scalar
productand A" (s, t) = X%""* (Vy,...q,, V) is a family of linear operators indexed by
s, t and A"™*(s, 1) denotes its adjoint with respect to the above pairing. In Eq. (10)



406 M. Gubinelli

we assume that | y(s, ) (¢)| < Coylt —s]37 for any ¢ € C* (R?) where the constant
can depends on ¢. Note that 3y > 1 by assumption.

Equation (10) describes how y varies with ¢ as a distribution modulo a remainder
term |y*(s, £)(¢)|. From this information is not clear if and how it is possible to
recover y € C([0, 1]; Lz(]Rd)) given an initial condition yp. We call the family
of (unbounded) operators (A"),=12 an unbounded rough driver [1]. It satisfies
operator Chen’s relations

Als, 1) = Als, u)+A @, 1), A%(s, 1) = A%(s, u)+A2(u, )+A (s, u) A u, 1).

In a recent joint work with I. Bailleul [1] we show that Eq. (10) uniquely determines
a function y € C([0, 1]; Lz(le)) assuming C 3 regularity of the vector fields V
(but it should be possible to drop the regularity to C® for any p such that py > 1).
One main technical tool is the generalization of (8) to an a priori bound in spaces of
distributions with given regularity. We were able to show that

Iy(s, ) ()]

3 S Gy (XS A)sup lyO 2 1ll@llws. (11)
s,tit—s|<t [t —s?Y t

where (WK2),.r denotes the scale of Sobolev spaces on R?. This does not
follows immediately from the sewing lemma due to a loss in derivatives. Let us
explain this in more detail. We will assume to have an a priori bound for y in L:
sup; |y ()]l;2 < 1. The germ of Eq. (10) is given by

G(s.1) = y(&) (A (s,1) + A>*(5,1)9). (12)
Its coherence § G can be computed as
3G (s, u, 1) = =@y (s, u) = y()A*(s, ) (A"* (w, 1)g) — Suls, ) (A>* (u, 1)p).
Using Eq. (10) we rewrite this as

8G(s,u, 1) = =y (s, ) (A" *(u, 1) + A>*(u, 1))p)
—y () (A>* (s, ) A" (u, 1) + AV* (s, ) A2 *(u, 1) + A** (s, u) A>*(u, 1))

which gives, using the regularity of the unbounded driver and the a priori bound for
lyll2,

18G (s, u. Dl sy Sa (1 + 1713y w22y + TV 1Y, w2yl — sV, s <u <t
(13)
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where

: Iy*(s, D)llv
¥ lley = sup

s<t:|t—s|<T [t —s|*

An application of the sewing lemma allows to conclude that

”yu”?)y,(W?"z)* Sall+77 ||y:||2y,(W2v2)* + 7 ”y:”y,(lez)*]s (14)

which is an estimate which cannot be closed due to loss of derivatives in the Lh.s.
(we need one derivative more on test functions to estimate the action of y? in Lh.s.
w.r.t. the r.h.s. of the equation). This loss of derivatives has to be compensated
thanks to a gain of time regularity via an interpolation argument and the last estimate
becomes

1Y% 113, wazye Sa T4 71575, w32y (15)

which, after a standard reasoning, can be converted into uniform a priori estimates
for y© of the form

1Y°1, qwrzys 4 1% Moy qw22ye + 1013, a2y Sa L. (16)

I will sketch now the idea behind the interpolation leading to (15). The loss of
regularity preventing to close the estimate (14) is mainly due to the use of Eq. (10) in
order to simplify some terms in §G as we seen above. On the other hand the reader
can easily check that the terms in §G with higher loss of regularity come also with
better time regularity (meaning that they feature larger powers of the time increment
[t — s]). All this time regularity is then wasted in the estimates. In order to prevent
the loss of space regularity we split the test function ¢ as ¢ = Je¢ + Je¢ where J;
is a regularisation operator (for example by convolution at scale &) and J, = 1 — J;
a remainder term. Then §G applied to ¢ is decomposed as

8G(s,u,1)(9) = G(s,)Jep — G(s,u)Jop — G(u, ) Jop + 8G (s, u, 1) Js .

The first three terms are estimated directly from the definition of the germ G given
in Eq.(12), where there is no loss of derivatives at the price of insufficient time
regularity since these terms are much bigger than |t — s|3. However this can
be compensated by the convergence of the approximations assuming the natural
estimate || Jollyr2 < 83_k||(p||W3.2. The remaining contribution §G (s, u, t)Je¢@
is estimated as in Eq.(13) where the loss of derivatives is compensated by the
regularization producing diverging factors of ¢~!. Here however the better time
regularity can be used to compensate for this divergence. Overall one chooses
& = |t — s|” and check that this results in the estimate (15).

These a priori estimates on the solutions are a key step in the analysis. At
variance with the Banach space setting here we cannot rely on a fixpoint argument
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to prove existence and uniqueness of solutions to (10) due to the same loss of
derivatives in the equation. However the a priori bound (16) can be used together
with an approximation procedure to prove existence of solutions via a compactness
argument. Uniqueness for distributional solutions to (10) derives from a study of the
dynamics of y2(t, €) = y(t, £)%. Let us sketch this classical argument. Assume u is
an L? solution to the transport equation

oru=V-Vu.

2

With a formal computation we deduce that the function u“ satisfies the same

transport equation
8,u2 =2udiu =2uV  -Vu=V - Vu?.

Integrating over space we get

o /u? =/(v-w,2) = —/(div Vu?,

and Gronwall lemma allows to conclude that

/u% < (/u%) exp(z]| div V|| =),

which in particular implies uniqueness for L? solutions since the equation is linear.
This proof has two key elements: the possibility to obtain the dynamics of u? and
the Gronwall estimate. Even in this classical setting the weak formulation however
cannot be directly used to compute the dynamics of 2. This is a classical problem
for weak solutions and a standard approach is to use a convolutional smoothing u, of
u in order to be able to use it as a test function. The convergence as ¢ — 0 depends
on a commutator lemma and ultimately on sufficient regularity for the vectorfield V
which dictates sufficient conditions for uniqueness.

To reproduce this line of proof for the rough dynamics (10) we need to redo the
commutator argument and find a replacement for the Gronwall lemma. Commu-
tator arguments depends on an approximation procedure. Essentially in the same
spirit, but maybe conceputally clearer, we can proceed instead to “splitting” the
product y(t, £)% and analyse the dynamics of the tensorized quantity Y (, £, &') =
y(t, €)y(t, &). This function solves another rough PDE:

8Y (s, 1) = (FA(s, 1) + TR (s, )Y () + Y(s, 1) (17)
where the tensorized driver I'p is defined in terms of A as
FAG, D =T@A'(s,1) + A' @ (s, 1)

FRGs, 1) =1@ A%(s, 1) + A @ I(s, 1) + Al(s, 1) ® Al (s, 1)
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and where we understand that factor in the left and in the right of the tensor product
acts respectively on the & or £ variable. In order to recover informations on y> from
Y we need to test with functions @, of the form @, (&, &) = @E)Y(E_/e)e ¢
where here £+ = (§ £ &’)/2 are coordinated parallel (+) and transverse (—) to the
diagonal & = &’ in the space (§,&’) € IR2. With this choice of test function we have

Y2 (p) = / YO g (dr = lim / / YO @)Y (e 4y (x 7 ) ¢ (x ’ZL Y ) dxdy

guaranteeing that limg_,o Y (1)(®;) = y(1)%(¢) for all + > 0. In this limit however
the functions @, become singular on the diagonal and suitable estimates are needed
to control the remainder Y%(s, 1)(®,). A careful analysis of the argument needed to
get the a priori estimates (11) shows that a key property in order to be able to pass to
the limit is that quantities of the form F/[i’*(s, 1)@, (and other similar objects) stays
bounded as ¢ — 0. We called this property renormalizability (inspired by a similar
construction in the work of DiPerna and Lions [10] on renormalised solutions for
transport equations). Derivatives in the £ directions do not pose any problem. The
derivatives in the £_ direction can be source of problems when &_ is very small.
Fortunately, as some computations shows, these derivatives are always paired with
factors of the form V (§) — V (&’) (or with derivatives of V') and which go to zero with
&_ if V is sufficiently smooth compensating the divergences coming from transverse
derivatives of @,. This allows to pass to the limit in Eq. (17) applied to @, and prove
the convergence of germs

Y($) (TN (5. )Pe + TR* (s, )Pe) — y($)2(A"*(5, ) + A>* (5, 1))

showing that y2 e C([0, 17; L'(R%)) satisfies again Eq. (10) but in L' instead of
L?. Namely

8y%(s. (@) = y(©)* (A (s, D + A>*(5,09) + Ot = sP") @l ..
If the vectorfields V,, are divergence free, testing now with the function ¢(§) = 1
gives y(s)2(A"*(s, )¢ + A>*(s, 1)) = 0 and therefore 8y2(s, 1)(¢) = O(|t —
s|33’) from which we deduce that ytz(l) is constant in ¢ and since yé(l) =0,y,=0

for all #+ > 0. Consider now the case where the vectorfields are not divergence free
but div Vi € L. In this case we have, always with (&) = 1,

(Ve - V)*0E)| S 0@&), (Vo V)" (V- V)*0(E) Sv 0é).
Then from

8y%(s, 1)(9) = ()2 (A (s, D + A**(s,1)p) + O (It — sI’")
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we get

h(t) < h(s) + h(s)|t — s + C(sup h(r)|t — s,

r<t

where h(t) := y(1)*(p). This inequality is powerful enough (a rough Gronwall
lemma) to conclude that

sup i(t) St h(0),
t<T

and from there conclude uniqueness.

4 Regularization by Noise in Transport Equations

Rough dynamics can appear also in the study of interactions of two more regular
dynamics. In this section we illustrate the case of the regularisation by noise of
transport equation. Let V be a vectorfield and x the sample path of a d-dimensional
Brownian motion. The equation for y € C ([0, 1], L°°(]R‘1)):

dy(r,§) = V(E)Vy(r,§)dr + Vy(t, §) - dx (1), y(0,8) = yo(%) (18)

can be easily understood as a Stratonovich SPDE or, using a rough path X over x
as a rough transport equation as in the previous section. Here we are interested in
the problem of uniqueness of solutions when we do not require V' to be Lipshitz.
In this case it is known that even when x = O this PDE can have many L*
weak solutions corresponding to non—uniqueness of solutions to the ODE for the
characteristics. In collaboration with F. Flandoli and E. Priola [11], we showed
that if x is a Brownian motion then any V which is of some, arbitrarily small,
Holder regularity, give rise to a unique solution of Eq.(18) when interpreted as a
Stratonovich SPDE. The proof proceeds via a detailed study of the flow of stochastic
characteristics. A more intrinsic approach is provided by an appropriate rough
dynamical point of view on the same equation. In particular we make the change
of variables z(¢, §) = y(¢, & — x(¢)) which can be interpreted as an exact integration
of the stochastic vector field x () - V. The equation for z is now a standard PDE

dz(r,§) = V(5§ —x(1))Vz(r, §)dr, 2(0,8) = yo(§ — x(0)). 19)

This PDE however is not well posed in L* since V is not Lipshitz. The stochastic
shift however should provide some sort of regularization similar to a convolution
with a smooth kernel. In order to highlight this stochastic effect we can introduce an
unbounded driver A' (s, 1) as the time average of V(& — x(#))V:

t
Al(s,t)zf V(& — x(r))Vdr.
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We can reformulate the ODE as a rough distributional equation
8z(s,1) = A (s, )z(s) + 2%(s, 1). (20)

where we truncate the expansion at level 1 and require that the remainder satisfies
128, )(@)| < 1t — s/* |l@ll e and where we choose y > 1/2. The rough
dynamics (20) encodes the behaviour of z only in terms of the rough driver A
provided we can show that A'(s, 1) < |r — s|7. Note that this driver is quite regular
in the time variable, less so in the space one. A direct stochastic computation shows,
quite surprisingly, that if V is a—Ho6lder in & then for almost every sample path of a
Brownian motion B the random field

t
F(t,§) :/o V(€ — B(r))dr,

belongs locally to C/ C;‘H’e for some small ¢. Here we see at work a regularisation
by noise phenomenon where, due to the averaging in time along the trajectories of
the Brownian motion, the random field F gains almost one degree of regularity
in Holder spaces with respect to V. The price to pay for this effect is in the time
regularity: F is just y Holder in time if we consider it as a (¢ + 1 — &)-Holder
functions in the space variable. This effect has been noted first by Davie [8], for
further results and applications see [2].

Going back to the rough dynamics (20) it is possible to show that if ¢« > 1/2
the rough driver A! is renormalizable and from that deduce uniqueness via a
tensorization argument in L°° (a bit different from the previous one which was set
up in L?). This result does not recover the conclusions of our work with Flandoli
and Priola (where uniqueness was proven for any o > 0) but being a completely
deterministic argument it has other good features (e.g. contraction and stability of
the flow for the SPDE) which are not know in the stochastic setting and usually
nontrivial to obtain.

In [4, 6], in collaboration with K. Chouk, we used rough dynamics to study
randomly modulated non-linear dispersive equations with ideas similar to those
exposed in this section.

5 Other Rough Dynamics

In the recent paper [9], in collaboration with A. Deya, M. Hofmanova and S. Tindel,
we introduce the rough dynamical point of view in the study of fully nonlinear scalar
stochastic conservation laws of the form

du(z, &) = div(Aq (¢, x, u(t, £)))dx?.
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By introducing the kinetic function f(t,&,v) = I, .u.¢) this equation can be
transformed in a rough linear kinetic equation

df(ts gv U) = VO!(%_? v)vs,vf(tv ‘i:s v)dxa + avdl‘m (21)

where V is a family of vector fields which depends on the original non-linearity A
and m is a kinetic measure which comes as the price to pay to have linearized the
equation and which essentially ensures that solutions to this linear equation have
the form I, ;. £). A solution of the kinetic equation is a pair ( f, m) satisfying the
finite—increment version of Eq. (21). Uniqueness for kinetic solution relies on fine
properties of the measure m but the general scheme of proof goes via tensorization
and passage to the diagonal much like in the linear transport case. The lack of precise
informations about the kinetic measure m is source of some complications, much
like in the classical setting. Test functions in the tensorization argument has to be
chosen properly in order to be able to estimate the action of the kinetic measure, for
details refer to the original paper.

Other partial results deal with the description of the rough dynamics for viscosity
solutions of fully non-linear SPDEs [14] or with an attempt to the rough analysis of
stochastic wave equations with multiplicative noise [5].
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Heavy Tailed Random Matrices: How )
They Differ from the GOE, and Open s

Problems

Alice Guionnet

Abstract Since the pioneering works of Wishart and Wigner on random matrices,
matrices with independent entries with finite moments have been intensively
studied. Not only it was shown that their spectral measure converges to the semi-
circle law, but fluctuations both global and local were analyzed in fine details. More
recently, the domain of universality of these results was investigated, in particular
by Erdos-Yau et al and Tao-Vu et al. This survey article takes the opposite point
of view by considering matrices which are not in the domain of universality of
Wigner matrices: they have independent entries but with heavy tails. We discuss
the properties of these matrices. They are very different from Wigner matrices: the
limit law of the spectral measure is not the semi-circle distribution anymore, the
global fluctuations are stronger and the local fluctuations may undergo a transition
and remain rather mysterious.

1 Introduction

Random matrices were introduced by Wishart [36] in the twenties to study large
arrays of data and then in the 1950s by Wigner [35] to model Hamiltonians of
quantum systems. In both cases, it appeared natural to assume the dimension of
the matrices to be large. Moreover, it is natural to take the entries as independent
as possible within the known constraints of the model. A typical model for such
a matrix is to take a symmetric matrix filled with independent equidistributed
Gaussian random variables: the so-called Gaussian orthogonal ensemble (GOE).
To fix the ideas, the matrix will be N x N with independent centered Gaussian
entries with variance 1/N (and variance 2/N on the diagonal). The properties of
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the spectrum and the eigenvectors of such matrices were studied in details, thanks to
the fact that the law of such matrices is invariant under multiplication by orthogonal
matrices and that the law of the eigenvalues has a simple expression as particles
in Coulomb-gas interaction. Understanding how the details of the model could
influence the spectral properties of the random matrices then became a central
question. Assuming the entries to be still independent, it was shown that if the
entries have sufficiently light tails, the fluctuations of the extreme eigenvalues are
similar to that of the GOE [30] and in the bulk [21]. A series of remarkable works
then focussed on obtaining optimal assumptions on the tails, which are a finite fourth
(respectively the second) moment to observe the same fluctuations [18, 20, 25, 33].
However, there are matrices of interest which do not belong to this domain of
universality. Typically, these matrices will have most entries which are very tiny, but
a finite number of entries per row or column will be of order one. This is in contrast
with light tails matrices where all entries are of order 1/+/N. An example is given
by the adjacency matrix of an Erdos-Rényi graph whose entries are independent
Bernoulli variables which are equal to one with probability ¢/N for some finite
constant ¢. Such matrices are much less known. We shall in this note outline the
main results and open problems related to such matrices. Roughly, the convergence
of the empirical measure of the eigenvalues can be derived under rather general
assumptions, but the limiting measure is not anymore the semi-circle law and is
not compactly supported [6, 7, 37]. Under slightly more demanding hypotheses, the
central limit theorem around this convergence can be derived: fluctuations occur
in larger scale than for light tail matrices, in fact the usual central limit rescaling
by a square root of the dimension is needed as soon as the moment of order two
of the entries is infinite [9]. Local law could be derived only for «-stable entries
[12, 13]. It shows a transition in the regime where o < 1: for small eigenvalues
the eigenvectors are delocalized whereas for large eigenvalues they are localized,
again a phenomenon which does not occur for light tail matrices. Even words in
independent heavy tail matrices behave differently: they are not asymptotically
free in general and one need a new non-commutative framework, namely traffic
distributions, to analyze them.

In the sequel, a Wigner matrix will be a symmetric matrix with centered
independent equidistributed entries. The case of Hermitian matrices with complex
entries is similar but will not be treated here for simplicity. We will denote X a
Wigner matrix with light tails and A a Wigner matrix with heavy tails.

