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Abstract

This work studies rough differential equations (RDEs) on homogeneous spaces. We provide an explicit 
expansion of the solution at each point of the real line using decorated planar forests. The notion of planarly 
branched rough path is developed, following Gubinelli’s branched rough paths. The main difference being 
the replacement of the Butcher–Connes–Kreimer Hopf algebra of non-planar rooted trees by the Munthe-
Kaas–Wright Hopf algebra of planar rooted forests. The latter underlies the extension of Butcher’s B-series 
to Lie–Butcher series known in Lie group integration theory. Planarly branched rough paths admit the study 
of RDEs on homogeneous spaces, the same way Gubinelli’s branched rough paths are used for RDEs on 
finite-dimensional vector spaces. An analogue of Lyons’ extension theorem is proven. Under analyticity 
assumptions on the coefficients and when the Hölder index of the driving path is one, we show convergence 
of the planar forest expansion in a small time interval.
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1. Introduction

Given a set of vector fields {fi}di=1 on some n-dimensional smooth manifold M, we are 
interested in the controlled differential equation:

dYst =
d∑

i=1

fi(Yst )dXi
t , (1)

with initial condition Yss = y, where the controls t �→ Xi
t are differentiable, or even only Hölder-

continuous real-valued functions.1 When M is an affine space Rn, rough path theory on Rd , 

1 We have chosen any real s as initial time rather than zero, whence the two-variable notation. Derivation is always 
understood with respect to the variable t , the first variable s remaining inert. The two positive integers n and d are a 
priori unrelated.
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together with its branched version introduced by M. Gubinelli [27], is the correct setting to 
express the solutions of (1) when the controls are not differentiable. An important case of the 
latter situation is given by Brownian motion on Rd , of which sample paths are almost surely 
nowhere differentiable.2 The existence of a solution in a small interval around the point s has 
been proven by Gubinelli, using the notion of controlled path in the branched setting [27, Section 
8] (see also [28, Section 3]). The Taylor expansion of such a solution at any point is expressed 
by means of choosing a branched rough path X over the driving path X = (X1, . . . , Xd). See, for 
example, the introduction of reference [28] by M. Hairer and D. Kelly for a concise account.

The theory of rough paths was introduced and developed by T. Lyons’ [32]. It is based on 
Chen’s theory of iterated integrals [10] and provides an integration theory for solving differential 
equations driven by irregular signals. The intuitive idea of prescribing the path together with its 
iterated integrals is encapsulated by the definition of a rough path as a two-parameter family of 
Hopf algebra characters of the shuffle Hopf algebra HA over the finite alphabet A = {a1, . . . , ad}, 
subject to precise estimates as well as to Chen’s lemma. The latter is a lifting of the chain rule for 
integration. Gubinelli’s branched rough paths are based on J. Butcher’s B-series from numerical 
integration theory, and are defined similarly to Lyons’ rough paths, with the exception that the 
Hopf algebra at hand is the Butcher–Connes–Kreimer Hopf algebra HA

BCK of A-decorated non-
planar rooted trees.

In a first step, this article introduces and develops the theory of rough paths on Rd for any con-
nected graded Hopf algebra fulfilling rather mild assumptions with respect to its combinatorics. 
An analogue of Lyons’ extension theorem is proven (Theorem 4.4), using the Sewing Lemma 
as in the classical case (Proposition A.1). In particular, following Gubinelli’s approach we use 
the notion of Lie–Butcher series from Lie group integration theory to define planarly branched 
rough paths on Rd as rough paths in that generalised sense, for which the Hopf algebra at hand 
is the Hopf algebra of Lie group integrators HA

MKW introduced in [35] by W. Wright and one of 
the current authors. In a nutshell, this combinatorial Hopf algebra is linearly spanned by planar 
ordered rooted forests, possibly with decorations on the vertices. The product in this commuta-
tive Hopf algebra is the shuffle product of the forests, which are considered as words with planar 
rooted trees as letters. The coproduct is based on the notion of left admissible cuts on forests. 
We then argue that planarly branched rough paths provide the correct setting for understanding 
controlled differential equations on a homogeneous space, i.e., a manifold acted upon transitively 
by a finite-dimensional Lie group. To be more precise, it provides the means to write the Taylor 
expansion of a solution at each time, particularly suited to the underlying geometric setting.

We conclude with a first discussion of the analytic aspects of differential equations driven by 
planarly branched rough paths. In this article, we restrict to considering the convergence of the 
full Taylor series on a small time interval (Corollary 8.10). This necessarily assumes analyticity 
of the vector fields, and makes use of Cauchy estimates in a similar manner to [27, Section 5]. 
On the other hand, this method is limited to considering driving paths for which the Hölder 
index γ of the control path X is equal to one (Lipschitz case). A much more promising approach 
is to consider instead truncations of the Taylor expansion with controlled remainder, following 
Davie [15], see also [6] for the extension of this method to Lie series for the pullback flow. 
The main obstacle to this technique is the lack of results showing that iterative applications of 
approximate flows can be concatenated to give an approximation of controlled error on a larger 
compact time interval. This is equivalent to the existence of global error estimates for Lie group 

2 Brownian motion is almost surely of Hölder regularity γ for any γ < 1/2.
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integrators. Such results are established in the forthcoming work [13], the ramifications of which 
will be explored in a future sequel on the existence and uniqueness of solutions under much less 
restrictive assumptions.