2 Macroscopic Limit

Going back to Wigner [35], it was shown that the spectral measure of random
matrices with light tail entries converges towards the same asymptotic law: the
semi-circle law. In this section, we discuss the convergence of the spectral measure
of random matrices with heavy tails matrices and show that it converges towards



Heavy Tailed Random Matrices: How They Differ from the GOE, and Open Problems 417

different limiting measures. Let us be more precise. Let XV be a symmetric matrix
so that (X l])’ )i<; are independent and such that

E[X{j] =0, lim maxN|NE[|X{j|2]— 1| =0. (1)

N—oo 1<i,j<
Assume moreover that for all k € N we have

By:=sup  sup  E[VNX]*] < oc. )
NeN (i, j)e{l,— N}

Then, Wigner proved the almost sure convergence

. lT XM)E) — 0 ifkis odd, 3
Nooo N r(( ) )_ Clﬁ otherwise, 3)
k
k
where Cy /> = "-ZH are the Catalan numbers. The proof is based on an expansion

2
of the trace of moments of matrices in terms of the entries, together with the

observation that the indices which will contribute to the first order of this expansion
can be described by rooted trees. Based on the fact that the Catalan numbers are the
moments of the semi-circle distribution

1
o(dx) = _ 4—x21<adx. 4)
2w -
one can use density arguments (see e.g. [4]) to show that as soon as B3 (in fact
“Br4.”) is finite, the eigenvalues (A1, ---,Ayn) of xV satisfy the almost sure
convergence
X
Jim ;m» = / f(x)do (x) (5)
1=

where f is a bounded continuous function.
In contrast, the limit my be different as soon as Byy. is infinite. The new
hypothesis is that all moments are of order 1/N: Assume that E[Ag ]=0and

lim NE[(AY)*] = M, Vk e N. (6)
N—oo J
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Note that this includes the case of the adjacency matrix of a Erdos-Rényi graph with
My = ¢ for all k. Then, Zakharevich [37] showed that N~ Tr((AN)?) goes to zero
if p is odd and

]\}?OOIE[;Tr((AN)zk)} = > Y [ Mucron. (7

G=(V,E)eTi PePy(G) ecE

where 7 is the set of rooted trees with at most k edges, Pr(G) the set of closed
paths on G with 2k steps, going through all edges of G, starting from the root
and m(P, e) the (even) number of times that the path goes through the edge e.
The probability measure with the above moments is very different from the semi-
circle law: in general it has unbounded support. One can generalize this result to the
case where the entries have no moments at all by using convergence of the Stieltjes
transform G, (z) = [(z — x)~'du(x). Assume that the law py of Af.\; satisfies

lim N (/(e—”“‘2 - l)dMN(x)> = ®(u) (8)
N—o00
with @ such that there exists g on R™, with g(y) bounded by Cy* for some k¥ > —1,
such that foru € C—,

D) = /0 g(y)e dy. ©)

An example is given by « stable laws with ®(u) = c(iu)*’? and g(y) = Cy*/>~1
for some constants ¢, C. Another example is provided by the adjacency matrix of
Erdos-Rényi graph with ® (u) = c(e’ — 1) and g a Bessel function [9]. Then, it was
shown in [7, 9] that Gy (2)= 1}, Tr(z — AN)~! converges almost surely towards G
given by, forz € C*

G(z) =i f el qy (10)

where p, : RT — {x +iy; x < 0} is the unique solution analytic in z € C* of the
equation

o0 .
(1) = /0 g(y)e<tPay (11)

This entails the convergence of the spectral measure of A" as in (5), with o replaced
by a probability measure with Stieltjes transform given by (10). To give some
heuristics of the proof of such convergence, let us take z € C\R. Then, Schur
complement formula reads

1

—A); = )
S 72— A — (A, (2 = AD)714;)
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where A; = (A;j)j»i and A® isthe (N — 1) x (N — 1) matrix obtained from A by
removing the ith row and column. A;; goes to zero with N, but

(Ai e = AD)TA) = 3 AL - AD) ]
Jj#i

is a non trivial random variable in the heavy tail case. We can compute its Fourier
transform thanks to our hypothesis (8), and deduce fractional moments of the
resolvent as follows. Observe that for 8 > 0, there exists a constant Cg such that
forallz=a+ib,b <0

1 o0 .
=Cg / dxxP~le=i*2
Z’3 0
As a consequence, we can guess thanks to (8) that
=1 o 1 —ixgmyr —ix Y AL (z—AD)T!
El((z — A);; )] ~ Cﬁ/ dxxP~le ¥ E[e ji Al G=AD
0

%) Lo %)
~ Cﬂ/ dxxﬂflef"“ell’ ZMX(Z_AM)J’J’]) ~ Cﬂ/ dxxﬂ*lef"“e"?/(x)
0 0

with the order parameter ,oév (x) = IE[;, > d(x(z — A(i));jl)]. Here, we used
self-averaging of the order parameter. We next can get an equation for the order
parameter thanks to hypothesis (9) which implies, again by Schur complement
formula, that

N OO YerpN ()
p; (x) x~ gyer P tdy .
0

Hence, if the above heuristics are true, we get convergence of fractional moments of
the resolvent as soon as the equation for p, as a unique solution, to which the order
parameter pév converges. In particular, the Stieltjes transform

1 1
G — = — At
N = ; cen TN E(Z )i

converges towards C fooo dxxP~1e71¥2¢P:¥)  The above arguments were made
rigorous in [7-9].

It is quite difficult to study the limiting probability measure whose Stieljes
transform is given by the intricate fixed point Eq.(10). It is known that it has
unbounded support. The case of a-stable laws is easier: they have a smooth density
except possibly at finitely many points [6], their density at the origin can be
computed and this law can be interpreted as the spectral measure of the adjacency
matrix of the PWIT [11]. But in general, simple properties such as the existence of
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an absolutely continuous part are difficult, see e.g. [17] in the case of the Erdos-
Rényi graph.

3 Central Limit Theorem for Linear Statistics

One can push the previous arguments to study the fluctuations of the linear statistics.
Let us first consider light tails matrices, in fact matrices satisfying (2) and the
fluctuations of

MY = ZN: (- ERf) (12)
i=1

Then, it was shown in [5], see also [24] for the Gaussian case, that M,ﬁv converges
in distribution towards a Gaussian variable whose covariance depends on the fourth
moment of the entries. Again, such convergence can be generalized to heavier tails
by replacing taking as test functions smooth enough bounded test functions instead
of moment: it was indeed shown, see [27, 31], that ZIN=1 fOg) — ]E[ZIN=1 F)]
converges in distribution to a Gaussian variable provided f is C'/27¢ ¢ > 0. One
can also recenter with respect to N [ f(x)do (x), see e.g. [9], inducing in general a
non trivial mean to the limiting Gaussian variable.

Hence, we see that the spectral measure of light tails matrices fluctuates much
less than the empirical measure of independent variables which is of order 1/+/N
and not 1/N. The situation changes drastically when one considers heavy tails
matrices, and in fact as soon as the fourth moment of the entries is infinite. If one
considers « stable laws with o € (2, 4), the fluctuations are of order N —lta/4 [10].
For heavy tails matrices satisfying (6) or (8), the fluctuations are of size 1/ /N 9],
as for independent variables. Test functions are assumed to be smooth enough in
these cases, and centering in general holds with respect to expectation (additional
hypothesis concerning the errors in (6) or (8) are required otherwise). To give some
heuristics of the proof of such central limit theorem, let us take f = (z — )1 for
z € C\R. Then, recall that Schur complement formula shows that

(z—A);' ~ with YN (2) =) A%z — AD)7.

_ YN(Z) i

i J#i

The (YiN (2))1<i<n converge (jointly for finite marginals) towards independent ¢ /2~
stable laws with parameter p, given by (11). Hence, the diagonal elements of the
resolvent behave like independent equidistributed random variables, so that their
sum, once renormalized by /N, converges towards a Gaussian variable.
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4 Local Law

In order to get more local information, one would like to be able to take less smooth
functions in the previous result, in fact functions which are supported in intervals
going to zero as N goes to infinity. This idea was first developed for light tails
matrices by Erdos-Schlein-Yau [22]. It reads as follows. Assume that p, the law of
the entries, have stretched exponential decay, i.e. there exists « > 0 and C < o0
such that forall ¢ > 0

—t®

w(lx| = VN ' < ce (13)

Letfor I C]—2,2[, Ny be the number of eigenvalues in /. Then for all k¥ € (0, 2),all

n > (logNN)4 sufficiently small, there exists ¢ > 0 such that we have for all § < ck,
Nig- log N)¢
P sup |ME-nE+ _,Osc(E)‘ _ (logN) 1) < N loetoen 14
|E|l<2—«c | 2N7 VN

Such estimates were shown to hold under much weaker hypothesis afterwards and
it was extended to the neighborhood of {—2} and {2}, the boundary of the support
of the semi-circle, see e.g. [19, 20, 26] or [32]. This allowed to prove that the
eigenvalues are rigid, that is do not fluctuate much around their deterministic limit.
Indeed, if we now order the eigenvalues A1 < Ap--- < Ay and let yl.N be the ith
quantile given by o ([-2, yl.N 1) = i/N, then, with probability greater than 1 — NV,
forall i

1L — ¥V| < (og NN~ min{(N — i)~ 1/3,i71/}.

Of course, one can not expect the eigenvalues to be as rigid in the heavy tails
case since this would contradict the central limit theorems of the previous section.
However, one could still expect the local law to be true inside the bulk: in [9],
corresponding to entries decaying like x ™ for some o € (2, 4), it was shown that
global fluctuations hold in the scale N~%/# whereas local law inside the bulk was
derived in [1]. Hence, in this case, large eigenvalues should be less rigid, creating
large fluctuations. For heavier tails, local laws have not yet been established except
for the case of a-stable entries [12]. The following result was proved if the A;; are
«-stable variables: for all t € R,

1
Elexp(irA11)] = exp(—Nwaltl"‘), 15)
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for some 0 < o < 2 and wy, = 7 /(sin(we/2)T (). We let iy be the equilibrium
measure and put

Vooifd<a<2
p=1g%, if l<a<? (16)
’ f3a if 0 <a<l.
Then, there exists a finite set & C R such that if K C R\&, is a compact set and
8 > 0, the following holds. There are constants cp, c; > 0 such that for all integers
N > 1,if I C K is an interval of length | 7| > ¢; N~"(log N)z, then

[N = Nuao(D| < 8N, (17

with probability at least 1 — 2 exp (—coN 821 |2).

In both light and heavy tails, the main point is to estimate the Stieltjes transform
Gn(z) = 1{, ZIN=1 (z—xi) ! forz going to the real axis: z = E +in with n of order
nearly as good as N~! for light tails, N~ for heavy tails. This is done by showing
that Gy is characterized approximately by a closed set of equations. In the case
of lights tails, one has simply a quadratic equation for G and needs to show that
the error terms remain small as z approaches the real line. In the heavy tails case,
the equations are much more complicated, see (10), and therefore more difficult to
handle. Even in the a-stable case it is not clear what should be the optimal local law.
We believe p should be at least equal to 1/2 for all « € (1, 2). Similar questions are
completely open for other heavy tails matrices.

5 Localization and Delocalization of the Eigenvectors

Based on the local law, it was shown that the eigenvectors of Wigner matrices with
light entries (for instance with sub exponential tail) are strongly delocalized [22, 23],
for any p € (2, 0o] and € > 0, with high probability,

max_ugll, = O(N'/P71/2), (18)
1<k<N
where for u € R, Jull, = (X0, 1ui?)"” and Jullw = max|u;]. This

phenomenon seems to be quite robust and continues to hold even if a fraction of the
entries vanish. For instance, if the entries vanish outside a band around the diagonal
of width W, it is conjectured that the eigenvectors remain delocalized as long as
W > +/N, but start being localized when W <« +/N. Universality was shown for
W >~ N, see [15].
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It was shown in [12] that the eigenvectors of matrices with «-stable entries are
also delocalized if & € (1, 2): there is a finite set &, such if K C R\&, is a compact
set, for any ¢ > 0, with high probability,

max {[luklloo : 1 <k <N, ax € K} = ON*), (19)

where § = (@ — 1)/((2a) v (8 — 3)). Since [|ull, < [lullso /" llull3”, it implies
that the L”-norm of the eigenvectors is O (N2%/P~3+2()) Notice that when o — 2,
then § — 1/4 and it does not match with (18): we expect that this result could be
improved.

However, for « € (0,1), we observe a new phenomenon, closer to what
can be observed for random Schrodinger operators, see e.g. [3]: eigenvectors are
delocalized if they correspond to eigenvalues which are small, but are localized if
they correspond to large eigenvalues. In [14], Bouchaud and Cizeau conjectured
the existence of a mobility edge, E, > 0 where this transition occurs (a value for
E, is predicted in [34]). However, the sense of localization/delocalization has to be
precised. In [12, 13], we considered

N
1
Py = ) D (we)’, Qr=NY P [, Nl.

UueN; k=1

and showed that for @ € (0, 2/3), for I = [E — n, E 4 n] with n going to zero with
N, Oy goes to infinity if E is large enough, whereas it is bounded for small enough
E. This localization/delocalization of the eigenvectors should be related with the
local fluctuations of the spectrum. Bouchaud and Cizeau conjectured that the small
eigenvalues should behave like the eigenvalues of the Gaussian ensemble when « €
(1, 2). Also, fora € (0, 1) and large eigenvalues, one expects a Poisson distribution.
However, for the two remaining regimes, they predict something between Poisson
and Sine-kernel. In [34], the authors predict a phase transition at a mobility edge
between the localized and delocalized regimes. While this article was under print, it
was shown in [2] that in the regime of delocalization, the local statistics are given
by the GOE statistics and that, then, the eigenvectors are completely delocalized in
the sense that (19) holds with the optimal rate § = 1/2.

6 Heavy-Tailed Operators in Free Probability

Another important feature of random matrices is their role in free probability, as a
toy example of matrices whose large dimension limit are free. Free probability is
a theory of non-commutative variables equipped with a notion of freeness. Let us
consider self-adjoint non-commutative variables X1, ..., Xg. We equip the set of
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polynomials in these non-commutative variables with the involution
(zXi, Xip - Xi))" =2Xi, -+ Xy, -

Distributions of d self adjoint variables are simply linear functions t on this set of
polynomials in non-commutative variables such that

T(PP*) >0, w()=1, T(PQ) =t(0P),
for all choices of polynomials P, Q. Freeness is a condition on the joint distribution
of non-commutative variables. For instance, we say that X1, ..., X4 are free under
T iff
T(PI(Xy) -+ Pe(X;,) = 0 (20)
as soon as T(P;(X;)) = Oforall jandi; # ij41,1 < j < £ — 1. The

latter property was introduced by Voiculescu and named freeness, as it is related
with the usual notion of free generators of a group. Taking d independent Wigner

matrices lev e, Xév with light tails, one finds that for all choices of iy, ..., iy €
{11 ceey d}k,
. 1
Jim_ N Tr(X) X =o(Xi, - X)) as
where ¢ is uniquely described by saying that the moments of a single X; are

given by the Catalan numbers, and their joint moments satisfy (20). Voiculescu
also showed that matrices Y; = U;D;U7} with deterministic matrices D; and
independent Haar distributed orthogonal matrices satisfy at the large N limit the
freeness property (20). Hence, matrices become asymptotically free if the position
of their eigenvectors are “sufficiently” independent. One could then wonder whether
Wigner matrices with heavy tails are also asymptotically free. All these matrices
share the invariance by multiplication by permutation matrices. It is clear that
matrices conjugated by independent permutation matrices are not asymptotically
free. Indeed, for instance if one takes two diagonal matrices with given spectral
measure, it will have a different joint law if it is conjugated by unitary matrices
than if it is conjugated by permutations (which does not change the law) since
then they will commute. Similarly, it is not enough to know the spectral measure
of a heavy tail matrix to derive the joint law of several of them. In the one matrix
case, this could already be guessed in view of the additional parameter p,. In fact,
this parameter appears naturally as the large N limit of 1{] 2112]:1 D(t(z — A);.l)
which is not a function of the spectral measure. To remedy this point, another non-
commutative framework was introduced by C. Male: the distribution of traffics
and their free product [28]. Traffics distributions are now linear maps of a set
of functionals that generalize the non-commutative polynomials, called graph
polynomials. Namely, if we are given d N x N self-adjoint random matrices
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(AN, R Ag), a finite connected graph G = (V, E) and y a map from E into
{1, ..., d}, we define the observables given by

1
PGy =E| | > [l Aw@w.s0)|.

¢:Vi>{l,...,N} e=(v,w)EE

where the sum is taken over all maps and N > |V|. For instance if G is a cycle
V =Avi,...,wu}, E = {ex = (vg, vet+1)}1<e<k With vg11 = vy, we get the trace
of the word Ay (¢)) - - Ay(ep. If V is as before, but £ = {e; = (v¢, vetr1)}<e<k U
{ee+k = (v, Vet1)}1<e<k While y(eg) = 1 for £ < k and 2 for £ > k 4 1, we get
the trace of the kth moment of the Hadamard product A11V o AQ’ . More generally, we
can obtain all the the normalized trace of Hadamard products of polynomials in the
matrices AIIV, R Aév

1
IE[NTr(Pl(A{V,...,AQ’)o---oPk(AIIV,...,AQ’))} )

The collection of all ®,~(G,y) defines the distribution of the traffics
(AN, e, Ay). A sequence (AN, e, AQ’) of matrices converges in traffics iff
® 4~ (G, y) converges for all finite connected graphs G and all map y. The model
of heavy Wigner matrices was the initial motivation to introduce it: matrices
satisfying (6) can be seen to converge in traffic. Traffic distribution comes together
with the notion of traffic independence, which is more complicated than freeness
in the sense that it involves non algebraic (combinatorial) formulas (see [28,
Definition 3.10]). However, it prescribes uniquely the traffic distribution of two
families A and B from the traffic distributions of A and B. One can see that traffic
independence does not imply free independence. Let us consider two asymptotically
traffic independent families of matrices A and By (that is with traffic distribution
which converges towards a distribution of two traffic independent families). If

1 1
KAy Py = Tr[P(An) o P*(AN)] — |y PAN)?

does not go to zero for some polynomial P and the same hold for By, then Ay
and By are not asymptotically freely independent [28, Section 3.3]. This criterion
applies for heavy Wigner matrices, which shows in particular that heavy Wigner
matrices are not asymptotically freely independent, and not asymptotically freely
independent with diagonal matrices. On the contrary, if « (Ay, P) and «(By, P)
tend to zero for all polynomial P, then Ay and By are asymptotically free
independent [16, Section 3.2]. This is the case of adjacency matrices of Erdos-Renyi
matrices with parameter ) when cy goes to infinity [29]. Traffic independence
is difficult to manipulate, still we can deduce from it a system of equations
which characterizes the limiting distribution of independent heavy Wignerand
deterministic diagonal matrices. It involves again limits of normalized trace of
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Hadamard products of polynomials in matrices. It implies another characterization
of the spectrum of a single heavy Wigner matrix in term of the maps G(A)* =

v i [o= 20" 29,

References

1. Aggarwal, A.: Bulk universality for generalized wigner matrices with few moments.
arXiv:1612.00421 (2016)

2. Aggarwal, A., Lopatto, P., Yau, H.-T.: GOE statistics for Levy matrices. https://arxiv.org/abs/
1806.07363 (2018)

3. Aizenman, M., Warzel, S.: Disorder-induced delocalization on tree graphs. In: Exner, P.
(ed.) Mathematical Results in Quantum Physics, pp. 107-109. World Scientific Publication,
Hackensack (2011). MR 2885163

4. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge
Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2010).
MR 2760897

5. Anderson, G.W., Zeitouni, O.: A CLT for a band matrix model. Probab. Theory Rel. Fields
134, 283-338 (2005). MR 2222385

6. Belinschi, S., Dembo, A., Guionnet, A.: Spectral measure of heavy tailed band and covariance
random matrices. Commun. Math. Phys. 289(3), 1023-1055 (2009)

7. Ben Arous, G., Guionnet, A.: The spectrum of heavy tailed random matrices. Commun. Math.
Phys. 278(3), 715-751 (2008)

8. Benaych-Georges, F., Guionnet, A.: Central limit theorem for eigenvectors of heavy tailed
matrices. Electron. J. Probab. 19(54), 27 (2014). MR 3227063

9. Benaych-Georges, F., Guionnet, A., Male, C.: Central limit theorems for linear statistics of
heavy tailed random matrices. Commun. Math. Phys. 329(2), 641-686 (2014). MR 3210147

10. Benaych-Georges, F., Maltsev, A.: Fluctuations of linear statistics of half-heavy-tailed random
matrices. Stoch. Process. Appl. 126(11), 3331-3352 (2016). MR 3549710

11. Bordenave, C., Caputo, P., Chafai, D.: Spectrum of large random reversible Markov chains:
heavy-tailed weights on the complete graph. Ann. Probab. 39(4), 1544—1590 (2011)

12. Bordenave, C., Guionnet, A.: Localization and delocalization of eigenvectors for heavy-tailed
random matrices. Probab. Theory Relat. Fields 157(3-4), 885-953 (2013). MR 3129806

13. Bordenave, C., Guionnet, A.: Delocalization at small energy for heavy-tailed random matrices.
Commun. Math. Phys. 354(1), 115-159 (2017). MR 3656514

14. Bouchaud, J.-P., Cizeau, P.: Theory of Lévy matrices. Phys. Rev. E 3, 1810-1822 (1994)

15. Bourgade, P., Erdos, L., Yau, H.-T., Yin, J.: Universality for a class of random band matrices.
Adv. Theor. Math. Phys. 21(3), 739-800 (2017). MR 3695802

16. Cébron, G., Dahlqvist, A., Male, C: Universal constructions for space of traffics (2016).
arXiv:1601.00168

17. Bordenave, C., Sen, A., Virdg, B.: Mean quantum percolation. J. Eur. Math. Soc. (JEMS)
19(12), 3679-3707 (2017). MR 3730511

18. Erdds, L., Schlein, B., Yau, H.-T.: Wegner estimate and level repulsion for Wigner random
matrices. Int. Math. Res. Not. (IMRN) (3), 436-479 (2010). MR 2587574

19. ErdGs, L.: Universality of Wigner random matrices: a survey of recent results. Uspekhi Mat.
Nauk 66(3)(399), 67-198 (2011). MR 2859190

20. Erdés, L., Knowles, A., Yau, H.-T., Yin, J.: The local semicircle law for a general class of
random matrices. Electron. J. Probab. 18(59), 58 (2013). MR 3068390

21. Erdés, L., Péché, S., Ramirez, J.A., Schlein, B., Yau, H.-T.: Bulk universality for Wigner
matrices. Commun. Pure Appl. Math. 63(7), 895-925 (2010). MR 2662426


https://arxiv.org/abs/1806.07363
https://arxiv.org/abs/1806.07363

Heavy Tailed Random Matrices: How They Differ from the GOE, and Open Problems 427

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

ErdGs, L., Schlein, B., Yau, H.-T.: Local semicircle law and complete delocalization for Wigner
random matrices. Commun. Math. Phys. 287(2), 641-655 (2009)

ErdéGs, L., Schlein, B., Yau, H.-T.: Semicircle law on short scales and delocalization of
eigenvectors for Wigner random matrices. Ann. Probab. 37(3), 815-852 (2009)

Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J.
91, 151-204 (1998)

Johansson, K.: Universality for certain Hermitian Wigner matrices under weak moment
conditions. Ann. Inst. Henri Poincaré Probab. Stat. 48(1), 47-79 (2012). MR 2919198

Lee, J.O., Yin, J.: A necessary and sufficient condition for edge universality of Wigner matrices.
Duke Math. J. 163(1), 117-173 (2014). MR 3161313

Lytova, A., Pastur, L.: Central limit theorem for linear eigenvalue statistics of random matrices
with independent entries. Ann. Probab. 37(5), 1778-1840 (2009). MR 2561434

Male, C.: Traffics distributions and independence: the permutation invariant matrices and the
notions of independence. arXiv:1111.4662 (2011)

Male, C.: The limiting distributions of large heavy Wigner and arbitrary random matrices. J.
Funct. Anal. 272(1), 1-46 (2017). MR 3567500

Soshnikov, A.: Universality at the edge of the spectrum in Wigner random matrices. Commun.
Math. Phys. 207(3), 697-733 (1999). MR 1727234

Sosoe, P., Wong, P.: Regularity conditions in the CLT for linear eigenvalue statistics of Wigner
matrices. Adv. Math. 249, 37-87 (2013). MR 3116567

Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics up to the edge.
Commun. Math. Phys. 298(2), 549-572 (2010)

Tao, T., Vu, V.: The Wigner-Dyson-Mehta bulk universality conjecture for Wigner matrices.
Electron. J. Probab. 16(77), 2104-2121 (2011). MR 2851058

Tarquini, E., Biroli, G., Tarzia, M.: Level statistics and localization transitions of levy matrices.
Phys. Rev. Lett. 116, 010601 (2015)

Wigner, E.P.: On the distribution of the roots of certain symmetric matrices. Ann. Math. 67,
325-327 (1958)

Wishart, J.: The generalized product moment distribution in samples from a normal multivari-
ate population. Biometrika 20A, 32-52 (1928)

Zakharevich, I.: A generalization of Wigner’s law. Commun. Math. Phys. 268, 403—414 (2006)



An Analyst’s Take on the BPHZ Theorem @)

Check for
updates

Martin Hairer

Abstract We provide a self-contained formulation of the BPHZ theorem in the
Euclidean context, which yields a systematic procedure to “renormalise” otherwise
divergent integrals appearing in generalised convolutions of functions with a
singularity of prescribed order at their origin. We hope that the formulation given
in this article will appeal to an analytically minded audience and that it will help
to clarify to what extent such renormalisations are arbitrary (or not). In particular,
we do not assume any background whatsoever in quantum field theory and we stay
away from any discussion of the physical context in which such problems typically
arise.

1 Introduction

The BPHZ renormalisation procedure named after Bogoliubov, Parasiuk, Hepp and
Zimmerman [1, 17, 21] (but see also the foundational results by Dyson and Salam
[8, 9, 18, 19]) provides a consistent way to renormalise probability amplitudes
associated to Feynman diagrams in perturbative quantum field theory (pQFT). The
main aim of this article is to provide an analytical result, Theorem 3.1 below, which
is a general form of the “BPHZ theorem” in the Euclidean context. To a large
extent, this theorem has been part of the folklore of mathematical physics since the
publication of the abovementioned works (see for example the article [11] which
gives rather sharp analytical bounds and is close in formulation to our statement,
as well as the series of articles [4—6] which elucidate some of the algebraic aspects
of the theory, but focus on dimensional regularisation which is not available in the
general context considered here), but it seems difficult to find precise analytical

M. Hairer (i)
Mathematics Institute, Imperial College, London, UK
e-mail: m.hairer@imperial.ac.uk

© Springer Nature Switzerland AG 2018 429
E. Celledoni et al. (eds.), Computation and Combinatorics in Dynamics,

Stochastics and Control, Abel Symposia 13,

https://doi.org/10.1007/978-3-030-01593-0_16


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01593-0_16&domain=pdf
mailto:m.hairer@imperial.ac.uk
https://doi.org/10.1007/978-3-030-01593-0_16

430 M. Hairer

statements in the literature that go beyond the specific context of pQFT. One reason
seems to be that, in the context of the perturbative expansions arising in pQFT,
there are three related problems. The first is to control the small-scale behaviour
of the integrands appearing in Feynman diagrams (the “ultraviolet behaviour”), the
second is to control their large scale (“infrared”) behaviour, and the final problem
is to show that the renormalisation required to deal with the first problem can be
implemented by modifying (in a scale-dependent way) the finitely many coupling
constants appearing in the Lagrangian of the theory at hand, so that one still has a
physical theory.

The approach we take in the present article is purely analytic and completely
unrelated to any physical theory, so we do not worry about the potential physical
interpretation of the renormalisation procedure. We do however show in Sect. 3.3
that it has a number of very nice mathematical properties so that the renormalised
integrals inherit many natural properties from their unrenormalised counterparts.
We also completely discard the infrared problem by assuming that all the kernels
(“propagators”) under consideration are compactly supported. For the reader who
might worry that this could render our main result all but useless, we give a simple
separate argument showing how kernels with algebraic decay at infinity can be
dealt with as well. Note also, that contrary to much of the related theoretical and
mathematical physics literature, all of our arguments take place in configuration
space, rather than in Fourier space. In particular, the analysis presented in this article
shares similarities with a number of previous works, see for example [7, 10, 11] and
references therein.

The approach taken here is informed by some results recently obtained in
the context of the analysis of rough stochastic PDEs in [2, 3, 15]. Indeed, the
algebraic structure described in Sects. 2.3 and 2.4 below is very similar to the one
described in [2, 15], with the exception that there is no “positive renormalisation”
in the present context. In this sense, this article can be seen as a perhaps gentler
introduction to these results, with the content of Sect. 2 roughly parallel to [2], while
the content of Sect.3 is rather close to that of [3]. In particular, Sect.2 is rather
algebraic in nature and allows to conceptualise the structure of the counterterms
appearing in the renormalisation procedure, while Sect.3 is rather analytical in
nature and contains the multiscale analysis underpinning our main continuity result,
Theorem 3.1. Finally, in Sect.4, we deal with kernels exhibiting only algebraic
decay at infinity. While the conditions given in this section are sharp in the absence
of any cancellations in the large-scale behaviour, we do not introduce an analogue
of the “positive renormalisation” of [3], so that the argument remains relatively
concise.
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2 An Analytical Form of the BPHZ Theorem

Fix a countable set £ of labels, amap deg: £ — R, and an integer dimensiond > 0.
We assume that the set of labels has a distinguished element which we denote by
8 € £ satisfying degd = —d and that, for every multiindex k, there is an injective
map t > t® on £ with Y = t and such that

OO = *+0 - deg t®) = degt — |k] . (1)

We also set £, = £\{8% : k € N’} and we assume that there is a finite set £9 C £
such that every element of £ is of the form t*) for some k € N¢ and some t € £o.
We then give the following definition.

Definition 2.1 A Feynman diagram is a finite directed graph I' = (7, €) endowed
with the following additional data:

¢ An ordered set of distinct vertices £ = {[1],...,[k]} € ¥ such that each
vertex in & has exactly one outgoing edge (called a “leg”) and no incoming
edge, and such that each connected component of I" contains at least one leg. We
will frequently use the notation 7, = ¥ \ &, as well as €, C € for the edges
that are not legs.

* A decoration t: € — £ of the edges of I" such that t(e) € £, if and only if
e €%,.

We will always use the convention of [16] that e_ and e are the source and
target of an edge e, so that e = (e— — e4). We also label legs in the same way
as the corresponding element in &£, i.e. we call the unique edge incident to the
vertex [j] the jth leg of I'. The way we usually think of Feynman diagrams is as
labelled graphs (7, 6€,) with a number of legs attached to them, where the legs
are ordered and each leg is assigned a d-dimensional multiindex. An example of
Feynman diagram with three legs is shown in Fig. 1, with legs drawn in red and
decorations suppressed. We do not draw the arrows on the legs since they are always
incoming by definition. In this example, |7'| = 7 and |7, | = 4.

Write now S = R?, and assume that we are given a kernel K¢: S — S for every
t € £,, such that K¢ exhibits a behaviour of order deg t at the origin but is smooth
otherwise. For simplicity, we also assume that these kernels are all compactly
supported, say in the unit ball. More precisely, we assume that for every t € £,
and every d-dimensional multiindex k there exists a constant C such that one has
the bound

IDFK((x)] < Clx|*e 1, VxeS. 2)

Fig. 1 A Feynman diagram

e

\/
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We also extend K to all of £ by using the convention that K5 = §, a Dirac mass at
the origin, and we impose that for every multiindex k and label t € £, one has

K = DFKy . 3)

Note that (2) is compatible with (1) so that non-trivial (i.e. not just vanishing or
smooth near the origin) kernel assignments do actually exist. To some extent it is
also compatible with the convention Ks = § and degd = —d since the “delta
function” on R¥ is obtained as a distributional limit of functions satisfying a uniform
bound of the type (2) with degt = —d. Given all this data, we would now like to
associate to each Feynman diagram I" with & legs a distribution I1I" on S¥ by setting

(M) () = /s°’f l—[ Kiey(Xey — Xe_)o(x1], -+ X[k dx . 4)

ecé

Note that of course 1" does not just depend on the combinatorial data ' =
(V,6,Z, 1), but also on the analytical data (K¢)icge,. We sometimes suppress
the latter dependency on our notation in order to keep it light, but it will be very
useful later on to also allow ourselves to vary the kernels K¢. We call the map IT a
“valuation”.

The problem is that on the face of it, the definition (4) does not always make
sense. The presence of the (derivatives of) delta functions is not a problem: writing
v; € Y, for the unique vertex such that ([i] — v;) € € and ¢; for the multiindex
such that the label of this leg is § (1) we can rewrite 4) as

(nr)(@:/sw [T Kuor e, =2 )(D' - DE@) @y x)dx . (5)

ecé,

The problem instead is the possible lack of integrability of the integrand appearing
in (5). For example, the simplest nontrivial Feynman diagram with two legs is given
by I' = - e—>e-> which, by (5), should be associated to the distribution

(MT)(p) = /sz K¢(y1 = y0)¢(yo, y1) dy . (6)

If it happens that degt < —d, then Ky is non-integrable in general, so that this
integral may not converge. It is then natural to modify our definition, but “as little as
possible”. In this case, we note that if the test function ¢ happens to vanish near the
diagonal y; = yp, then the singularity of K¢ does not matter and (6) makes perfect
sense. We would therefore like to find a distribution I1I" which agrees with (6) on
such test functions but still yields finite values for every test function ¢. One way of
achieving this is to set

Nk
(1) (@) Z/sz Kt(yl—yo)(so(yo, -y O k!yO) D’z‘(p(yo,yo)) dy .

|k|+deg t<—d
(7N
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At first glance, this doesn’t look very canonical since it seems that the variables yg
and y; no longer play a symmetric role in this expression. However, it is an easy
exercise to see that the same distribution can alternatively also be written as

_ k
(1) (@) =/Sz Kt(yl—yo)<s0(yo, w- oy (o k!y1) D'f(ﬂ(yl,yl)) dy .

|k|+deg t<—d

The BPHZ theorem is a far-reaching generalisation of this construction. To for-
malise what we mean by this, write K, for the space of all smooth kernel
assignments as above (compactly supported in the unit ball and satisfying (3)).
When endowed with the system of seminorms given by the minimal constants in
(2), its completion ¥, is a Fréchet space.

With these notations, a “renormalisation procedure” is a map K + ITX turning a
kernel assignment K € ¥, into a valuation 11X . The purpose of the BPHZ theorem
is to argue that the following question can be answered positively.

Main question: Is there a consistent renormalisation procedure such that, for every
Feynman diagram, I1T" can be interpreted as a “renormalised version” of (4)?

As stated, this is a very loose question since we have not specified what we
mean by a “consistent” renormalisation procedure and what properties we would
like a valuation to have in order to be a candidate for an interpretation of (4). One
important property we would like a good renormalisation procedure to have is the
continuity of the map K ~ ITX. In this way, we can always reason on smooth
kernel assignments K € K, and then “only” need to show that the procedure
under consideration extends continuously to all of . Furthermore, we would like
X to inherit as many properties as possible from its interpretation as the formal
expression (4). Of course, as already seen, the “naive” renormalisation procedure
given by (4) itself does not have the required continuity property, so we will have to
modify it.