The paper is organised as follows: in Section 2 we write down the Taylor expansion of the 
solution of (1) on a homogeneous space in the case of differentiable controls, using a Picard 
iteration. We then introduce a suitable class of combinatorial Hopf algebras in Section 3, defining 
a notion of factorial adapted to this general setting. Then we define in Section 4 a functorial 
notion of γ -regular rough path associated to any combinatorial Hopf algebra in the above sense, 
and we prove Lyons’ extension theorem in this setting, along the lines of reference [21]. After 
giving a brief account on Lie–Butcher theory in Section 5, we recall the Munthe-Kaas–Wright 
Hopf algebra HA

MKW of Lie group integrators. We recall in Section 6 two relevant combinatorial 
notions associated with planar forests, namely three partial orders on the set of vertices [1], 
and the planar forest factorial σ �→ σ ! of [25], which matches the general notion of factorial 
mentioned above. Planarly branched rough paths are then defined as rough paths associated to 
the particular Hopf algebra HA

MKW. Section 7 is devoted to a canonical surjective Hopf algebra 
morphism a� from HA

MKW onto the shuffle Hopf algebra HA
�� , the planar arborification, in the 

sense of J. Ecalle’s notion of arborification. A contracting version of planar arborification is 
also given, where the shuffle Hopf algebra is replaced by a quasi-shuffle Hopf algebra. Finally, 
Section 8 deals with rough differential equations on homogeneous spaces driven by a Hölder-
continuous path X. Any planarly branched rough path above X yields a corresponding formal 
solution. Following the lines of thought of [27, Section 5] (see also [3, Proposition 1.8]), we prove 
convergence of the planar forest expansion in a small interval at each time, under an appropriate 
analyticity assumption on the coefficients fi , when the driving path is Lipschitz, i.e., of Hölder 
regularity γ = 1. An account of the sewing lemma is given in the Appendix.

Acknowledgments

We would like to thank Lorenzo Zambotti and Ilya Chevyrev for crucial discussions and com-
ments which led to substantial improvements of this paper, in particular by pointing us to the 
recent article [2]. We also thank Igor Mencattini, Alexander Schmeding and Rosa Preiss for 
helpful comments. The third author greatly acknowledges the warm hospitality and stimulat-
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2. Formal series expansion of the solution

The theory of numerical integration algorithms on Lie groups and manifolds [31] has been 
developed over the last two decades. In this context new algebraic structures were revealed 
which combine Butcher’s B-series [29] and Lie-series into Lie–Butcher series on manifolds [33]. 
Brouder’s work [4] showed that Hopf and pre-Lie algebras of non-planar rooted trees provide the 
algebraic foundation of B-series. For Lie–Butcher series the new concepts of post-Lie algebras 
and the Munthe-Kaas–Wright Hopf algebra are the foundations. These are examples of algebraic 
combinatorial structures which arise naturally from the geometry of connections on homogenous 
spaces.
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We rewrite the differential equation (1) in the following form:

dYst =
d∑

i=1

#fi(Yst ) dXi
t (2)

with initial condition Yss = y, where the unknown is a path Ys : t �→ Yst in a homogeneous space 
M, with transitive action (g, x) �→ g.x of a Lie group G on it. The control path X : t �→ Xt =
(X1

t , . . . , X
d
t ) with values in Rd is given, and the fi ’s are smooth maps from M into the Lie 

algebra g = Lie(G), which in turn define smooth vector fields x �→ #fi(x) on M:

#fi(x) := d

dt |t=0
exp
(
tfi(x)

)
.x ∈ TxM.

In the language of Lie algebroids, considering the tangent vector bundle and the trivial vector 
bundle E = M × g, the map # : C∞(M, g) → χ(M) is the composition on the left with the 
anchor map ρ : E → TM defined by ρ(x, X) := d

dt |t=0
(exp tX).x.

The central point of our approach is based on formally lifting the differential equation (2)
to the space C∞(M, U(g)

)[[h]], where U(g) is the universal enveloping algebra of g. This is 
achieved as follows: setting t = s + h, we denote by ϕst the formal diffeomorphism defined 
by ϕst (Yss) := Yst , where t �→ Yst is the solution of the initial value problem (2). This formal 
diffeomorphism can be expressed as:

ϕst = #Y st

with Y st ∈ C∞(M, U(g)
)[[h]]. It turns out that there exists a non-commutative associative 

product ∗ on C∞(M, U(g)
)
, distinct from the pointwise product in U(g), which reflects the 

composition product of differential operators on M, in the sense that:

#(u ∗ v) = #u ◦ #v

for any u, v ∈ C∞(M, U(g)
)
. See reference [35] for details. The unit is the constant function 1

on M equal to 1 ∈ U(g), and #1 is the identity operator. The existence of this product is a direct 
consequence of the post-Lie algebra structure on C∞(M, g). The reader may consult [17] for 
details. Extending this product to formal series, our lifting of (2) is written as:

dY st =
d∑

i=1

Y st ∗ fi dXi
t (3)

with initial condition Y ss = 1. The non-commutative product ∗ is the extension of the Grossman–
Larson product on the post-associative algebra C∞(M, U(g)

)
to formal series, which reflects 

the composition of differential operators [35]. A full account of the post-Lie algebra structure on 
C∞(M, g) and the post-associative algebra structure on C∞(M, U(g)

)
will be provided further 

below in Section 5. Let us just mention at this stage that for any f, g ∈ C∞(M, g) we have 
(Leibniz’ rule):

f ∗ g = fg + f � g, (4)
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where fg stands for the pointwise product in C∞(M, U(g)
)
, and where f �g stands for #(f ).g. 