2.1 Consistent Renormalisation Procedures

The aim of this section is to collect and formalise a number of properties of
(4) which then allows us to formulate precisely what we mean by a “consistent”
renormalisation procedure. Let us write I for the free (real) vector space generated
by all Feynman diagrams. This space comes with a natural grading and we write
Jx C I for the subspace generated by diagrams with k legs. Note that Jp ~ R
since there is exactly one Feynman diagram with 0 legs, which is the empty one.

Write 8 for the space of all distributions on S¥ that are translation invariant in
the sense that, for n € S, h € S, and any test function ¢, one has n(¢) = n(p o ;)
where t, (1, ..., yk) = (y1+h, ..., yr+h). We will write S,EC) C 8 for the subset
of “compactly supported” distributions in the sense that there exists a compact set
£ C S¥/8 such that n(¢) = 0 as soon as suppp N & = .
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Remark 2.2 Compactly supported distributions can be tested against any smooth
function ¢ with the property that for any x € Sk theset {h € S : @(Ty(x)) # 0} is
compact.

Note that §§ ~ R since translation invariant distributions in one variable are
naturally identified with constant functions. We will use the convention Sy & R by
identifying “functions in O variables” with R. We also set § = ;- Sk, so that a
valuation IT can be viewed as a linear map I1:  — S which respects the respective
graduations of these spaces.

Note that the symmetric group &y in k elements acts naturally on J; by simply
permuting the order of the legs. Similarly, &y acts on §; by permuting the arguments
of the test functions. Given two Feynman diagrams I'y € 9} and I'; € J;, we then
write '] "2 € Jj4¢ for the Feynman diagram given by the disjoint union of I'; and
I'>. Here, we renumber the £ legs of I'; in an order-preserving way from k + 1 to
k+¢,sothat althoughI'j eI"> = I'; @' in general,onehas "1 "> = oy (I'20T'1),
where oy ¢ € Gy¢ is the permutation that swaps (1,...,€)and (€ +1,..., ¢+ k).
Given distributions n1 € S and 2 € Sy, we write 1 @1y € Sk4¢ for the distribution
such that

(n1 0 m2) (@1 ® @2) = ni(pD)M2(e2) .

Similarly to above, one has 11 @ n2 = oy ¢(12 ® n1). We extend e by linearity to all
of I and S respectively, thus turning these spaces into (non-commutative) algebras.
This allows us to formulate the first property we would like to retain.

Property 1 A consistent renormalisation procedure should produce valuations T1
that are graded algebra morphisms from I to 8 and such that, for every Feynman
diagram U with k legs and every o € &y, one has llo (I') = o (IIT"). Furthermore

Ir e S,EC) if I is connected with k legs.

Similarly, consider a Feynman diagram I with k > 2 legs such that the label of
the kth leg is § and such that the connected component of I" containing [k] contains
at least one other leg. Let Del; I' be the Feynman diagram identical to I", but with
the kth leg removed. If the label of the kth leg is 8 with m # 0, we set Del; I' = 0.
If we write ¢, for the natural injection of smooth functions on S¥~! to functions on
Sk given by (tx9)(x1, ..., xk) = @(x1, ..., xk—1), we have the following property
for (4) which is very natural to impose on our valuations..

Property 2 A consistent renormalisation procedure should produce valuations T1
such that for any connected I with k legs, one has (I1 Del; I') (¢) = (IIT") (tk @) for
all compactly supported test functions ¢ on S¥=1.

(Note that the right hand side is well-defined by Remark 2.2 even though ;¢ is
no longer compactly supported.) To formulate our third property, it will be useful to
have a notation for our test functions. We write &y, for the set of all €°*° functions on
S¥ with compact support. It will be convenient to consider the following subspaces
of Py. Let o be a collection of subsets of {1, ..., k} such that every set A € o
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contains at least two elements. Then, we write legm) C Dy for the set of such

functions ¢ which vanish in a neighbourhood of the set A,(fq) c SF given by
AP —(yeSt:FAedwithy =y Vi,je A 8
P =1y : yi=y; Vi, je€A}. (3)

Because of this definition, we also call a collection o as above a “collision set”.
Note that in particular one has EHZ,E@) = Dg.

A first important question to address then concerns the conditions under which
the expression (4) converges. A natural notion then is that of the degree of a
subgraph of a Feynman diagram. In this article, we define a subgraph I' C T to
be a subset € of the collection 6. of internal edges and a subset U C U, of the
internal vertices such that ¥/ consists precisely of those vertices incident to at least
one edge in €. (In particular, isolated nodes are not allowed in T'.) Given such a
subgraph I', we then set

degfﬁz(iegt(e) +d(V|-1). 9)
ecé

We define the degree of the full Feynman diagram I" in exactly the same way, with
€ and ¥ replaced by €, and %,. One then has the following result initially due
to Weinberg [20]. See also [16, Thm A.3] for the proof of a slightly more general
statement which is also notationally closer to the setting considered here.

Proposition 2.3 [f " is a Feynman diagram with k legs such that deg I > 0 for
every subgraph I' C T, then the integral in (5) is absolutely convergent for every
¢ € Dg. O

We will henceforth call a subgraph I' C T divergent if degT" < 0. A virtually
identical proof actually yields the following refined statement which tells us very
precisely where exactly there is a need for renormalisation.

Proposition 2.4 Let I' be a Feynman diagram with k legs and let 4 be a collision

set such that, for every connected divergent subgraph I' C T', there exists A € d

such that every leg in A is adjacent to T'. Then (5) is absolutely convergent for every
(o)

peD.

Remark 2.5 Here and below we say that an edge e is adjacent to a subgraph rcr
(possibly itself consisting only of a single edge) if e is not an edge of I', but shares
a vertex with such an edge.

Proof Since the main idea will be useful in the general result, we sketch it here.
Note first that we can assume without loss of generality that, for every A € d, the
vertices of 7, to which the legs in A are attached are all distinct, since otherwise (5)
vanishes identically for ¢ € le(ﬂ).

The key remark is that, for every configuration of points x € S7* we can find a
binary tree 7' with leaves given by 7, and a label n, € N for every inner vertex u
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of T in such a way that n is increasing when going from the root to the leaves of T
and, for any v, v € 7, one has

C712™™ < lx, — xpll < C27™ (10)

where u = v A v is the least common ancestor of v and v in T. Here, the constant
C only depends on the size of ¥,. (Simply take for 7' the minimal spanning tree of
the point configuration.) Writing T = (7, n) for this data, we then let Dt C S7 be
the set of configurations giving rise to the data T. By analogy with the construction
of [17], we call Dt a “Hepp sector”.

Remark 2.6 While the type of combinatorial data (7', n) used to index Hepp
sectors is identical to that appearing in “Gallavotti-Nicolo trees” [12, 13] and the
meaning of the index n is similar in both cases, there does not appear to be a direct
analogy between the terms indexed by this data in both cases.

Remark 2.7 Thanks to the tree structure of 7', the quantity dr given by dr (v, v) =
27 ™ ag above is an ultrametric.

Writing n(e) for the value of n,+, with el =e_ A e+, the integrand of (5) is
then bounded by some constant times [, ., 2~n(e)ydegte) [dentifying T with its
set of internal nodes, one can also show that the measure of Dt is bounded by
[T, 27 Finally, by the definition of EHZ,(Cw), there exists a constant No such that
the integrand vanishes on sets D such that sup 4 ny1 > No, where AT is the least
common ancestor in 7 of the collection of elements of 7, incident to the legs in A.
Writing

Ju = {(T,m) : supnyy < No},
Aed

we conclude that (5) is bounded by some constant multiple of

Z ]—[ 27, n=d+ Z 1,1 degt(e) . (11)

TeTy ueT ecé,

We now note that the assumption on o guarantees that, for every node u € T, one
has either Zv>u ny > 0, or there exists some A € o such that u < AT In the
latter case, n,, is bounded from above by No. Furthermore, as a consequence of the
fact that each connected component of I' has at least one leg and the kernels K
are compactly supported, (5) vanishes on all Hepp sectors with some n,, sufficiently
negative. Combining these facts, and performing the sum in (11) “from the leaves
inwards” as in [16, Lem. A.10], it is then straightforward to see that it does indeed
converge, as claimed. O

In other words, Proposition 2.4 tells us that the only region in which the
integrand of (5) diverges in a non-integrable way consists of an arbitrarily small
neighbourhood of those points x for which there exists a divergent subgraph
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r = (°l7, %) such that x, = x, for all vertices u,v € /. 1t is therefore very
natural to impose the following.

Property 3 A consistent renormalisation procedure should produce valuations
IT that agree with (4) for test functions and Feynman diagrams satisfying the
assumptions of Proposition 2.4.

Finally, a natural set of relations of the canonical valuation IT given by (4) which
we would like to retain is those given by integration by parts. In order to formulate
this, it is convenient to introduce the notion of a half-edge. A half-edge is a pair
(e,v) withe € €and v € {e, e_}. Itis said to be incoming if v = e, and outgoing
if v = e_. Given an edge e, we also write e and e_, for the two half-edges (e, e_)
and (e, e4). Given a Feynman diagram I', a half-edge (e, v), and k € N4, we then
write 8("6’1})(‘ for the element of I obtained from I" by replacing the decoration t of
the edge e by t*) and then multiplying the resulting Feynman diagram by (—1)!
if the half-edge (e, v) is outgoing. We then write dJ for the smallest subspace of
9 such that, for every Feynman diagram I', every i € {1, ..., d} and every inner
vertex v € ¥, of I', one has

Y o) T edT (12)

e~v

where e ~ v signifies that the edge e is incident to the vertex v and §; is the ith
canonical element of N?. By integration by parts, it is immediate that if the kernels
K are all smooth, then the canonical valuation (4) satisfies [109 = 0. It is therefore
natural to impose the following.

Property 4 A consistent renormalisation procedure should produce valuations T1
that vanish on 09 .

Setting # = I /0F , we can therefore consider a valuationasamap I1: # — S.
Note that since 99 is an ideal of I which respects its grading, 7 is again a graded
algebra. Furthermore, since 09 is invariant under the action of the symmetric group,
Gy acts naturally on #j. In particular, Property 1 can be formulated in # rather
than 9 and it is not difficult to see that the deletion operation Dely introduced in
Property 2 also makes sense on # . This motivates the following definition.

Definition 2.8 A valuation I[1: # — S is consistent for the kernel assignment K
if it satisfies Properties 1, 2 and 3.

2.2 Some Algebraic Operations on Feynman Diagrams

In order to satisfy Property 3, we will consider valuations that differ from the
canonical one only by counterterms of the same form, but with some of the factors
of (4) corresponding to divergent subgraphs replaced by a suitable derivative of a
delta function, just like what we did in (7).
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These counterterms can again be encoded into Feynman diagrams with the same
number of legs as the original diagram, multiplied by a suitable weight. We are
therefore looking for a procedure which, given a smooth kernel assignment K €
Ko, builds a linear map M K. g _ I such that if we define a “renormalised”
valuation 1€ by

n«r = n¥m*r, (13)

with TTX the canonical valuation given by (4), then K I1X is a renormalisation
procedure which extends continuously to all of X,;". We would furthermore like M K
to differ from the identity only by terms of the form described above, obtained by
contracting divergent subgraphs to a derivative of a delta function.

The procedure (7) is exactly of this form with

0 0
% o—— B o—_ 0 B 1 X
M Lf —Lf Z Ck- ——o, Ck—ﬁ Sx Ki(x)dx .
|k|+deg t<—d
(14)

Note that the condition degt < —d which is required for MX to differ from the
identity is precisely the condition that the subgraph e——e is divergent, which then
guarantees that this example satisfies Property 3.

It is natural to index the constants appearing in the terms of such a renormalisa-
tion map by the corresponding subgraphs that were contracted. These subgraphs
then have no legs anymore, but may require additional decorations describing
the powers of x appearing in the expression for c¢; above. We therefore give the
following definition, where the choice of terminology is chosen to be consistent
with the QFT literature.

Definition 2.9 A vacuum diagram consists of a Feynman diagram I' = (7, §)
with exactly one leg per connected component, endowed additionally with a node
decoration n: %, — N¢. We also impose that each leg has label 5. We say that a
connected vacuum diagram is divergent if degI" < 0, where

degl' = tle)+ Y In()|+d(V| - 1).
ecé Vel

We extend this to arbitrary vacuum diagrams by imposing that deg(I'; e I'2) =
degI'y + degl's.

One should think of a connected vacuum diagram I" as encoding the constant

e [T Koo —xe [T = ™ dx (15)
ST g we,
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where v, is the element of 7, that has the unique leg attached to it. This is then
extended multiplicatively to all vacuum diagrams. In view of this, it is also natural
to ignore the ordering of the legs for vacuum diagrams, and we will always do this
from now on.

Write now J_ for the algebra of all vacuum diagrams such that each connected
component has at least one internal edge and by I_ C J_ for the subalgebra
generated by those diagrams such that each connected components is divergent.
Since we ignored the labelling of legs, the product e turns J_ into a commutative
algebra. Note that if we write ¥ C 9J_ for the ideal generated by all vacuum

diagrams I with degI' > 0, then we have a natural isomorphism
T ~9 /F .

Similarly to above, it is natural to identify vacuum diagrams related to each other
by integration by parts, but also those related by changing the location of the leg(s).
In order to formalise this, we reinterpret a connected vacuum diagram as above as
a Feynman diagram “with 0 legs”, but with one of the vertices being distinguished,
which is of course completely equivalent, and we write it as (I", v,, n). With this
notation, we define dF_ as the smallest ideal of I such that, for every connected
(T, vy, n) one has the following.

e Forevery vertex v € 7 \ {v,} andeveryi € {1, ..., d}, one has
Y @ Tven) + @) (0, v, 0 — §1,) € 0T, (16)

e~v

where 1, denotes the indicator function of {v}.
* One has

Y@, vem) = > n@)i(l, v, n = §1,) € 99, a7

e~k veT

* For every vertex v € U, one has

(T, ve, ) — Z (—1)'"1'(:1)(F,v,n—m—|—Emlv*)6837”_, (18)
m: U —Nd

where Tm = Y, m(u) and we use the convention m! = [, [T, m(u);!
to define the binomial coefficients, with the additional convention that the
coefficient vanishes unless m < n everywhere.

Remark 2.10 One can verify thatif K € H_ and 11X is given by (15), then 39 €
ker ITX . In the case of (16) and (17), this is because the integrand is then a total
derivative with respect to (x,); and (x,,); respectively. In the case of (18), this can
be seen by writing (x,, — x,)" ™) = ((xy — xy) — (xy, — X)) and applying the
multinomial theorem.
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Fig. 2 Example of a

subgraph (shaded) and its
boundary (green) /

—e—> @

L

Remark 2.11 The expressions (16) and (17) are consistent with (12) in the special
case n = (. Considering the case v = v, in (18), it is also straightforward to verify
that (T, vy, n) € 0J_ as soon as n(v,) # 0.

As before, we then write ?/f_ as a shorthand for J. Jg_/ 39 and similarly for #_.
(This is well-defined since 39_ does not mix elements of different degree.) As a
consequence of Remark 2.10, we see that every K € K yields a character X of

%_ and therefore also of F_.

Given a Feynman diagram I' and a subgraph I C T, we can (and will) identify
I with an element of %_, obtained by setting all the node decorations to 0. By (18)
we do not need to specify where we attach leg(s) to I since these elements are all
identified in #%_. We furthermore write dT" for the set of all half-edges adjacent to
I. Figure 2 shows an example of a Feynman diagram with a subgraph I shaded in
grey and aT indicated in green. Legs can also be part of T as is the case in our
example, but they can not be part of I' by our definition of a subgraph. Note also
that the edge joining the two vertices at the top appears as two distinct half-edges in
dT. Given furthermore a map £: ' — N¢ (canonically extended to vanish on all
other half-edges of I"), we then define the following two objects.

A vacuum diagram (I, 7¢) which consists of the graph T' endowed with the
edge decoration inherited from I', as well as the node decoration n = w £ given
by TO() =3, (¢.vyear £(e V).

* AFeynmandiagram I'/ (T, £) obtained by contracting the connected components
of ' to nodes and applying £ to the resulting diagram in the sense that, for edges

e € €\ € adjacent to 9T and with label (in T") given by t, we replace their label
by tEle) (=),

In the example of Fig. 2, where non-zero values of ¢ are indicated by small labels,
we have

1 1@ 7/?\.7
N e
\
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where a label k on an edge means that if it had a decoration t in I', then it now
has a decoration t*). Given a map £: T — N as above, we also write “out £” as
a shorthand for the restriction of £ to outgoing half-edges. With these notations at
hand, we defineamap A: I — H_ @ # by

(_1)|0ut5\ _ _
Ar=3Y" ) (C,70) ®T/(T, 0, (19)

£ - £!
Fcre: oaT—>Nd

where we use the same conventions for factorials as in (18). Note that since the right
hand side is identified with an element of #_ ® ¥, this sum is finite. Indeed, unless
(T, m¢) € I_, which only happens for finitely many choices of ¢, the corresponding
factor is identified with O in #_.

Remark 2.12 For any fixed I' this sum is actually finite since there are only finitely
many subgraphs and since, for large enough ¢, (I', 7€) is no longer in J_.

Remark 2.13 The factor (— 1) °"t!! appearing here encodes the fact that for an edge
e, having (e, u) = k means that in the resulting Feynman diagram I/ (f‘, £), one
would like to replace the factor K¢(x., — x._) by its kth derivative with respect to
xyu, which is precisely what happens when one replaces the corresponding connected
component of I by a derivative of a delta function. In the case when u = e_, namely
when the half-edge is outgoing, this is indeed the same as (—1) Kl (DK K ¢) (x, L —Xe ),
while the factor (—1)'¥ is absent for incoming half-edges.

It turns out that one has the following.
Proposition 2.14 The map A is well-defined as a map from # to #H_ Q K.