The solution of (3) is a formal diffeomorphism, i.e., it verifies Y st � (ρψ) = (Y st �ρ)(Y st �ψ)

for any ρ, ψ ∈ C∞(M). The formal path Yst solving the initial value problem (2), with initial 
condition Yss = y, is then the character of C∞(M) with values in R[[h]] given for any ψ ∈
C∞(M) by:

Yst : C∞(M) −→R[[h]]
ψ �−→ ψ(Yst ) = (Y st � ψ)(y). (5)

Plugging (3) into (5) yields:

d

dt
ψ(Yst ) = d

dt
(Y st � ψ)(y)

= ((Y st ∗ F(t)
)� ψ

)
(y)

= (Y st � (F(t) � ψ
))

(y)

= (F(t) � ψ
)
(Yst ),

which proves this assertion, and therefore justifies viewing (3) as a lift of (2). We refer to ψ(Yst )

as the evaluation of ψ on the formal path Yst . Equation (3) can be written in integral form:

Y st = 1 +
t∫

s

Y su ∗ F(u)du

= 1 +
d∑

i=1

t∫
s

Y su ∗ fi dXi
u. (6)

A simple Picard iteration gives the formal expansion:

Y st = 1 +
∑
n≥1

∑
1≤i1,...,in≤d

⎛⎝∫ · · ·
∫

s≤tn≤···≤t1≤t

fin ∗ · · · ∗ fi1 dX
i1
t1

· · ·dX
in
tn

⎞⎠
= 1 +

∑
n≥1

∑
1≤i1,...,in≤d

⎛⎝∫ · · ·
∫

s≤tn≤···≤t1≤t

dX
i1
t1

· · ·dX
in
tn

⎞⎠fin ∗ · · · ∗ fi1 . (7)

Using word notation, where fw stands for the monomial fin ∗ · · · ∗ fi1 when the word w is given 
by ai1 · · ·ain , the formal expansion (7) will be written as a word series

Y st =
∑

w∈A∗
〈Xst ,w〉fw. (8)

Using (4), the first terms of the expansion are:
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Y st =1 +
d∑

i=1

〈Xst , ai〉fi +
d∑

i,j=1

〈Xst , aiaj 〉(fjfi + fj � fi)

+
d∑

i,j,k=1

〈Xst , aiaj ak〉
(
fkfjfi + (fk � fj )fi + fk(fj � fi)

+ fj (fk � fi) + (fkfj ) � fi + (fk � fj ) � fi

)
+ O(h4).

We observe that the number of components in the term of order three on the right-hand side can 
be reduced from six to five:

d∑
i,j,k=1

[
〈Xst , aiaj ak〉

(
fkfjfi + (fk � fj )fi + (fkfj ) � fi + (fk � fj ) � fi

)

+ 〈Xst , aiaj ak + aiakaj 〉fj (fk � fi)

]
, (9)

which corresponds to the five planar rooted decorated forests with three vertices, displayed in the 
following order:

k j i
k
j i

jk
i

j
i

k

j
k
i . (10)

The appearance of planar rooted forests relates to a natural further step in abstraction, namely 
using the Lie–Butcher series formalism. It consists in an additional lifting of equation (3) to 
the free post-associative algebra, i.e., the universal enveloping algebra over the free post-Lie 
algebra in d generators, more precisely to its completion (HA

MKW)∗. We obtain then the so-called 
fundamental differential equation:

dYst =
d∑

i=1

Yst ∗ i dXi
t (11)

with initial condition Yss = 1, where ∗ is now the non-commutative convolution (Grossman–
Larson) product of two linear forms on HA

MKW. Suppose for the moment that the path X in Rd

is differentiable. Equation (11) can then be re-written as:

Ẏst = d

dt
Yst =

d∑
i=1

Ẋi
tYst ∗ i , (12)

with initial condition Yss = 1. For any s, t the so-called fundamental solution Yst of (11) is given 
by

Yst =
∑ ∑

∗
〈Xst ,w〉 a�

∗ · · · ∗ a1 . (13)

�≥0 w=a1···a�∈A
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The coefficient of the last component in (9) is obtained by integrating dX
i1
t1
dX

i2
t2
dX

i3
t3

on 
the union of two simplices {(t1, t2, t3), s ≤ t3 ≤ t1, t2 ≤ t}. This domain is associated to the 
decorated forest j

k
i by means of a partial order � on the vertices described in Subsection 5.5, 

which is closely related to the notion of left-admissible cuts for the coproduct in HA
MKW. The 

order � is total on the four other planar forests of degree three appearing in (10), hence the 
corresponding coefficients are obtained by integrating on a single simplex. Integrating over these 
domains lifts Xst to a two-parameter family of characters of the Hopf algebra HA

MKW, which 
still verifies Chen’s lemma. This calls for considering rough differential equations defined on the 
homogeneous space M driven by planarly branched rough paths.

Further below we will use J. Ecalle’s notion of arborification to write the Taylor expansion of 
the solution (8), or rather its abstract counterpart (13) in its planar arborified form:

Yst =
∑

σ∈FA
pl

〈X̃st , σ 〉σ (14)

with X̃st := Xst ◦ a� where (Xst )s,t∈R is the signature of the path X, and where FA
pl stands for 

the set of A-decorated planar rooted forests.

3. Factorials in combinatorial Hopf algebras

We consider the notion of factorial in the context of a fairly general class of combinatorial 
algebras. This concept will encompass the usual factorial of positive integers, the tree and forest 
factorials as well as a planar version of the latter.

3.1. Inverse-factorial characters in connected graded Hopf algebras

Let H =⊕n≥0 Hn be any connected graded Hopf algebra over some field k of characteristic 
zero, and let α : H1 → k be a nonzero linear map. The degree of an element x ∈ H is denoted 
|x|. The inverse-factorial character qα associated to these data is defined by

• qα(1) = 1,
• qα|H1

= α,

• qα ∗ qα(x) = 2|x|qα(x) for any x ∈H.