Before we start our proof, recall the following version of the Chu-Vandermonde
identity

Lemma 2.15 Given finite sets S, Sandmapsw: S — Sand l: S — N, we define
Tl S = Nby mel(x) =3 crm1) €Y.
Then, for every finite set S and every k: S — N, one has the identity

(=)

where the sum runs over all possible choices of £ such that w0 is fixed. O

Proof (of Proposition 2.14) We first show that for I € J the right hand side of (19)
is well-defined as an element of #_ ® %', which is a priori not obvious since we did
not specify where the legs of (I', £) are attached. Our aim therefore is to show that,
for any fixed L € N, the expression

(_1)|0ut8\ B _
Z /! (C,v, &) @ T/(T, £) (20)
sgoNe
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is independent of v € ¥ in #_ ® #. By Remark 2.11, we can restrict the sum over
£ to those values such that £ vanishes on the set A, of all half-edges incident to v
since (f‘, v,£) = 0 in F_ for those £ for which this is not the case. Fixing some
arbitrary u # v and using (18) as well as Lemma 2.15, we then see that (20) equals

(_1)\0utﬁl+\m| ¢ _ _
> > / < )(r,u,ne—nm+2m1v)®r/(r,z).
¢ af\zAvaNd m: 9T —Nd ' "
¥i=L

Writing k = ¢ — m, we rewrite this expression as

(_1)\0utk|+\0utm\+|m\

> > ot (P u, 7k + Sml,) @ T/ (. k +m) .
k: 9f\Ap—>Nd m: 3T\ Ay—Nd s
Th<L Em=L—Sk

At this stage we note that, as a consequence of (12), we have for every subset A C
T and every M e N the identity

~1 | outm| B -1 |n|+]| outn| B
> ( )' I/ k+m)= ) = ' /(T k+n).
m: n:
m: aT\A—Nd n: A>Nd
Xm=M Yn=M

Inserting this into the above expression and noting that for functions n supported on
A, one has mn = Xnl,, we conclude that it equals

(_1)|outk\+|0utn|

> > il (T u,wk+7n)@T/(T, k+n).
k: aT\Ay—>Nd n: Ay—Nd e
k<L Sn=L—Xk

Setting £ = k+n and noting that k!n! = (k+n)! since k and n have disjoint support,
we see that this is indeed equal to (20) with v replaced by u, as claimed.

It remains to show that A is well-defined on %, namely that At = 0in #H_ @ #
for T € 99. Choose a Feynman diagram I', an inner vertex v € %, an index
i €{l,...,d}, and a subgraph I' C T". Writing A, for the half-edges in I" adjacent
to v and A, for the remaining half-edges adjacent to v (so that A, C dI), it suffices
to show that

_ 1\lout?|
oy VT E @ T/ 0

£!
heA, ZI»E)I:*)Nd
T,0Heg_

__1\|out?] B _
+y Y (12' ([, 7)) ®T/(T, ) =0

2y

heA, t:9T—>Nd
3.y (COET_



An Analyst’s Take on the BPHZ Theorem 443

in #_ x %, where we used the shorthand notation d; (T, £) € J_ for the condition
Bh (T, £) € I_, which is acceptable since this condition does not depend on which
half-edge & one considers. If v is not contained in I', then the second term vanishes
and A, consists exactly of all edges adjacent to v in I'/(T, £), so that the first
term vanishes as well by (12). If v is contained in T, then we attach the leg of
the corresponding connected component I'y of I to v itself, so that in particular the
sum over £ can be restricted to values supported on T \ A,. By (17), the second

term is then equal to

(_1)\0utf| _ _
) C(h)i (T, v, (€ — 8i14)) @ T/(T, €)

= K 2!
hedl o\ A, ¢:aT\Ay—>Nd
3 p(F.0eT_

which can be rewritten as

(— 1)\0util+5hsout _ _
> > (C.v. 70 @ T/(F, £+ 8;1) .

hedlo\Ay z HFaNd
0)eg_

Inserting this into (21), we conclude that this expression equals

_1yloute] ~
oy (12! (F,m6) ® 8)'T/(T, )

hedly ¢ aT—>Nd
(F.0eT_

which vanishes in Z_ ® 7 by (12) since the half-edges in T are precisely all the
half-edges adjacent in I'/(T", £) to the node that I'y was contracted to.

For any element g: #_ — R of the dual of #_, we now have a linear map
Mé&: H — H by

M*T = (g ®id)AT",
which leads to a valuation IT gf 1 # — S by setting

g =1%o M8 (22)
as in (13), with TIX the canonical valuation (4). Note that this is well-defined since
X9 = 0, as already remarked. In particular, we can also view IT g as a map from
J to S.

For any choice of g (depending on the kernel assignment K), such a valuation
then automatically satisfies Properties 3 and 4, since these were encoded in the
definition of the space #, as well as Property 2 since the action of A commutes
with the operation of “amputation of the kth leg” on the subspace on which the
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latter is defined. In general, such a valuation may fail to satisfy Property 1, but if we
restrict ourselves to elements g: #_ — R that are also characters, one has

ME(T| o) = (MET}) o (M8T) .

Since 09 is an ideal, this implies that the valuation I1 gf is multiplicative as a map
from I to §, as required by Property 1. We have therefore shown the following.

Proposition 2.16 For every character g: #_ — R, the valuation Hf is consistent
for K in the sense of Definition 2.8. O

Writing G_ for the space of characters of I_, it is therefore natural to define a
“consistent renormalisation procedure” as a map R : K, — G_ such that the map

K — K = 1K o M2K) (23)

where ITX denotes the canonical valuation given by (4), extends continuously to all
of K, . Our question now turns into the question whether such a map exists.

Remark 2.17 We do certainly not want to impose that R extends continuously
to all of H; since this would then imply that X extends to all of K, which is
obviously false.

2.3 A Hopf Algebra

In this subsection, we address the following point. We have seen that every character
g of 7_ allow us to build a new valuation I, from the canonical valuation IT
associated to a smooth kernel assignment. We can then take a second character A
and build a new valuation IT, o M". It is natural to ask whether this would give us a
genuinely new valuation or whether this valuation is again of the form IT; for some
character g. In other words, does €_ have a group structure, so that g — M$ is a
left action of this group on the space of all valuations? A A

In order to answer this question, we first define amap A™: I_ — #_ ® #_ in
a way very similar to the map A, but taking into account the additional labels n:

(_1)\0ut2| n\ - _ o
ACoven)=> Y 7 ()(F,ﬁ—i—nﬁ)@(F,v*,n—ﬁ)/(r‘,e).

— £ n
r'cr ¢:af—Nd
i: 7 —>Nd

(24)

Here, we define (T, vy, n)/ (f‘, E) similarly to before, with the node-label of the
quotient graph obtained by summing over the labels of all the nodes that get
contracted to the same node. If I' completely contains one (or several) connected
components of I', then this definition could create graphs that contain isolated
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nodes, which is forbidden by our definition of J_. Given (15), it is natural to
identify isolated nodes with vanishing node-label with the empty diagram 1, while
we identify those with non-vanishing node-labels with 0. In particular, it follows
that

At=t1+107+ A1,

where each of the terms appearing in A't is such that both factors contain at least
one edge.

Note the strong similarity with [2, Def. 3.3] which looks formally almost
identical, but with graphs replaced by trees. As before, one then has

Proposition 2.18 The map A~ is well-defined both as a map K — H_ @K and
amapH—- — H_QH_. O

It follows immediately from the definitions that A~ is multiplicative. What is
slightly less obvious is that it also has a nice coassociativity property as follows.

Proposition 2.19 The identities
(A" ®idA =>1d® A)A , (A" idA =>1d AT)A™ (25)

hold between maps B — #H_ @ B @ B for B = H in the case of the first identity
and for B € {F_, #_} in the case of the second one.

Proof We only verify the second identity since the first one is essentially a special
case of the second one. The difference is the presence of legs, which are never part
of the subgraphs appearing in the definition of A, but otherwise play the same role
as a “normal” edge.

Fix now a Feynman diagram I" as well as two subgraphs I'; and I'; with the
property that each connected component of I'; is either contained in I'; or vertex-
disjoint from it. We also write =TI, Ul and I't» = I't N T'p. There is then a
natural bijection between the terms appearing in (A~ ®id) A~ and those appearing in
(id® A7) A~ obtained by noting that first extracting I" from I' and then extracting I'y
from [ is the same as first extracting I'y from I" and then extracting I';/T"1 » from
I'/T'y. It therefore remains to show that the labellings and combinatorial factors
appearing for these terms are also the same. This in turn is a consequence from
a generalisation of the Chu-Vandermonde identity and can be obtained in almost
exactly the same way as [2, Prop. 3.9].

If we write 1 for the empty vacuum diagram and 1* for the element of G_
that vanishes on all non-empty diagrams, then we see that (#_, A~,e,1,1%) is a
bialgebra. Since it also graded (by the number of edges of a diagram) and connected
(the only diagram with 0 edges is the empty one), it is a Hopf algebra so that €_ is
indeed a group with product

fog=E(f®QA,
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and inverse g~! = gdl, where o is the antipode. The first identity in (25) then
implies that the map g — M¢ = (g ® id)A does indeed yield a group action on the
space of valuations, thus answering positively the question asked at the start of this
section.

2.4 Twisted Antipodes and the BPHZ Theorem

An arbitrary character g of #_ is uniquely determined by its value on connected
vacuum diagrams I with degI' < 0. Comparing (14) with (19), this would suggest
that a natural choice of renormalisation procedure % is given by simply setting

R(K)I = -1IXT

as this would indeed reproduce the expression (7). Unfortunately, while this choice
does yield valuations that extend continuously to all kernel assignments in ¥, for
a class of “simple” Feynman diagrams, it fails to do so for all of them.

Following [5, 6], a more sophisticated guess would be to set R(K)I[" = n&yr,
for ol the antipode of #_ endowed with the Hopf algebra structure described in
the previous section. The reason why this identity also fails to do the trick can be
illustrated with the following example. Consider the case d = 1 and two labels with
[tj] = —1/3 and |t;| = —4/3. Drawing edges decorated with t; in black and edges
decorated with t; in blue, we then consider

r=\ .
|

which has degree degI" = 0. Since I'" has only one leg, the naive valuation ITXT
can be identified with the real number

AT = (K * K2 % K1)(0)

where we wrote K; =K ¢, and * denotes convolution. Since this might diverge for a
generic kernel assignment in F;’, even if K is replaced by its renormalised version,
there appears to be no good canonical renormalised value for 15T, so we would
expect to just have nkr =o.

Let’s see what happens instead if we choose the renormalisation procedure
R(K)T = TXAT. It follows from the definition of A that

A[‘=1®.\_TA)/.-|—Q—>0®(;)+.V.®f, (26)
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o—>
since e——e and \./. are the only subgraphs of negative degree, but their degree
remains above —1 so that no node-decorations are added. Note furthermore that in
F_ one has the identities

*«——> *«—> ——>0
Ao—se—e—eR1+1Re—e, Af\./.z \./.®1+1® \./

The reason why there is no additional term analogous to the middle term of (26)
appearing in the second identity is that the corresponding factor would be of positive
degree and therefore vanishes when viewed as an element of #_. As a consequence,
we have it = —t in both cases, so that the first and last terms of (26) cancel out
and we are eventually left with

KT = — (K1 % K1)(0) - K2(0)

which is certainly not desirable since it might diverge as well.

The way out of this conundrum is to define a twisted antipode d: % — H_
which is defined by a relation very similar to that defining the antipode, but this
time guaranteeing that the renormalised valuation vanishes on those diagrams that
encode “potentially diverging constants” as above. Here, the renormalised valuation
is defined by setting

R(K)T = 0Xdr , (27)

where I1X is defined by (15). Writing J( : H_ R H_ — FH_ for the product, we
define sl to be such that

M QiATT =0, (28)

for every non-empty connected vacuum diagram I" € F_ with degI' < 0. At first
sight, this looks exactly like the definition of the antipode. The difference is that the
map A~ in the above expression goes from #_ to #_ ® #_, so that no projection
onto diverging diagrams takes place on the right factor. If we view 7_ as a subspace
of #_, then the antipode satisfies the identity

MARTHAT =0,

where 7_: H_ — F_ is the projection given by quotienting by the ideal ¥,
generated by diagrams with strictly positive degree. We have the following simple
lemma.

Lemma 2.20 There exists a unique map d: H_ — A?/%_ satisfying (28). Further-
more, the map nk given by (23) with R(K) = 11X is indeed a valuation.

BPHZ
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Proof The existence and uniqueness of sl is immediate by performing an induction
over the number of edges. Defining A ®: #_ — kD inductively by A’ @ =
and then

N K+ (A/(k) ® id)A/L ,

where (: %_ — F_ is the canonical injection, one obtains the (locally finite)
Neumann series

d=> (=D a®ON® (29)
k>0

where M® : FEED R is the multiplication operator. The uniqueness also

immediately implies that d is multiplicative, so that R(K) as defined above is
indeed a character for every K € .

Definition 2.21 We call the renormalisation procedure defined by & (K) = MK d
the “BPHZ renormalisation”.

It follows from (29) that in the above example the twisted antipode satisfies

v v i o

so that
o——e ° —
doinar=1e Y —e—en()-Nar+Qe—sar.

which makes it straightforward to verify that indeed Hgﬂzl“ = 0. The following

general statement should make it clear that this is indeed the “correct” way of
renormalising Feynman diagrams.

Proposition 2.22 The BPHZ renormalisation is characterised by the fact that, for
every k > 1 and every connected Feynman diagram I" with k legs and degT" < 0,
there exists a constant C such that if ¢ is a test function on Sk of the form ¢ = ¢p- 91
such that @1 depends only on x1 + ... + xk, @o depends only on the differences of
the x;, and there exists a polynomial P with deg P 4 degI" < 0 and

(pO(xl,---,xk)=P(x2_x1,---,xk_xl), |x|§C7 (30)

then (TIX T)(¢) = 0.

BPHZ

Remark 2.23 One way to interpret this statement is that, once we have defined
X T for test functions in E%,qu) with o = {{1,..., k}}, the canonical way of

BPHZ

extending it to all test functions is to subtract from it the linear combination of
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derivatives of delta functions which has precisely the same effect when testing it
against all polynomials of degree at most —degI'.

Proof The statement follows more or less immediately from the following obser-
vation. Take a valuation of the form 1'[;,( as in (22) for some K € F_, and
some g € G_. Fixing the Feynman diagram I' from the statement, we write
o' = {[1],...,[k]} for its k legs, and we fix a function n: ' — N? with
In| + degI" < 0. Write furthermore n: dI" — N4 for the function such that the
¢th leg has label § (D) We assume without loss of generality that a([1]) = 0
since we can always reduce ourselves to this case by (12).
Let then P be given by

[k]
P(x) = Po(x) = [] i —x"@,

i=[2]

let ¢ be as in (30), and let ¢; be a test function depending only on the sums of the
coordinates and integrating to 1. We then claim that, writing I' C T for the maximal
subgraph where we only discarded the legs and v, for the vertex of I incident to the
first leg, one has

(M) (p) = (:) (g @ IEYA™(T, vy, 7(n — 7)) .

(In particular (I"Ig,< F) (¢) = O unless n < n.) Indeed, comparing (5)—(15), it is clear
that this is the case when g = 1%, noting that
i i n
D;(l2l) .. Dl‘:(”‘])Pn = (_)Pn_n . 3D
n
The general case then follows by comparing the definitions of A and A™, noting
that by (31) the effect of the label n in (24) is exactly the same of that of the
components of £ supported on the “legs” in (19). In other words, when comparing
the two expressions one should set £(h) = £(h) for the half-edges & that are not legs
and n(v) = Y £(e, v), where the sum runs over all legs (if any) adjacent to v.

The claim now follows immediately from the definition of the twisted antipode
and the BPHZ renormalisation:

(ME,T) (@) = <;>(Hfsﬁ ® M5 A (T, v, m(n — )
= (;)HKM(Q&\ ® id)Af(I:‘, v, T(n—0)) =0,

since the degrees of I" and of (T, vy, T(n—1)) agree (and are negative) by definition.
O
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3 Statement and Proof of the Main Theorem

We now have all the definitions in place in order to be able to state the BPHZ
theorem.

Theorem 3.1 The valuation Hﬁ{z is consistent for K and extends continuously to
all K € ;.

By Proposition 2.16, we only need to show the continuity part of the statement.
Before we turn to the proof, we give an explicit formula for the valuation
Hgﬁz instead of the implicit characterisation given by (28). This is nothing but

Zimmermann'’s celebrated “forest formula”.

3.1 Zimmermann’s Forest Formula

So what are these “forests” appearing in the eponymous formula? Given any
Feynman diagram T', the set ‘G of all connected vacuum diagrams [ c I' with
degI’ < 0 is endowed with a natural partial order given by inclusion. A subset
F C G is called a “forest” if any two elements of F are either comparable in 6
or vertex-disjoint as subgraphs of T'.

Given a forest F and a subgraph I e%, we say that [yisachildof Tif Ty <T
and there existsno I'» € F with [} < T» < T Conversely, we then say that T is
I'1’s parent. (The forest structure of & guarantees that its elements have at most one
parent.) An element without children is called a leaf and one without parent a root.
If we connect parents to their children in &, then it does indeed form a forest with
arrows pointing away from the roots and towards the leaves. We henceforth write
Fr for the set of all forests for I

Given a diagram I', we now consider the space Ir generated by all diagrams r
such that each connected component has either at least one leg or a distinguished
vertex v,, but not both. We furthermore endow [ with an N9-valued vertex
decoration n supported on the leg-less components and, most importantly, with a
bijection 7: € — 6 between the edges of I" and those of T, such that legs get
mapped to legs. The operation of discarding t yields a natural injection I
T QT by keeping the components with a distinguished vertex in the first factor
and those with legs in the second factor. (The space Ir itself however is not a tensor
product due to the constraint that t is a bijection, which exchanges information
between the two factors.) We can also define 09T analogously to (12) and (16),
(17), and (18), so that #r = I /9IT naturally injects into % QR .