It is indeed given for any homogeneous x of degree |x| ≥ 2 by the recursive procedure:

qα(x) = 1

2|x| − 2

∑′

(x)

qα(x′)qα(x′′). (15)

See [27, Section 7] in the particular case of the Butcher–Connes–Kreimer Hopf algebra [11]. 

Here 
′(x) :=
∑′

(x)
x′ ⊗ x′′ denotes the reduced coproduct of H (in Sweedler’s notation), and 

the full coproduct is 
(x) = 
′(x) +x ⊗1 +1 ⊗x =∑(x) x1 ⊗x2. The multiplicativity property 
qα(xy) = qα(x)qα(y) is verified recursively with respect to � = |x| + |y| ≥ 2 (the cases � = 0
and � = 1 are immediately checked):
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qα(xy) = 1

2|x|+|y|
∑

(x),(y)

qα(x1y1)qα(x2y2)

= 1

2|x|+|y|

⎛⎝ ∑
(x),(y)

qα(x1)qα(y1)qα(x2)qα(y2) − 2qα(x)qα(y) + 2qα(xy)

⎞⎠
= qα(x)qα(y) − 1

2|x|+|y|−1

(
qα(x)qα(y) − qα(xy)

)
,

hence qα(x)qα(y) − qα(xy) = 0.
In general the linear form α is fixed once and for all, and qα will be abbreviated to q . We 

remark that in concrete situations there is a natural linear basis for the degree one component H1
(and more generally for H, see Paragraph 3.2 below for a precise setting), and α will be the linear 
form on H1 which takes the value 1 on each element of the basis. Taking as a simple example 
the shuffle algebra on an alphabet A, the binomial formula:

2n

n! =
n∑

p=0

1

p!
1

(n − p)!

shows that qα(w) = 1/|w|! where α(a) = 1 for each letter a ∈ A. This example justifies the 
terminology chosen.

Proposition 3.1. For any h ∈ k the h-th power convolution of q = qα makes sense as a character 
of H, and admits the following explicit expression:

q∗h(x) = h|x|q(x). (16)

Proof. One can express q as ε + κ with κ(1) = 0. Then we have for any x ∈H

q∗h(x) = (ε + κ)∗h(x) =
∑
p≥0

(
h

p

)
κ∗p(x).

The right-hand side is a finite sum, owing to the co-nilpotence of the coproduct. The expression 
q∗h(xy) − q∗h(x)q∗h(y) is polynomial in h and vanishes at any non-negative integer h, hence 
vanishes identically. Similarly, the expression q∗h(x) −h|x|q(x) is polynomial in h and vanishes 
at any h = 2N where N is a non-negative integer, hence vanishes identically. �

The following corollary generalises both the binomial formula and Gubinelli’s branched bi-
nomial formula [27, Lemma 4.4].

Corollary 3.2. For any h, k ∈ k and for any homogeneous element x ∈ H, the following Hopf-
algebraic binomial formula holds:

q(x)(h + k)|x| =
∑

q(x1)q(x2)h
|x1|k|x2|.
(x)
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Proof. It is a straightforward application of (16) together with the group property q∗h ∗ q∗k =
q∗(h+k). �

Inverse-factorial characters are functorial, that is, if H and H′ are two connected graded Hopf 
algebras and if  : H → H′ is a morphism of Hopf algebras preserving the degree, then for any 
linear map α′ : H′ → k we have:

qα = qα′ ◦  (17)

where α := α′ ◦ |H1
.

3.2. A suitable category of combinatorial Hopf algebras

Although the theory of combinatorial Hopf algebras constitutes an active field of research, 
with duly acknowledged applications in discrete mathematics, analysis, probability, control, and 
quantum field theory, no general consensus has yet emerged on a proper definition of those 
Hopf algebras. Saying this, we propose here a definition which will match our purpose, i.e., 
give estimates which will ensure convergence of the formal solutions of our singular differential 
equations in some particular cases. A different proposal for a definition of combinatorial Hopf 
algebras can also be found in [14] (see Definition 3.1 therein). In both definitions, a privileged 
linear basis is part of the initial data. We refer the reader to [37] for background on Hopf algebras.

Definition 3.3. A combinatorial Hopf algebra is a graded connected Hopf algebra H=⊕n≥0 Hn

over a field k of characteristic zero, together with a basis B = �n≥0 Bn of homogeneous ele-
ments, such that

(1) There exist two positive constants B and C such that the dimension of Hn is bounded by 
BCn (in other words, the Poincaré–Hilbert series of H converges in a small disk around the 
origin).

(2) The structure constants cρ
στ and cστ

ρ of the product and the coproduct, defined for any 
σ, τ, ρ ∈ B respectively by

στ =
∑
ρ ∈B

cρ
στ ρ, 
ρ =

∑
σ,τ ∈B

cστ
ρ σ ⊗ τ

are non-negative integers (which vanish unless |σ | + |τ | = |ρ|).

In any combinatorial Hopf algebra in the above sense, the inverse-factorial character q will be 
chosen such that q(τ) = 1 for any τ ∈ B of degree one. We adopt the natural shorthand notation:

τ ! = 1

q(τ)
(18)

for any τ ∈ B. The two main examples are the shuffle Hopf algebra HA
�� and the Butcher–

Connes–Kreimer Hopf algebra HA
BCK over a finite alphabet A. In the former case the basis B

is given by words with letters in A, whereas in the latter case we have non-planar rooted forests 
decorated by A. On HA

�� the corresponding factorial is the usual factorial of the length of a word. 
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On HA
BCK it is the usual forest factorial [27, Lemma 4.4]. A third major example is the Hopf 

algebra HA
MKW of Lie group integrators described in Paragraph 5.6 below.