Given a connected subgraph y C I', we then define a contraction operator 6,
acting on #r in the following way. Given an element (', n) € Ir, we write y for
the subgraph of I such that 7 is a bijection between the edges of y and those of y.
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If y is not connected, then we set G, (f‘, n) = 0. Otherwise, we set as in (24)

R (_1)\0utl7\ n L _ R _ -
G @)= ) 7 1deg(p,n+ng)<o<ﬁ>(%n+n€)-(1“,n—n)/(%e),
é:ay»Nd :
fi: 7 —Nd

(32)

with the obvious bijections between the edges of 7 - r /7 and those of I'. This time
we explicitly include the restriction to terms such that deg(y, i + 7€) < 0, which
replaces the projection to #_ in (24). An important fact is then the following.

Lemma 3.2 Let y1, y» be two subgraphs of T that are vertex-disjoint and let I e
It be such that yy and p are vertex disjoint. Then 6,,6,,I"' = 6,,6,,T. o

We will use the natural convention that ) € F . Forany F € F, we then write
Gz for the element of # defined recursively in the following way. For & = @,
we set BpI" = I'. For non-empty %, we write o(%) C F for the set of roots of F
and we set recursively

Gz = Bz\o(7) l_[ €,I .
yee(F)

The order of the product doesn’t matter by Lemma 3.2, since the roots of % are
all vertex-disjoint. With these notations at hand, Zimmermann’s forest formula [21]
then reads

Proposition 3.3 The BPHZ renormalisation procedure is given by the identity

(ol ®@id)Al = RTZ Y (—1)FlEgT (33)
?ie%l?

where we implicitly use the injection Hr — H_ ® F for the right hand side.

Proof This follows from the representation (29). Another way of seeing it is to first
note that R is indeed of the form (% ® id) AT for some B : #H_ — %_ and to then
make use of the characterisation (28) of the twisted antipode sl. This implies that
it suffices to show that RI" = 0 for every connected I" with a distinguished vertex
and a node-labelling such that degI" < 0.

The idea is to observe that F. can be partitioned into two disjoint sets that are
in bijection with each other: those that contain I" itself and the complement SAFF of
those forest that don’t. Furthermore, it follows from the definition that ‘6rI" = T,
so that

Y —DFlegr = Y (—)F (G5 — Gy = Y (DT (65D —6zD) .
FeFr ?ie@lf %e?}’r’

which vanishes thus completing the proof. O



452 M. Hairer

In order to analyse (33), it will be very convenient to have ways of resumming its
terms in order to make cancellations more explicit. These resummations are based
on the following trivial identity. Given a finite set A and operators X; withi € A,
one has

[[Jad-xn=> D] x,. (34)

icA BCA jeB

provided that the order in which the operators are composed is the same in each
term and that the empty product is interpreted as the identity. The right hand side
of this expression is clearly reminiscent of (33) while the left hand side encodes
cancellations if the X; are close to the identity in some sense. If G- itself happens
to be a forest, then F consists simply of all subsets of 6=, so that one can indeed
write

(d ® id)AT = PR T (35)
where Rz I is defined by R I" = I' and then via the recursion

Rl = Rg\o@ || (d—6,)r. (36)
v€o(F)

In general however this is not the case, and this is precisely the problem of
“overlapping divergences”. In order to deal with this, we introduce the following
variant of (35) which still works in the general case. To formulate it, we introduce
the notion of a “forest interval” M for I' which is a subset of & of the form
[M, M] in the sense that it consists precisely of all those forests F € F such that
M C & C M. An alternative description of M is that there is a forest 6 (M) = M\ M
disjoint from M and such that M consists of all forests of the type M U & with
F C §(M). Given a forest interval, we define an operation Ry which renormalises
all subgraphs in § (M) and contracts those subgraphs in M. In other words, we set

Rm = %M, where E’RI%AI is defined recursively by

Rl =2 P T[] €r. <
y€o(F)

. !id—%y if y e (M),
‘=

—%6, otherwise.

This definition is consistent with (36) in the sense that one has Rg = Ry for
M = [@, F]. Combining Proposition 3.3 with (34), we then obtain the following
alternative characterisation of our renormalisation map.

Lemma 3.4 Let I be a Feynman diagram and let & be a partition of . consisting
of forest intervals. Then, one has the identity (&@ QIDAT = e Rml O
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3.2 Proof of the BPHZ Theorem, Theorem 3.1

We now have all the ingredients in place to prove Theorem 3.1. We only need to
show that for every (connected) Feynman diagram I there are constants Cr and Nr
such that for every test function ¢ with compact support in the ball of radius 1 one
has the bound

(X, D) @] < Cr [ 1Kuelne sup 1DP ]|z, (37)
vc Ik|<Nr

where |K¢|y denotes the smallest constant C such that (2) holds for all |k| < N.
The proof of (37) follows the same lines as that of the main result in [3], but with
a number of considerable simplifications:

* There is no “positive renormalisation” in the present context so that we do not
need to worry about overlaps between positive and negative renormalisations. As
a consequence, we also do not make any claim on the behaviour of (37) when
rescaling the test function. In general, it is false that (37) obeys the naive power-
counting when ¢ is replaced by ¢* and A — 0 as in [16, Lem. A.7].

* The BPHZ renormalisation procedure studied in the present article is directly
formulated at the level of graphs. In [2, 3] on the other hand, it is formulated at
the level of trees (which are the objects indexing a suitable family of stochastic
processes) and then has to be translated into a renormalisation procedure on
graphs which, depending on how trees are glued together in order to form these
graphs, creates additional “useless” terms.

* We only consider kernels with a single argument, corresponding to “normal”
edges in our graphs, while [3] deals with non-Gaussian processes which then
gives rise to Feynman diagrams containing some “multiedges”.

We therefore only give an overview of the main steps, but we hope that the style
of our exposition is such that the interested reader will find it possible to fill in the
missing details without undue effort.

As in the proof of Proposition 2.4, we break the domain of integration into Hepp
sectors Dt and we estimate terms separately on each sector. The main trick is then
to resum the terms as in Lemma 3.4, but by using a partition % that is adapted to the
Hepp sector T in such a way that the occurrences of (id — 6,,) create cancellations
that are useful on Dr.

In order to formulate this, it is convenient to write all the terms appearing in
the definition of TIX T as integrals over the same set of variables. For this, we
henceforth fix a connected Feynman diagram I" once and for all, together with an
arbitrary total order for its vertices.

We then define the space Ir generated by connected Feynman diagrams I” with
edges and vertices in bijection with those of I' via a map 7: (€,7) — (§,%),
together with a vertex labelling n, as well as a map d: € — N which vanishes on all
legs of I". The goal of this map is to allow us to keep track on which parts of I were
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contracted, as well as the structure of nested contractions: 0 measures how “deep”
a given edge lies within nested contractions. In particular, it is natural to impose
that ® vanishes on legs since they are never contracted. We furthermore impose that
for every j > 0, every connected component 7 of 97! () has the following two
properties.

* The highest vertex v,(y) of y has an incident edge e with d(e¢) < j. (Here,
“highest” refers to the total order we fixed on vertices of I', which is transported
to I by the bijection between vertices of I and I".)

* All edges e incident to a vertex of p other than v, (y) satisfy 0(e) > j.

Writing 9/ C ¥/ for those vertices v with at least one edge e incident to v such
that 9(e) > 0, we also impose that n(v) = 0 forv ¢ €. We view I itself as an
element of I1 by setting 0 = 0. Note that this data defines a map v — v, from
W€ to V¢ such that v > v,(p) for  the connected component of 97! (/) with the
lowest possible value of j containing v. A .

For y C I as above, we then define maps ‘6, on I similarly to (32). This time

however, we set %y " = 0 unless the following conditions are met.

s The graph t~!(y) C T is connected.
+ For every edge ¢ adjacent to 7! (y), one has d(e) < inf, _¢ 0(e).

We also restrict the sum over labels ¢ supported on edges with 9(e) = inf;_g 0(e).

In order to remain in 9;}, instead of extracting y = 1 (y), we reconnect the edges
of ' adjacent to 7 to the highest vertex 0 of y and we increase d(e) by 1 on all
edges e of y. We similarly define elements R as above with every instance of
6, replaced by €,. We also view I' itself as an element of I by setting both 0 and
nto 0.

Let us illustrate this by taking for I" the diagram of Fig. 2 and for y the triangle
shaded in grey. In this case, assuming that the order on our vertices is such that
the first vertex is the leftmost one and that the degree of y is above —1 so that no

node-decorations are needed, we have
— o
o .\ / \

with 9(v) equal to 1 in the shaded region of the diagram on the right. The green node
then denotes the element v, for all the nodes v in that region. This time, it follows
in virtually the same way as the proof of Proposition 2.19 that if y; and y; are either
vertex disjoint or such that one is included in the other, then the operators 6,, and
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~

6,, commute. In particular, we can simply write

Gl = ( [T Ga-%n[] (—%y))r , (38)

yes(M) yeM

without having to worry about the order of the operations as in (36).
For every K € H_, and every test function ¢, we then have a linear map

WK : Ir — €°(S™) given by
(WHT) (x) = l_[ Ki(e)(Xr(ey) = Xz(eo)) l_[ (e () = Xe ()"
ec8, veTl
14 13
X (Dll e Dkk(p)(xUl’ ceey 'ka) 5
where 7: % U€ — ¥ U %€ is the bijection between edges and vertices of ' and
those of I', v; are the vertices to which the k legs of I" are attached, and ¢; are the

corresponding multiindices as in (5). With this notation, our definitions show that,
for every partition 9 of . into forest intervals, one has

( BPHZ ((/)) Z / WK%MF) ()C) dx .

MeP

We bound this rather brutally by

|( BPHZ ((P)| Z Z / CWK%MF (x)|dx

T MePr (39)
< Z Z sup | WKE’RMI‘ (x)| l_[2_d“” i
T Megp*<0T ueT

At this stage, we would like to make a smart choice for the partition Pt which
allows us to obtain a summable bound for this E:xpression. In order to do this, we
would like to guarantee that a cancellation (id — 6, ) appears for all of the subgraphs
y that are such that the length of all adjacent edges (as measured by the quantity
|Xz(e,) — Xr(e_)l) is much greater than the diameter of y (measured in the same
way).

In order to achieve this, we first note that by Proposition 3.11 and (56) below,
we can restrict ourselves in (39) to the case where P is a partition of the subset
@71? C Fr of all forests containing only subgraphs that are full in I". (Recall that
a subgraph y C TI' is full in T if it is induced by a subset of the vertices of I' in
the sense that it consists of all edges of I connecting two vertices of the subset in
question.) We then consider the following construction. For any forest F € Fr,
write Rz I" for the Feynman diagram obtained by performing the contractions of
G%I". (So that €T is a linear combination of terms obtained from K% I" by adding
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node-labels n and the corresponding derivatives on incident edges.) As above, write
7 for the corresponding bijection between edges and vertices of R I" and those
of I'. Given a Hepp sector T = (7, n) for I and an edge e of I', we then write
scale% (e) = n(v,), where v, = T(t 7 (e)_) A t(r ! (e)4) is the common ancestor
in T of the two vertices incident to e, but when viewed as an edge of RxI". (Since
we only consider forests consisting of full subgraphs, T~ (e)_ and T~ '(e), are
distinct, so this is well-defined.) Given y € &, we then set

int% (y) = inf scale% (e), ext%(y) = sup scale% (e),
ecy ecd8F
Y

where %“* denotes the edges belonging to y, but not to any of the children of y in
whlle 8% denotes the edges adjacent to y and belonging to the parent d(y) of

y in &F (w1th the convention that if y has no parent, then d(y) = I'). With these
notations, we then make the following definition.

Definition 3.5 Fix a Hepp sector T. Given a forest ¥ € ?;71? , we say that y € F is
safe in F if exL% (y) = int%(y) and that it is unsafe in F otherwise. Given a forest
F and a subgraph y € 6., we say that y is safe/unsafe for F if F U {y} € ?;71? and
y is safe/unsafe in % U {y}. Finally, we say that a forest % is safe if every y € % is
safe in %

The following remark is then crucial.

Lemma 3.6 Let F; € ?;71? be a safe forest and write F, for the collection of all
y € G that are unsafe for Fs. Then, one has F;UF, € EAFIT and furthermore every
y in Fs/F, is safe/unsafe in F; U F,.

Proof Fix F; and write again t for the corresponding bijection between edges and
vertices of Rz, I" and those of I'. For each y € %, write °l/ygs C V for the set of

vertices of the form 7(r~!(e)+) fore € %35, as well as vi’c;, € Wygs for the highest
one of these vertices. (This is the vertex that edges outside of y were reconnected

to by the operation Rz, .) We also write 8°Vy% C Y for all vertices of the form
7(t!(e)4) fore € 3%8;7“ that are not in Wyy‘.

With this notation, int?l? y) = n((ﬂ/ygS)T) and there exists a vertex w € 8'“7/],%
for d(y) the parent of y in &, (with the convention as above) such that ext,% (y) =

n(v?fy A w). Since both (°V);%)T and v?}, A w lie on the path connecting the root
of T to v, y, it follows from the definition of a safe forest that one necessarily has

vy Aw > (571,

Let now y € 65 \ % be such that F U {y} € ?;71? and set 7; = CV);%U{;?} as
well as 07; = 3°V)7%U{)7}. It follows from the definitions that y € %, if and only
if none of the descendants of '“7/)7T in T belongs to 37}. As a consequence of this

characterisation, any two graphs yi, y» € %, are either vertex-disjoint, or one of
them is included in the other one. Indeed, assume by contradiction that neither is
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included in the other one and that their intersection y contains at least one vertex.
Writing pn for one of the connected components of yn, there exist edges e; in y;
that are adjacent to yn: otherwise, since the y; are connected, one of them would
be contained in yn. Write v; for the vertex of ¢; that does not belong to . Such a
vertex exists since otherwise it would not be the case that pn is full in y T = sl(y)) =
d(y2). Since y; is unsafe, it follows that v3 is not a descendent of (7}, U {vih?,
so that in particular, for every vertex v € Pn, one has vy A v > v2 A v. The same
argument with the roles of y; and y», reversed then leads to a contradiction.

This shows that &, U &, is indeed again a forest so that it remains to show
the last statement. We will show a slightly stronger statement namely that, given an
arbitrary forest %, the property of y € & being safe or unsafe does not change under
the operation of adding to % a graph y that is unsafe for %. Given the definitions,
there are three potential cases that could affect the “safety” of y: either y C vy,
ory C y,ory C d(y) and there exists an edge e adjacent to both y and y. We
consider these three cases separately and we write F = F U {7}.

In the case y C y, it follows from the ultrametric property and the fact that y is

unsafe that intr% (y) = int,% (y) whence the desired property follows. In the case y C
y,itis ext,% (y) which could potentially change since 8%3 becomes smaller when
adding y. Note however that by the ultrametric property, combine_d with the fact that
y is unsafe, the edges e in 3%;"5 \ 8%},@ satisty scale% (e) = scale% (e). Furthermore,
again as a consequence of y being unsafe, one has scale% (e) < scale% (e) for every
edge e in y which is not in y, so in particular for e € 8%3 . This shows again that

exL% (y) = exL% (y) as required. The last case can be dealt with in a very similar
way, thus concluding the proof. O

As a corollary of the proof, we see that the definition of the notion of “safe forest”
as well as the construction of %, given a safe forest % only depend on the topology
of the tree 7" and not on the specific scale assignment n. It also follows that, given
an arbitrary F € ?;71? , there exists a unique way of writing % = %; U %, with
F, a safe forest and F, being unsafe for F; (and equivalently for %). In particular,
writing GJ«IES) (T) for the collection of safe forests for the tree T, the collection Pt =
{IFs, FsUF,] : F € SFES)(T)} where, for any %, the forest F, is defined as in
Lemma 3.6, forms a partition of ?;71? into forest intervals. It then follows from (39)
that

|(HBI§HZF)((/))| = Z Z Z sup |(°M/KE§{[%’%U%]F)(X)| l_[ g—dny ’

xeD
T c}secjr(f)(T) n T veT

where n runs over all monotone integer labels for 7 and the construction of %,
given & and T is as above. We note that the first two sums are finite, so that as in
the proof of Proposition 2.4 it is sufficient, for any given choice of T and safe forest
Fs, to find a collection real-valued function {7n;};c; (for some finite index set /) on
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the interior vertices of 7' such that

> sup [(WERg, g D) [27™ <Y Y [[2™. @0

n Y€Dr veT iel n veT

and such that

doniw)=0, YveT, Viel, 41)

w>v

which then guarantees that the above expression converges.

Before we turn to the construction of the n;, let us examine in a bit more detail
the structure of the graph RxI" = (74, €%). Writing 7 for the bijection between
Azl and ', every y € & yields a subgraph R(y) = (7, €,) of Kz whose
edge set is given by the preimage under 7 of the edge set of y \ | B(y), where
‘6 (y) denotes the set of all children of y in %. Furthermore, £(y) is connected by
exactly one vertex to R(y), for y € 6(y) U {d(y)}, and it is disconnected from
R(y) for all other elements y € F. This is also the case if y is a root of &, so that
d(y) = T by our usual convention, if we set R(I") to be the preimage in K[ of
the complement of all roots of %. We henceforth write v, () for the unique vertex
connecting K(y) to K((y)) and we write °I/y* = 7, \ {v«(y)}, so that one has a
partition U5 = T U], e 7"

In this way, the tree structure of & is reflected in the topology of &I, as
illustrated in Fig. 3, where each £(y) is stylised by a coloured shape, with parents
having lighter shades than their children and connecting vertices drawn in red.
Recall that we also fixed a total order on the vertices of I' (and therefore those
of f%I") and that the construction of £%I" implies that the corresponding order
on {v.(¥)}yex is compatible with the partial order on & given by inclusion. For
e € &z, write M, C {4, —} for those ends such that t(e)s # T(e,) for ¢ € M, and
set

€5 ={(e,0) 1 e c €y, o€ M} .

Then, by the construction of R I, for every e € M, there exists a unique y,(e) € F
and vertex e, € ¥ such that

te = 0u(Ve(€)), e =T 1 (T(e)s) € Whute), €€ Bugpiey - (42)

Fig. 3 Structure of Rz I’
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Given £: €5 — N9, we then define a canonical basis element QbéF € er by
DET = (AgT, 4O, 0) |

where t) is the edge-labelling given by tO(e) = t(t(e)) + Y,y Lle. 0,
with t the original edge-labelling of I', and m¢ is the node-labelling given by
7l(w) = Y {l(e,8) : e, = v}. Given y € F and ¢ as above, we also set
y) =2 {l€Ce, ®)| : yale) = ¥}

We now return to the bound (40) and first consider the special case when F; is a
safe forest such that %, = . By (32) and (38), R, I" can then be written as

A~ _1)£out
IEENEY ( ¢
Rg, T = (—1) > o 25T (43)
L: %‘5.73 —Nd
where Loyt = D {|¢(e,®)| : o = —} and the sum in (43) is restricted to those

choices of ¢ such that, for every y € %, one hasdegy + £(y) < 0.

In this case, we take as the index set I appearing in (41) all those functions ¢
appearing in the sum (43) (recall that the sum is restricted to finitely many such
functions) and we set

new)=d+ Y tO@1a@+ D (L@@,

ecEy, (e,o)E‘r“o’%Y

where, for e € €4, e? denotes the node of T given by t(e_) A t(e4) and, for
(e, o) € %o;;s, (e, o) denotes the node 7 (e5) A T(es).

It follows from the definition of W X that this choice does indeed satisfy (40).
We now claim that as a consequence of the fact that % is such that &, = @, it
also satisfies (41). Assume by contradiction that there exists a node u# of T and a
labelling ¢ such that a= Zv>u ne(v) < 0. Write Uy C Vs, for the vertices v such
that 7(v) > uin T and Ty = (€y, ) C Rz I for the corresponding subgraph. In
general, 'y does not need to be connected, so we write I‘(()') = (%8(’), °V0(l)) for its
connected components. We then set

aZ T =14+ Y @+ Y @I, 0

ecl) (e.0)€s,

so that Zi a; < a, with equality if 'y happens to be connected. Since a < 0, there
exists i such that ¢; < 0. Furthermore, i can be chosen such that |°V0(i)| > 2, since
|| = 2 and we would otherwise have a = |7p| — 1 > 1.

Set U, = T NV, and let %(i) C %F; U {I'} be the subtree consisting of those

y such that either €, N %(()i) # Poru(y) e °I/O(i) (or both). We also break a; into
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contributions coming from each y € J«( ) by setting

aiy= Tyl =1+ ) 9@+ 3 Luo=lt@, 0. “4)
ec€,NE (e,o)e%;x

We claim that Z ai,, = a;: recalling that one always has I" € J(’) by definition,

the only part which is not immediate is that Z (Tl =1 = |°V(’)| 1. This is
a consequence of the fact that in the sum Z |°V0 y |, each “connecting vertex” is

counted double. Since ?Ig( Disa tree, the number of these equals |J( )| — 1, whence
the claim follows.

We introduce the following terminology. An element y € %, U {I'} is said to be
“full” if 8, NE = E,, “empty” if €, NG = ¢, and “normal” otherwise. We
also set a; , = O for all empty y with % , = . Recall furthermore the definition
of degy for y € F; given in (9) and the definition of £(y) given above. With this
terminology, we then have the following.

Lemma 3.7 A full subgraph y cannot have an empty parent and one has

aiy =degy +L(y)— Y (degy +L(7) ify isfull,
7€6(y)

aj, =0 if y is empty, (45)

aiy>— Y (degy +L(7)) if  is normal,
YE€BL(Y)

where 6,(y) consists of those children y of y such that v.(y) € °I/O(i).

Before we proceed to prove Lemma 3.7, let us see how this leads to a
contradiction. By (43), one has degy + £(y) < 0 for every y € %, and a fortiori
degy < 0. Furthermore, since |°VO(')| > 2, there exists at least one subgraph y which
is either full or normal. Since full subgraphs can only have parents that are either full
or normal and since I" itself cannot be full (since legs are never contained in %(()')),
we have at least one normal subgraph. Since each of the negative terms deg y +£(y)
appearing in the right hand side of the bound of a; ,, for y full is compensated by a
corresponding term in its parent, and since we use the strict inequality appearing for
normal y at least once, we conclude that one has indeed Zy a;,, > 0 as required.

Proof of Lemma 3.7 Let us first show that the bounds (45) hold. If y is empty, one
has either y & GJ«S(’.) in which case 7, = ¢ and a;,,, = 0 by definition, or 7 , =
vx(y) in which case a; , = 0 by (44). If y is full, then it follows immediately from
the definition of degy that one would have a;, = degy — Z};EC@(V) degy if it
weren’t for the presence of the labels £. If y is full then, whenever (e, o) is such
that y,(e) = y, one also has {e,, ¢,} C °l/0(') by (42) and the definition of being
full. Similarly, one has e € €, N €y whenever y.(e) € G(y). The first identity in
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(45) then follows from the fact that each edge with y,(e) = y contributes |£(e)| to
the last term in (44) while each edge with y.(e) € 6(y) contributes —|£(e)| to the
penultimate term.

Regarding the last identity in (45), given a normal subgraph y, write p for the
subgraph of I with edge set given by

=1, ngHU | 0. (46)
YE€BL(Y)

In exactly the same way as for a full subgraph, one then has a;, > degy —
Z? €B.(y) (degy + €(y)). The reason why this is an inequality and not an equality
is that we may have additional positive contributions coming from those £(e) with
¥m(e) = y and such thate, € '“7/0(’), while we do not have any negative contributions

from those £(e) with y,,(e) € B.(y) bute & %(()'). The claim then follows from the
fact that one necessarily has degy > 0 by the assumption that %, = . Indeed,
it follows from its definition and the construction of the Hepp sector 7' that the
subgraph I'y satisfies that scale? (e) > scale? (e) for every edge e € €y and every
edge e adjacent to 'y in Rg; T, so that one would have y € %, otherwise.

It remains to show that if y is a full subgraph, then it cannot have empty parents.
This follows in essentially the same way as above, noting that if it were the case that
y has an empty parent, then it would be unsafe in %, in direct contradiction with
the fact that &, is a safe forest. m]

In order to complete the proof of Theorem 3.1, it remains to consider the general
case when &, # (. In this case, setting M = [F;, F; U F, ], we have

A - (—1)ton & ot
Gl = (DT Y ([Taa-@n)atr. @

|
l: %;‘lv —Nd VEF,

with the sum over ¢ restricted in the same ways as before. Again, we bound each
term in this sum separately, so that our index set I consists again of the subset of
functions ¢ : %’” — N? such that deg y + £(y) < 0 for every y € %, but this time
each of these summands is still comprised of several terms generated by the action
of the operators %y for the “unsafe” graphs y.

For any y € %,, we define a subgraph R(y) of K% I' as before, with the children
of y being those in F; U{y} not in all of F; UF, . The definition of y being “unsafe”
then guarantees that there exists a vertex y1in T such that (V) =veT :v=>
y1}. We furthermore define

Y =suple! : e e Eay) & e~ Ry},

with “~” meaning “adjacent to”, which is well-defined since all of the elements
appearing under the sup lie on the path joining ¥ ' to the root of 7. In particular,
one has y1 > y™. We also set N(y) = 1 + |—degy| with the convention that
N(y) =0fory ¢ %,.
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We claim that this time, if we set

nw=d+ Y 9O+ Y @I, @+ Y No) (1,1 =15 @)

ey, e€By =

(4%)

then 1, does indeed satisfy the required properties, which then concludes the proof.
As before, we assume by contradiction that there is u such thata = sz LNe(@) =0

and we define, for each connected component F(()i) of Iy,

def o r (D)) ) ) )
a1 -1+ Y O+ Y COI Bp—r > N g, rin g

ee%éw ee‘&% V€T

It is less obvious than before to see that Y a; < a because of the presence of the
last term. Given y € %,, there are two possibilities regarding the corresponding
term in (48). If yT < u in T, then it does not contribute to a at all. Otherwise,
77 1(y) is included in Ty and we distinguish two cases. In the first case, one has
R(y) = R(A(y)) N To. In this case, since the inclusion y C A(y) is strict, there
is at least one edge in R(sd(y)) adjacent to K(y). Since this edge is also adjacent to
Io, it follows that in this case yTT < u so that we have indeed a contribution N (y)
to a. In the remaining case, the corresponding term may or may not contribute to a,
but if it does, then its contribution is necessarily positive, so we can discard it and
still have Y a; < a as required.
As before, we then write a; = Zye?ﬁ”) ay,; with

aiy =Tyl -1+ > 9@+ Y L=y lE@1, , | o0

ec®, Ny ccEn

+ ) N rOna) - (49)
VE€Fu

We claim that the statement of Lemma 3.7 still holds in this case. Indeed, the only
case that requires a slightly different argument is that when y is “normal”. In this
case, defining again y as in (46), we have

aiy >degp +NP)— D (degy + £(7))
YEB(Y)

since the last term in (49) contributes precisely when y € %, and then only the term
with ¥ = 7 is selected by the indicator function. The remainder of the argument,
including the fact that this then yields a contradiction with the assumption that a <
0, is then identical to before since one always has degy + N(7) > 0.

In order to complete the proof of our main theorem, it thus remains to show that
the choice of ny given in (48) allows to bound from above the contribution of the
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Hepp sector indexed by 7', in the sense that the bound (40) holds. The only non-
trivial part of this is the presence of a term

N)(1,1 @) — 1,41 (w))
for each factor of (1 — %y) in (47). This will be a consequence of the following

bound.

Lemma 3.8 Let K;: S — R be kernels satisfying the bound (2) with degt =
—a; < O0fori € I with I a finite index set, and write I, = I U {x}. Let furthermore
Xi,yi € Ssuchthat |x; —xj| <8 < A < |x; —yjlforalli,j € I, andlet N > 0
be an integer. Then, one has the bound

H_[ Kitxi—y)— Y 61' [ i —x0% (DY Ki) (e — yi)

iel [L|<N " iel
SONATN Tl —xil ™™
iel

(50)

Proof The proof is a straightforward application of Taylor’s theorem to the function
X ]_[iel K (x;) defined on S’. For example, the version given in [14, Prop. A.1]
shows that for every Z: 1 — N9 with |£7 | = N, there exist measures @; on S’ with
total varlatlon o ]_[ | (x; — x*)e'l < 8" and support in the ball of radius K8 around
(Kay oo ey X) (for some K depending only on |/| and d) such that

[TKiwi-w- 3, ]‘[(x,—x& DY K;)(x, — yi) (51)

iel \Z\<N Tiel
= / [T(P% k)i — y) @ptdz)
W—N iel

If A > (K + 1)§, then the claim follows at once from the fact that

(DY Ki) i — y)| S Jei — vl 7160 A1l — e

If A < (K + 1)§ on the other hand, each term in the left hand side of (50) already
satisfies the required bound individually.

It now remains to note that each occurence of (1 — %y) in (47) produces precisely
one factor of the type considered in Lemma 3.8, with the set / consisting of the
edges in 9(y) adjacent to y, § = 2700') and A = 272" The additional factor
SN AN produced in this way precisely corresponds to the additional term
N (y)(lyT(u) — lym (u)) in our definition of 7. The only potential problem that
could arise is when some edges are involved in the renormalisation of more than
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one different subgraph. The explicit formula (51) however shows that this is not a
problem. The proof of Theorem 3.1 is complete.

3.3 Properties of the BPHZ Valuation

In this section, we collect a few properties of the BPHZ valuation T1X .

formulate the main tool for this, we first introduce a “gluing operator” &: g -

J_ such that 8T is the connected vacuum diagram obtained by identifying all the
marked vertices of I, for example

In order to

@ (.'\—.‘?0. C.) _ .'\—.‘?.s ’

where the marked vertices are indicated in green. It follows from the definition (15)
that the linear map ITX satisfies the identity

n&sr =nke, TeI. (52)

We claim that the same also holds for TT1X sﬁn, where 77 : I — F_ is the canonical
projection.

Lemma 3.9 One has NXdin &t = N8dn< forallt € I-.

Proof By induction on the number of connected components and since TTX gl and
m are all multiplicative, it suffices to show that, for every element t of the form
T = y1y2 where the y; are connected and non-empty, one has the identity

n&drer = Hf&inyl . Hf&ﬁnyz = Hf(&anyl ~9§ny2) .

In particular, one has ITX dt = 0 for every T with degt < 0 of the form &(y1)2),
as soon as one of the factors has strictly positive degree.

We will use the fact that, as a consequence of (28) combined with the definition
of A7, one has for connected o = (I, v, n) with dego < 0 the identity

do=—-0— 3 UM @id)Xpo (53)
rcr
.1y

where we made use of the operators
(_1)|0ute_\ n\ - _ _ _ o
Xro = _ I, n £ ve,n—n)/(T,¢
o= 2 5 () Eeitrhe T )/(F. )

l: i)lfﬁNd
i 7 —>Nd
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and * denotes some arbitrary choice of distinguished vertex. (Here, X stands for
“extract”.) Note that the nonvanishing terms in (53) are always such that the degree
of I' (not counting node-decorations) is negative.

The proof of the lemma now goes by induction on the number of edges of T =
y1y2. In the base case, each of the y; has one edge and there are two non-trivial
cases. In the first case, degy; < 0 for both values of i. In this case, it follows
from the above formula that, since v, is the vertex in &t at which both edges are
connected and since o ¥1 = —¥i, one has

AGT = —B7 + 21 ,

so that the claim follows from (52), combined with the fact that dn ¥i = —V;.Inthe
second case, one has degy; < 0 and degy» > 0, but degy; + degy> < 0 so that
w®1 = Bt In this case, the only subgraph of &t of negative degree is yy, so that

ﬁ@r:—@t%—r,

thus yielding ITX dGT =0 as required.

We now write I" for the graph associated to &7 and I'; C I' for the subgraphs
associated to each of the factors y;. Writing Ur for the set of all non-empty proper
subgraphs of I', we then have a natural bijection

Ur =Ur, u{yuly : yreUrJuUr, U{y2ul’y : 2 € Ur,}
U{y1Uyp @ 1 € Ury, 2 € Ur,yu{l, Ta}. (54)

Take now an element of the form y; U ' from the first set above. As before, there
are no edges in I" adjacent to I'; other than those incident to v,. Furthermore, y; LIT">
has strictly less edges than I, so we can apply our induction hypothesis, yielding

X n ® id)Xy,ur, &t = X M (drl,, ® id)%7, 11
=X (dry, - (s @ id) L7, 1)
where L, : y > G&(y - y2). In a similar way, we obtain the identities
nXu(sin @ idxy &t = X (yy - M (sdr @ id)Xj 1)
X (s ® id)Xy,05 6t = X (M (6r @ id) Xy - M(sdr @ id)Xz,72) |
X (sdn ® id)Xy, &t = 1K (2 - dryr) |



466 M. Hairer

as well as the corresponding identities with 1 and 2 exchanged. Inserting these
identities into (53) (with the sum broken up according to (54)), we obtain

NEder = -nfér — Y 0X((n +dry,) - M(sn @ id)Xy, 1)
71€UN,

= > 08 + ) - sl @ id)Xy, 7))
72€Ur,

- > ) mf (s ®id)Xy, i - (s & id)Ly, y2)
Y1€Ur; 26U,

— Hlf(yz . &anyl) — 1'[5(7/1 -&anyz) .

At this stage, we differentiate again between the case in which degy; < 0 for both
i and the case in which one of the two has positive degree. (The case in which both
have positive degree is again trivial.) In the former case, wy; = y; and one has

2+ 9@71)/2 =— Z Ml ® )Xy, .

72€Ur,

In particular, the second and third terms are the same as the fourth, but with opposite
sign and one has

nfder= Y > of(uEn @ id)Zy i - Ml @ id)Xy, 1)
71€Ur, 2eUr,
— T8 y) = K (o - sdyn) — K (31 - )
=5 ((dy1 + ) - (dya + 1)
— 0501 - y) =I5 (2 - ) — X (y1 - )
=X (sly, - sllys)

as claimed. Consider now the case degy; > 0. Then, the two terms containing
gy vanish and we obtain similarly

MEder = —m¥ér — Y 08y - di6dr @ id)Xz, 1) — X (v - sly)
71€UN,

=-8@ )+ 05 - (dys + y)) — X (n ~&@V2) =0,

as claimed, thus concluding the proof. O
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As a consequence of this result, we have the following. Recall that SIEC)

is the space of translation invariant compactly supported (modulo translations)
distributions in k variables. Given x € Sk, y e S¢, we also write x Ly =
X1y oo s Xk Y1y - o5 V) € Sk+¢. For any k,¢ > 1, we then have a bilinear
“convolution operator’” : 8,5") X Sé") — 8,53213_2 obtained by setting

(n*g)(xl_ly)=/Sn(xl_|z)§(zl_|y)dz, xeS yestt,

whenever n and ¢ are represented by continuous functions. It is straightforward to
see that this extends continuously to all of S,EC) X Séc), and that it coincides with the
usual convolution in the special case k = £ = 2.

Similarly, we have a convolution operator x: #j x #; — #j4¢—> obtained in
the following way. Let I' € J; and I' € J; be Feynman diagrams such that the
label of the kth leg of I" and the first leg of T are both given by 8. We then define
I'xT € Ji1¢_> to be the Feynman diagram with k4-£ —2 legs obtained by removing
the kth leg of I" as well as the first leg of I, and identifying the two vertices these
legs were connected to. (We also need to relabel the legs of I' accordingly.) This
operation extends to all of #} x #; by noting that given a Feynman diagram I € J,
there always exists I, € J with I';, = I' in #} which is a linear combination of
diagrams with label § on the nth leg: if the nth leg of I' has label 8" with m # 0,
one obtains I';, by performing |m| “integrations by parts” using (12). We then define
in general I' » I" by setting I" * 'Sl » Iy and we can check that this is indeed
well-defined in #j4,—2. We then have the following consequence of Lemma 3.9.

Proposition 3.10 The BPHZ valuation satisfies T1,,,,(I' x ') = I1,,,,I" % I,,,,T.