Let (H, B) and (H′, B′) be two combinatorial Hopf algebras in the above sense. A Hopf 
algebra morphism  : (H, B) → (H′, B′) is combinatorial if it is of degree zero and if, for 
any τ ∈ B, the element (τ) ∈ H′ is a linear combination of elements of the basis B′ with 
non-negative integer coefficients. Combinatorial Hopf algebras in the above sense together with 
combinatorial morphisms form a category. The forgetful functor (H, B) �→ H into the category 
of connected graded Hopf algebras is given by forgetting the basis.

Remark 3.4. The inverse-factorial character q may vanish on some elements τ of the basis, 
yielding τ ! = +∞. This happens if and only if τ is primitive of degree n ≥ 2. We therefore call 
a combinatorial Hopf algebra non-degenerate if

B ∩ Prim(H) = B1. (19)

The three combinatorial Hopf algebras HA
�� , HA

BCK and HA
MKW happen to be non-degenerate. 

Examples of degenerate combinatorial Hopf algebras can easily be found among Hopf algebras 
of Feynman graphs, as primitive multiloop Feynman graphs do exist.

4. Rough paths and connected graded Hopf algebras

We show that Lyons’ definition of rough paths [32] extends straightforwardly when replacing 
the shuffle Hopf algebra with any commutative connected graded Hopf algebra. In particular a 
naturally extended version of the extension theorem [32, Theorem 2.2.1] is available.

4.1. Chen iterated integrals and rough paths

Let d be a positive integer, and let us consider a smooth path in Rd

X : R−→Rd

t �−→ X(t) = (X1(t), . . . ,Xd(t)
)
.

Let HA be the algebra of the free monoid A∗ generated by the alphabet A := {a1, . . . , ad}, and 
augmented with the empty word 1 as unit. Let Xst ∈ (HA)� be defined for any s, t ∈R and word 
w = aj1 · · ·ajn ∈ A∗ by n-fold iterated integrals:

〈Xst , aj1 · · ·ajn〉 :=
∫

· · ·
∫

s≤tn≤···≤t1≤t

Ẋj1(t1) · · · Ẋjn(tn) dt1 · · ·dtn

=
∫

· · ·
∫

s≤tn≤···≤t1≤t

dXj1(t1) · · ·dXjn(tn). (20)

This is extended to the empty word 1 by 〈Xst , 1〉 := 1. Suppose moreover that the derivative Ẋ
is bounded, i.e., supd

j=1 supt∈R |Ẋj (t)| = C < +∞. The volume of the simplex


n := {(t1, . . . , tn), s ≤ tn ≤ · · · ≤ t1 ≤ t}
[s,t]
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over which the iterated integration (20) of length n is performed is equal to |t − s|n/n!, which 
yields the following estimate for any word w ∈ A∗:

sup
s �=t

|〈Xst , w〉|
|t − s||w| ≤ C|w|

|w|! , (21)

where |w| stands for the length of the word w, i.e., its number of letters. It turns out [7–10,36]
that Xst is a two-parameter family of characters with respect to the shuffle product of words, 
namely:

〈Xst , v〉〈Xst , w〉 = 〈Xst , v ��w〉. (22)

The shuffle product �� is defined inductively by w�� 1 = 1 ��w = w and

(aiv)�� (ajw) = ai(v ��ajw) + aj (aiv ��w), (23)

for all words v, w ∈ A∗ and letters ai, aj ∈ A. The resulting shuffle algebra is denoted HA
�� . For 

instance, ai ��aj = aiaj + ajai and

ai1ai2 ��ai3ai4 = ai1ai2ai3ai4 + ai1ai3ai2ai4 + ai1ai3ai4ai2 + ai3ai1ai2ai4

+ ai3ai1ai4ai2 + ai3ai4ai1ai2 .

Moreover, the following property, now widely referred to as “Chen’s lemma”, is verified:

〈Xst , v〉 =
∑

v′v′′=v

〈Xsu, v′〉〈Xut , v′′〉. (24)

The sum on the righthand side extends over all splittings of the word v ∈ A∗ into two words, v′
and v′′, such that the concatenation v′v′′ equals v. Both properties are easily shown by a suitable 
decomposition of the integration domain into smaller pieces with Lebesgue-negligible mutual 
intersections: a product of two simplices is written as a union of simplices for proving (22), and 
a simplex of size t − s is written as a union of products of simplices of respective size u − s

and t − u for proving (24) when s ≤ u ≤ t . The latter is advantageously re-written in terms 
of the convolution product associated to the deconcatenation coproduct 
 :HA

�� → HA
�� ⊗ HA

��
defined on words, w �→ 
(v) =∑v′v′′=v v′ ⊗ v′′. The latter turns the shuffle algebra HA

�� into a 
connected graded commutative Hopf algebra (HA

�� , �� , 
) with convolution product defined on 
the dual (HA

�� )�:

Xst = Xsu ∗Xut = mR(Xsu ⊗Xut )
. (25)

It has long ago been proposed by K. T. Chen to call “generalized path” [9] any two-parameter 
family of characters of the shuffle algebra HA

�� verifying (22) and (24) together with a mild 
continuity assumption. Lyons introduced the seminal notion of rough path [32], which can be 
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defined as follows [28, Definition 1.2]: a geometric rough path3 of regularity γ , with 0 < γ ≤ 1, 
is a generalized path in the sense of Chen, satisfying moreover the estimates:

sup
s �=t

|〈Xst , w〉|
|t − s|γ |w| < C(w) (26)

for any word w of length |w|, where C(w) is some positive constant. The evaluation on length 
one words is then given by the increments of a γ -Hölder continuous path:

〈Xst , aj 〉 := Xj(t) − Xj(s) (27)

with Xj(t) := 〈Xt0t , aj 〉 for some arbitrary choice of t0 ∈ R. Iterated integrals (20) cannot be 
given any sense for any n > 0 if the path is only of regularity γ ≤ 1/2. Lyons’ extension theorem 
[32,28], however, stipulates that the collection of coefficients 〈Xst , w〉 for the words w of length 
up to [1/γ ] completely determines the γ -regular rough path X. This result is a particular case of 
Theorem 4.4 below, the proof of which also uses the sewing lemma (Proposition A.1).

4.2. Rough paths generalized to commutative combinatorial Hopf algebras

We have briefly indicated in the Introduction how to adapt the notion of rough path to any 
connected graded Hopf algebra. Here is the precise definition:

Definition 4.1. Let H =⊕n≥0 Hn be a commutative graded Hopf algebra with unit 1, connected 
in the sense that H0 is one-dimensional, and let γ ∈]0, 1]. We suppose that H is endowed with 
a homogeneous basis B making it combinatorial and non-degenerate in the sense of Section 3.2. 
A γ -regular H-rough path is a two-parameter family X = (Xst )s,t∈R of linear forms on H such 
that 〈Xst , 1〉 = 1 and

I) for any s, t ∈ R and for any σ, τ in H, the following equality holds

〈Xst , σ τ 〉 = 〈Xst , σ 〉〈Xst , τ 〉,
II) for any s, t, u ∈R, Chen’s lemma holds

Xsu ∗Xut = Xst ,

where the convolution ∗ is the usual one defined in terms to the coproduct on H,
III) for any n ≥ 0 and for any σ ∈ Bn, we have the estimates

sup
s �=t

|〈Xst , σ 〉|
|t − s|γ |σ | < C(σ). (28)

The notion of γ -regular branched rough path [27,28] is recovered by choosing for H the 
Butcher–Connes–Kreimer Hopf algebra HA

BCK of A-decorated (non-planar) rooted forests. Re-
call that the product in this Hopf algebra is given by the disjoint union of rooted trees.

3 To be precise: weak geometric rough path, see [28, Remark 1.3].
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Remark 4.2. Theorem 4.4 below will permit to give precise expressions of the constants C(w)

and C(σ) in Estimates (26) and (28), respectively.

The truncated counterpart of H-rough paths is defined as follows.

Definition 4.3. Let N be a positive integer and let H(N) :=⊕N
k=0 Hk . Let γ ∈]0, 1]. A γ -regular 

N -truncated H-rough path is a two-parameter family X = (Xst )s,t∈R of linear forms on H(N)

such that:

i) the multiplicativity property (I) above holds for any σ ∈Hp and τ ∈ Hq with p + q ≤ N ,
ii) Chen’s lemma (II) holds, where the convolution refers to the restriction of the coproduct to 

H(N),
iii) the estimates (III) hold for any σ ∈Hn with n ≤ N .

For later use we also recall Sweedler’s notation 
(σ) =∑(σ ) σ1 ⊗σ2, for the full coproduct 

in H, as well as its iterated versions 
(k−1)(σ ) =∑(σ ) σ1 ⊗· · ·⊗σk . For the reduced coproduct, 
we also adopted a Sweedler-type notation:


′(σ ) := 
(σ) − σ ⊗ 1 − 1 ⊗ σ =
∑′

(σ )

σ ′ ⊗ σ ′′.

Lyons’ extension theorem [32, Theorem 2.2.1] can be generalised to this setting, with basi-
cally the same proof:

Theorem 4.4. Let γ ∈]0, 1], and let N := [1/γ ]. Any γ -regular N -truncated H-rough path ad-
mits a unique extension to a γ -regular H-rough path. Moreover, there exists a positive constant 
c such that the following estimate holds:

|〈Xst , σ 〉| ≤ c|σ |qγ (σ )|t − s|γ |σ | (29)

for any σ ∈ B, with qγ (σ ) = q(σ ) for |σ | ≤ N and

qγ (σ ) := 1

2γ |σ | − 2

∑′

(σ )

qγ (σ ′)qγ (σ ′′) (30)

for |σ | ≥ N + 1.

Proof. Notice that ε := γ (N +1) −1 is (strictly) positive. If the element σ ∈H is homogeneous 
of degree n, then σ ′ and σ ′′ in its reduced coproduct, 
′(σ ), can be taken homogeneous with 
respective degree p and q with p + q = n and p, q ≤ n − 1. Now let (Xst )s,t∈R be a γ -regular 
N -truncated H-rough path. We extend it trivially to H(N+1) by setting 〈Xst , σ 〉 = 0 for any 
σ ∈HN+1.

Now let σ ∈ BN+1. Fix an arbitrary o ∈R, and consider the function of two real variables:

μ(s, t) :=
∑′〈Xos, σ

′〉〈Xst , σ
′′〉. (31)
(σ )
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Let s, t, u ∈ R. A simple computation yields:

μ(s,u)+μ(u, t)−μ(s, t) =
∑′

(σ )

−〈Xos, σ
′〉〈Xst , σ

′′〉+〈Xos, σ
′〉〈Xsu, σ

′′〉+〈Xou, σ
′〉〈Xut , σ

′′〉

= −
∑′

(σ )

〈Xos, σ
′〉〈Xsu, σ

′′〉〈Xut , σ
′′′〉 −

∑′

(σ )

〈Xos, σ
′〉〈Xsu, σ

′′〉 −
∑′

(σ )

〈Xos, σ
′〉〈Xut , σ

′′〉

+
∑′

(σ )

〈Xos, σ
′〉〈Xsu, σ

′′〉

+
∑′

(σ )

〈Xos, σ
′〉〈Xsu, σ

′′〉〈Xut , σ
′′′〉 +

∑′

(σ )

〈Xos, σ
′〉〈Xut , σ

′′〉 +
∑′

(σ )

〈Xsu, σ
′〉〈Xut , σ

′′〉

=
∑′

(σ )

〈Xsu, σ
′〉〈Xut , σ

′′〉. (32)

Hence if s ≤ u ≤ t or t ≤ u ≤ s, we can estimate, using (30):

|μ(s, t) − μ(s,u) − μ(u, t)| ≤
∑′

(σ )

|〈Xsu, σ
′〉〈Xut , σ

′′〉|

≤
∑′

(σ )

qγ (σ ′)c|σ ′||u − s|γ |σ ′|qγ (σ ′′)c|σ ′′||t − u|γ |σ ′′|.