Proof Write M*: # ® # — F for the convolution operator introduced above and
note that the canonical valuation IT (we suppress the dependence on K') does satisfy
the property of the statement. It therefore suffices to show that one has the identity

(Mo @ i) AM* = A*((T-od @ id)A @ (ol ® id)A) (55)

between maps # Q H — .

Suppose that I' € J; and I' € J;, write v for the vertex of I' adjacent to the
kth leg, and let ¥ be the vertex of I' adjacent to its first leg. Fix furthermore an
arbitrary map o : (7, U ) /{v, v} — N which is injective and such that o (v) = 0.
Since internal edges of I' x " are in bijection with the disjoint union of the internal
edges of T and those of I, we have an obvious bijection between subgraphs y of
' » I and pairs (y1, y2) of subgraphs of I and I". We also have a natural choice of
distinguished vertex for each connected subgraph of T, f‘Aor I" » T by choosing the
vertex with the lowest value of . If we then write At € G_ ® ¥ for the right hand
side of (19) with this choice of distinguished vertices, then we see that

(B QIDA[T *T) = (M @ M*)(d ® T ® id) (AT ® AT) ,
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Fig. 4 Generalised self-loop »

where 7: I QK — H QI_ is the map that exchanges the two factors. Applying
I[M_dr to both sides and making use of Lemma 3.9, the required identity (55)
follows at once.

Consider the situation of a Feynman diagram I' containing a vertex v and a
subgraph y which is a “generalised self-loop at v’ in the sense that

» The vertex v is the only vertex of y that is adjacent to any edge notin y.
* Noleg of T is adjacent to any vertex of y, except possibly for v.

We then obtain a new diagram I'¢ by collapsing all of y onto the vertex v, as
illustrated in Fig.4, where the vertex v is indicated in green and legs are drawn
in red.

As a consequence of Proposition 3.10, we conclude that in such a situation there
exists a constant ¢,, € R such that

HBFHZF = Cy HBPHZFO ’

and that furthermore ¢, = 0 as soon as degy < 0 as a consequence of
Proposition 2.22. One particularly important special case is that of actual self-
loops, where y consists of a single edge connecting v to itself, thus showing that
IT,...I" = 0 for every I' containing self-loops since the degree of a self-loop of type
tis given by deg t, which is always negative.

Finally, it would also appear natural to restrict the sums in (19) and (24) to
subgraphs I that are c-full in " (in the sense that each connected component of
[ is a full subgraph of I'), especially in view of the proof of the BPHZ theorem
where we saw that the “dangerous” connected subgraphs are always the full ones.
We can then perform the exact same steps as before, including the construction of
a corresponding twisted antipode and the verification of the forest formula. Writing
?;71? for the subset of & consisting of forests F such that each y € F is a full
subgraph of its parent 9(y) (as usual with the convention that the parent of the
maximal elements is I' itself), it is therefore natural in view of (33) to define a
valuation

BPHZ

M, r=Ul-®m ) (—h7esr, (56)

I
FeFr
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where IT and I1_ are the canonical valuations associated to some K € F . It turns
out that, maybe not so surprisingly in view of Proposition 2.22, this actually yields
the exact same valuation:

Proposition 3.11 One has 11" = T1,,,,.

BPHZ

Proof In order to show that

Mme®m Y (bhFer=o,

FcF T 6’7
FeF\Fr-

we will partition F \?;71? into sets such that the above sum vanishes, when restricted
to any of the sets in the partition. In order to formulate our construction, given
y € G5, we write vy e G for the “closure” of y in T', i.e. the full subgraph

of I' with the same vertex set as y. For & € Fp \ SAFF , we then have a unique
decomposition F = F™' U FP such that each y € F™ is full in ', no element of
Fl is contained in an element of %7, and no root of &7 is fullin I".

Write %P _for the set of roots of %7 and set

Fr={y"yeFl).
In general, one may have "' N FP # @), so we also set F"' = F"' \ FP. If we
write : F = (FP, FL"), then we see that the preimage of (F7, F.") under N
consists of all forests of the form %” U & U %, where & is an arbitrary subset of
FP. Furthermore, F- \97 consists precisely of those forests & such that F? £ (.
Since Y g —gp (— 1)F | = 0, it thus remains to show that the quantity

In-e H)C@gpugguuu%r 57

is independent of B C FP.

To see that this is the case, consider the space Jr and the operators G as in
the proof of the BPHZ theorem and denote by f:9r — § the composition of
M: 9 — 8 with the natural injection 91 <> J. One then has for every forest G the
identity

(M- @M@l = M6,  Ge=[] 6,
yeg

(As already pointed out before, the order of the operations does not matter here.)
Let now y € G and consider the elements 6, I" and 6, €,,aI". It follows from

the definition of the operators ‘%y that all the terms appearing in both expressions
consist of the same graph where edges in I" \ y! adjacent to y°! are reconnected to
the distinguished vertex v, of y and the edges in ! that are not in y are turned into
self-loops for v,.
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Regarding the edge and vertex-labels ¢ and n generated by these operations, a
straightforward application of the Chu-Vandermonde theorem shows that they yield
the exact same terms in both cases. The only difference is that the function ? is equal
to 1 on y in the first case, while it equals 2 on y and 1 on edges of y! that are not
in y in the second case. This however would only make a difference if we were to
compose this with an operator of the type %y for some y withy ¢ 7 c y.. In
our case however, we only use this in order to compare Gg.rgniyg t0 Ggp g, SO
that we consider the situation y € %2 . Since these graphs are all vertex- d1s101nt it
follows that ([, gz, @, )" and (1, ezt 02 ©, )T only differ by the value of 0 in
the way described above.

Our construction of the sets " and F7 then guarantees that this discrepancy is
irrelevant when further applying CA@); fory € FMU(FP\FP ), so that (57) is indeed
independent of % as claimed.

4 Large-Scale Behaviour

We now consider the case of kernels K that don’t have compact support. In order
to encode their behaviour at infinity, we assign to each label t € £ a second degree
deg, : £ — R_ U {—o0} with deg. 8% = —oo and satisfying this time the
consistency condition deg., t*) = deg. t.! We furthermore assume that we are
given a collection of smooth kernels R¢: R? — R for t € £, satisfying the bounds

ID*Ry(x)| S 2+ [x]iee=t (58)
for all multiindices k, uniformly over all x € R, and such that
Ruw = DRy . (59)

Similarly to before, we extend this to £ by using the convention Ry = 0 and we
write K3 for the set of all smooth compactly supported kernel assignments t > Ry,
as well as 57{5“ for its closure under the system of seminorms defined by (58).
Consider then the formal expression (5), but with each instance of K replaced by
Gt = K¢+ R¢. The aim of this section is to exhibit a sufficient condition on I" which
guarantees that this expression can also be renormalised, using the same procedure
as in the previous sections. The conditions we require in Theorem 4.3 below can be

Tt would have looked more natural to impose the stronger condition deg,, o = deg,, t — |k|
as before. One may further think that in this case one would be able to extend Theorem 4.3 to all
diagrams I', not just those in #.. This is wrong in general, although we expect it to be true after
performing a suitable form of positive renormalisation as in [2, 3]. This is not performed here, and
as a consequence we are unable to take advantage of the additional large-scale cancellations that
the stronger condition deg,, t*) = deg, t — |k| would offer.
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viewed as a large-scale analogue to the conditions of Weinberg’s theorem. They are
required because, unlike in [2, 3], we do not perform any “positive renormalisation”
in the present article.

To formulate our main result, we introduce the following construction. Given
a Feynman diagram I" with at least one edge, consider a partition Pr of its inner
vertex set, i.e. elements of Pr are non-empty subsets of ¥, and | Pr = V. We
always consider the case where the partition &P consists of at least two subsets, in
other words |2r| > 2. Given such a partition, we then set

def

degoo Pr= Y He)+d(Pr|—1),
EE%(Q’[‘)

where €(%r) consists of all internal edges e € €, such that both ends e and e_
are contained in different elements of &r. Note the strong similarity to (9), which
is of course not a coincidence. We will call a partition Pr “tight” if there exists one
single element A € %r containing all of the vertices v; . € 7, that are connected to
legs of I

Given K and R in K3, and K, respectively, we furthermore define a valuation
KR by setting as in (5)

(HK’RF)((p)zf [ Guere, —xe ) (DY -+ D @) (xuy. - .. xy) dx . (60)
S°V

e
ecé,

where we used again the notation G¢ = K¢ + R¢. We then have the following result
which is the analogue in this context of Proposition 2.4.

Proposition 4.1 Let I" be such that every tight partition Pr of its inner vertices
satisfies deg., Pr < 0. Then, the map (K, R) — M15RT extends continuously to
all of (K, R) € 3, x K.

Proof Thisis a corollary of Theorem 4.3 below: given (60) and given that we restrict
ourselves to K € H, it suffices to note that [TK- X = 1, K+R

BPHZ

Remark 4.3 The reason why it is natural to restrict oneself to tight partitions can
best be seen with the following very simple example. Consider the case

t t
= O ', 2,60

Y1 v2 v3

Writing G; = Ky, + Ry, and identifying functions with distributions as usual, one
then has (ITXRM)(x, y) = (G1 » G2)(y — x). If the G; are smooth functions,
then this is of course well-defined as soon as their combined decay at infinity is
integrable, which naturally leads to the condition deg, t; + deg,, t; < —d, which
corresponds indeed to the condition deg,, Pr < O for Pr = {{v1, v3}, {v2}}, the
only tight partition of the inner vertices of I". Considering instead all partitions
would lead to the condition deg., t; < —d for i = 1,2, which is much stronger
than necessary.
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Note now the following two facts.

* The condition of Proposition 4.1 is compatible with the definition of the space #
in the sense that if it is satisfied for one of the summands in the left hand side of
(12), then it is also satisfied for all the others, as an immediate consequence of
the fact that deg,, t*) = deg,, t. In particular, we have a well-defined subspace
%, C ¥ on which the condition of Proposition 4.1 holds and therefore TTX-R"
is well-defined for (K, R) € Ho, x K.

o If I" satisfies the assumption of Proposition 4.1, then it is also satisfied for all of
the Feynman diagrams appearing in the second factor of the summands of AT,
so that - is invariant under the action of €_ on #.

This suggests that if we define a BPHZ renormalised valuation on %y by

nkk = (mfd @ nf-f)a, (61)
then it should be possible to extend it to kernel assignments exhibiting self-similar
behaviour both at the origin and at infinity. This is indeed the case, as demonstrated
by the main theorem of this section.

Theorem 4.3 The map (K, R) — HBI;ZRF extends continuously to (K, R) € H; x
3{+f0r allT' e # .

Proof Consider the space J J defined as the vector space generated by the set of
pairs (I, €), where I is a Feynman diagram as before and € C %* is a subset
of its internal edges. We furthermore define a linear map X : I I by AT =
Z% c%. (T, %), and we define a valuation on & by setting

(I:IK’R(D %))((/’) = L% 1_[ ~ Kt(e)(xe+ — Xe_) 1_[ Rt(e) (xe+ — Xe_)
ecE,\E ec8

x (D! Di*q

)(xvl,...,ka)dx , (62)
so that TTX-R = T15-RY. Similarly to before, we define 9T by the analogue of (12)
and we set # = J /07 , noting that 1¥-F is well-defined on % .

We also define a map A: H — H_ ® H in the same way as (19), but with the
sum restricted to subgraphs y whose edge sets are subsets of &, \ €. (This condition
guarantees that € can naturally be identified with a subset of the quotient graph
I'/y.) With this definition, one has the identity

AYX = ([d®@L)A ,
as a consequence of the fact that the set of pairs (€,y)suchthat® C €, and y isa

subgraph of I" containing only edges in €, \ € is the same as the set of pairs such
that y is an arbitrary subgraph of I and € is a subset of the edges of I'/y. This in
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turn implies that one has the identity

n&Ar = (M¥d @ N8R Ar = (M¥d @ T5F)Axr . (63)
Let now J+ be the subspace of T g consisting of pairs (I', 8) such that deg,, & <0
for every tight partition & with (%) C €. Again, this defines a subspace #, C #
invariant under the action of €_ by A and X maps % (defined as in the statement
of the theorem) into 72’+, so that it remains to show that (Hlf d @ KR )A extends
to kernels (K, R) € F; x %gr on all of 7&.

For this, we now fix t = (T, %) € °j+ and we remark that for R € 3{:0 we can
interpret the factor ]_[e <% Ri(e)(xe, — xe_) in (62) as being part of the test function.
More precisely, we set

Y ®c R=¢(x1,...,x%) l_[ Rie)(X[e)y — X[e1-) »
ec®

where [-]+: € — k+1,...,k+ 2|%|} is an arbitrary but fixed numbering of the
half-edges of €. We then have (MER1)(p) = (MKXUT) (¢ ®; R), where Ut € T,
is the Feynman diagram obtained by cutting each of the edges e € 3 open, replacing
them by two legs with label § and numbers given by [e]+. It is immediate from the
definitions and the condition (59) that this is compatible with the actions of A and
A in the sense that one has

(g @TERYATY) = (g @ TE)VAUTY) @@ R), VgeE_ .

Inserting this into (63), we conclude that

(MEED) () = D (MK, U, €)@ @ R .
%C%*

so that it remains to bound separately each of the terms in this sum.
For this, we write S; = Z¢ for the discrete analogue of our state space S = R,
we set N = k + 2|§|, and we write 1 = erszv W, for a partition of unity with the

property that W, (y) = Wo(y — x) and that lllo is supported in a cube of sidelength
2 centred at the origin, so that it remains to show that

Yo S, SEME AT ) (@ ere DY),

is absolutely summable. It then follows from Theorem 3.1 that the summand in the
above expression is bounded by

|Sx| 5 l_[(l + |x[e]+ _x[e]il)degoo t(e) ,
ect
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for all (K, R) € 3{0_ X 7{3 . This expression is not summable in general, so we
need to exploit the fact that there are many terms that vanish. For instance, since the
test function ¢ is compactly supported, there exists C such that Sy = 0 as soon as
|x;| = C for some i < k. Similarly, since the kernels K¢ are compactly supported,
there exists C such that S, = 0 as soon as there are two legs [i] and [j] of U,
attached to the same connected component and such that [x; — x| > C.

Let now & be the finest tight partition for I' with €(%) C € and let L € &
denote the (unique) set which contains all the vertices adjacent to the legs of I". We
conclude from the above consideration that one has

DUISAdS Y =0y [] (4 Desr — yieah® 8@, (64)

xeSy yeST ecE(P)

where [v] € & denotes the element of & containing the vertex v. At this stage, the
proof is virtually identical to that of Weinberg’s theorem, with the difference that we
need to control the large-scale behaviour instead of the small-scale behaviour. We
define Hepp sectors Dt C S? for T = (T, n) in exactly the same way as before,
the difference being that this time no two elements can be at distance less than 1,
so that we can restrict ourselves to scale assignments with n, < 0 for every inner
vertex of 7. Also, in view of (64), the leaves of T are this time given by elements
of . In the same way as before, the number of elements of Dr is of the order of
[1,cr 27 so that one has again a bound of the type

DISASY []2™™ . me=d+ Y ladegote),  (65)
T

xesy ueT ecE(P)

where e denotes the common ancestor in T of the two elements of % containing the
two endpoints of e. Our assumption on I' now implies that for every initial segment
T; of T,? one has )", .z nu < 0. This is because one has Y_, 7. n, = degPr;,
where Pr; is the coarsest coarsening of & such that for every edge e € €(%Pr;), one
has e! & Pr,.

We claim that any such 7 satisfies

ST.mEY [[2™™ < o0,

n ueT

where again the sum is restricted to negative n that are monotone on 7'. This can be
shown by induction over the number of leaves of 7. If T has only two leaves, then
this is a converging geometric series and the claim is trivial. Let now T be a tree
with m > 3 leaves and assume that the claim holds for all trees with m — 1 leaves.
Pick an inner vertex u of T which has exactly two descendants (such a vertex always

2L.e. T; is such that if u € T; and v < u, then v € T}.
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exists since 7 is binary) and write T for the new tree obtained from T by deleting
u and coalescing its two descendants into one single leaf. Write furthermore u® for
the parent of u in T, which exists since T has at least three leaves. The following
example illustrates this construction:

—

Since the condition on 7 is open and since S, increases when increasing 7,,, we can
assume without loss of generality that 1, # 0. There are then two cases:

o Ifn, <0, wehave Y y 27~ 1, s0 that

n,>n,
S(T,n) ~ S(T,#) , (66)

where 7, is just the restriction of 7, to the tree T. Since initial segments of T
are also initial segments of 7 and since = 5 on them, we can make use of the
induction hypothesis to conclude.

e Ifn, > 0, we have annﬁ 27 Ml a2 27 g0 that (66) holds again, but this

time 7,1+ = n,+ + N, and 1, = n, otherwise. We conclude in the same way as
before since the only “dangerous” case is that of initial segments 7; containing
u’, but these are in bijection with the initial segment 7; = 7; U {u} of T such that
2o F Ny = ZUET,- 1y, so that the induction hypothesis still holds.

Applying this to (65) completes the proof of the theorem.

Remark 4.4 While the definition of ITX: is rather canonical, given kernel assign-

BPHZ

ments K and R, the decomposition G = K + R is not. Using the fact that G_ is a
group, it is however not difficult to see that, for any two choices (K, R), (K, R) €
Hy x 57{5“ such that

Ki+ Ri= K¢+ Ry, Vie £,

there exists an element g € 6_ such that Nk.R = (g

BPHZ

KRA.
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Parabolic Anderson Model with Rough )
Dependence in Space e

Yaozhong Hu, Jingyu Huang, Khoa Lé, David Nualart, and Samy Tindel

Abstract This paper studies the one-dimensional parabolic Anderson model driven
by a Gaussian noise which is white in time and has the covariance of a fractional
Brownian motion with Hurst parameter H € (}1, é) in the space variable. We derive
the Wiener chaos expansion of the solution and a Feynman-Kac formula for the
moments of the solution. These results allow us to establish sharp lower and upper
asymptotic bounds for the nth moment of the solution.
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