Here we have chosen the constant c such that the estimates (29) hold for any σ ∈ Bn, n ≤ N . 
This is possible since the sets Bn are finite. It follows from γ |σ | = γ (N + 1) = 1 + ε and the 
Sewing Lemma (Proposition A.1) that there exists a unique map ϕ defined on R, up to an additive 
constant, such that:

|ϕ(t) − ϕ(s) − μ(s, t)| ≤ c|σ |

2γ |σ | − 2

∑
(σ )

qγ (σ ′)qγ (σ ′′)|t − s|γ |σ | (33)

= c|σ |qγ (σ )|t − s|γ |σ |. (34)

Now defining:

〈X̃st , σ 〉 :=
{

〈Xst , σ 〉, for σ ∈ Hn, n ≤ N,

ϕ(s) − ϕ(t) − μ(s, t), for σ ∈HN+1,
(35)

we immediately get from (32):

〈X̃st − X̃su − X̃ut , σ 〉 =
∑′

(σ )

〈Xsu, σ
′〉〈Xut , σ

′′〉. (36)

From (33) and (35) we then have

|〈X̃st , σ 〉| ≤ c|σ |qγ (σ )|t − s|γ |σ |. (37)
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Let us now check item (i) in Definition 4.3 for X̃st for any σ ∈ Hp and τ ∈ Hq with p + q =
N +1. We split the interval [s, t] (or [t, s]) into k sub-intervals [sj , sj+1] of equal length |t −s|/k, 
with s0 := inf(s, t) and sk := sup(s, t). From Chen’s lemma up to degree N + 1 stemming from 
(36), we can compute, supposing s ≤ t here:

〈X̃st , σ τ 〉 − 〈X̃st , σ 〉〈X̃st , τ 〉
= 〈X̃s0s1 ∗ · · · ∗ X̃sk−1sk , σ τ 〉 − 〈X̃s0s1 ∗ · · · ∗ X̃sk−1sk , σ 〉〈X̃s0s1 ∗ · · · ∗ X̃sk−1sk , τ 〉

=
∑

(σ ),(τ )

( k−1∏
j=0

〈X̃sj sj+1, σj τj 〉 −
k−1∏
j=0

〈X̃sj sj+1, σj 〉〈X̃sj sj+1, τj 〉
)

.

The term under the summation sign vanishes unless there is a j ∈ {0, . . . , k −1} such that σj = σ

and τj = τ , in which case we have σi = τi = 1 for i �= j . Hence,

〈X̃st , σ τ 〉 − 〈X̃st , σ 〉〈X̃st , τ 〉 =
k−1∑
j=0

〈X̃sj sj+1, σ τ 〉 − 〈X̃sj sj+1, σ 〉〈X̃sj sj+1, τ 〉.

From (37) and item (iii) of Definition 4.3 we get

|〈X̃st , σ τ 〉 − 〈X̃st , σ 〉〈X̃st , τ 〉| ≤ kc|σ |qγ (σ )

∣∣∣∣ t − s

k

∣∣∣∣1+ε

= k−εc|σ |qγ (σ )|t − s|1+ε.

Hence 〈X̃st , στ 〉 = 〈X̃st , σ 〉〈X̃st , τ 〉 by letting k go to +∞. The same argument works mutatis 
mutandis in the case s > t . Hence, estimate (29) is proven for 〈X̃, σ 〉 for any σ ∈ Bn, n ≤ N + 1.

Uniqueness can be proven by a similar argument. Indeed, suppose that X is another (N + 1)-
truncated γ -regular H-rough path extending X, and let δst := X̃st −Xst for any s, t ∈ R. For any 
σ ∈HN+1 we have then the following:

〈δst , σ 〉 = 〈X̃ss1 ∗ · · · ∗ X̃sk−1t −Xss1 ∗ · · · ∗Xsk−1t , σ 〉
= 〈δss1 + · · · + δsk−1t , σ 〉.

As we have |〈δsj sj+1, σ 〉| ≤ C| t−s
k

|1+ε for some constant C, we get |〈δst , σ 〉| ≤ C|t − s|1+εk−ε , 
hence 〈δst , σ 〉 = 0 by letting k go to infinity.

Iterating this process at any order finally yields a fully-fledged γ -regular H-rough path X̃
extending X. �
Remark 4.5. Considering the striking similarity of the map qγ with the inverse-factorial char-
acter, which is nothing but qγ for γ = 1, Gubinelli conjectured [27, Remark 7.4] the following 
comparison, in the special case of the Butcher–Connes–Kreimer Hopf algebra (corresponding to 
branched rough paths):

qγ (σ ) ≤ BC|σ |
γ

(38)

(σ !)
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for any σ in B (i.e., any decorated forest in this particular case of HA
BCK), where B and C are 

positive constants. This conjecture has been recently proven by H. Boedihardjo [2]. In the case 
of the shuffle Hopf algebra (corresponding to geometric rough paths), it happens to be a con-
sequence of Lyons’ neoclassical inequality ([32, Theorem 2.1.1], see also [27, Remark 7.4]). It 
would be interesting to prove a similar result for a general class of combinatorial Hopf algebra, 
in particular for the Hopf algebra of Lie group integrators HA

MKW defined in paragraph 5.6 be-
low, corresponding to the notion of rough paths we call planarly branched rough paths, defined 
in Paragraph 6.2. Our definition of qγ differs from that of Gubinelli’s in the initial conditions 
qγ (σ ) = q(σ ) versus qGub

γ (σ ) = 1 for any σ ∈ Bn, n ≤ N . This choice is dictated by the func-
torial considerations of Paragraph 4.4 below. In practice, one has very often q(σ ) ≤ 1 for any 
element σ ∈ Bn, n ≤ N , which yields qγ (σ ) ≤ qGub

γ (σ ) for any σ ∈ B by induction. Hence the 
majorations for qGub

γ obtained in [2] in the branched case also hold for our qγ .

4.3. Factorial decay estimates

The linear map qγ defined in the statement of Theorem 4.4 is uniquely defined by qγ (σ ) = 1
for any σ ∈ B1 ∪ {1} and the recursive equations

qγ (σ ) :=
{

1
2|σ | qγ ∗ qγ (σ ), for 2 ≤ |σ | ≤ N,

1
2γ |σ | qγ ∗ qγ (σ ), for |σ | ≥ N + 1.

As a consequence, qγ has the same functorial properties than the inverse-factorial character q , 
namely if (H, B) and (H′, B′) are two connected graded Hopf algebras and if  : H → H′ is 
a morphism of Hopf algebras preserving the degree, then we have for any γ ∈]0, 1], with self-
explanatory notations:

qγ = q ′
γ ◦ . (39)

Proposition 4.6. [27, Remark 7.4] Let HA
�� be the shuffle Hopf algebra on a finite alphabet A. 

Then the following estimates hold: for any word w ∈ A∗,

|qγ (w)| ≤ C
|w|−1
γ

(|w|!)γ (40)

where Cγ is a positive real number depending only on γ .

Proof. Recall Gubinelli’s variant of Lyons’ neo-classical inequality: there exists cγ > 0 such 
that

n∑
k=0

aγ kbγ (n−k)

(k!)γ [(n − k)!]γ ≤ cγ

(a + b)nγ

(n!)γ . (41)

Now set

Cγ := sup

(
1,

2γ (N+1)

2γ (N+1) − 2
cγ

)
,
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and proceed by induction on the length of the word w. The case |w| ≤ N being obvious, suppose 
|w| ≥ N + 1. We can compute, using (41) in the particular case a = b = 1:

qγ (w) = 1

2γ |w| − 2

∑′

(w)

qγ (w′)qγ (w′′)

≤ 1

2γ |w| − 2

∑′

(w)

C
|w′|−1
γ

(|w′|!)γ
C

|w′′|−1
γ

(|w′′|!)γ

≤ 1

2γ |w| − 2

∑
(w)

C
|w1|−1
γ

(|w1|!)γ
C

|w2|−1
γ

(|w2|!)γ

≤ C
|w|−2
γ

2γ |w| − 2
cγ

2|w|γ

(|w|!)γ

≤ C
|w|−1
γ

(|w|!)γ . �
Corollary 4.7. Let (H, B) be a combinatorial Hopf algebra endowed with a combinatorial mor-
phism  : (H, B) → (HA

�� , B′), where A is a finite alphabet and B′ = A∗ is the standard basis of 
words. Then for any σ ∈ B the following estimate holds:

|qγ (σ )| ≤ C|σ |−1
γ

(|σ |!)1−γ

σ ! (42)

with the same Cγ as above.

Proof. For any σ ∈ B we have (σ) =∑w∈A∗ bσ
ww, and we have by functoriality of the inverse 

factorial:

∑
w∈A∗

bσ
w = |σ |!

σ ! .

The proof relies on a simple computation using functoriality of qγ as well as the non-negativity 
of the coefficients bσ

w , together with the fact that the Lp norms are nondecreasing with respect to 
p ∈]0, 1] for probability measures:

|qγ (σ )|1/γ =
(∑

w∈A∗
bσ
wqγ (w)

)1/γ

=
( |σ |!

σ !
)1/γ
(

σ !
|σ |!
∑

w∈A∗
bσ
wqγ (w)

)1/γ

≤
( |σ |!

σ !
)1/γ−1 ∑

∗
bσ
wqγ (w)1/γ
w∈A
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≤
( |σ |!

σ !
)1/γ−1 ∑

w∈A∗
C(|w|−1)/γ

γ

bσ
w

|w|!

≤ C(|σ |−1)/γ
γ

( |σ |!
σ !
)1/γ−1 1

σ !

≤
(

C|σ |−1
γ

(|σ |!)1−γ

σ !
)1/γ

. �
We remark that H. Boedihardjo recently obtained a much better estimate in the context of 

Gubinelli’s branched rough paths, i.e., for the Butcher–Connes–Kreimer Hopf algebra, see [2, 
Theorem 4].

4.4. Rough paths and combinatorial Hopf algebras

We shall examine further properties of rough paths in the generalised sense given in Paragraph 
4.2, i.e., when the Hopf algebra at hand is combinatorial.

Proposition 4.8.

(1) Let (H, B) be a combinatorial Hopf algebra in the sense of Paragraph 3.2 and let q be the 
associated inverse factorial character. Then q(x) = 1

x! is a (possibly vanishing) non-negative 
rational number for any x ∈ B.

(2) Let (H, B) and (H′, B′) be two combinatorial Hopf algebras, and let  : (H, B) → (H′, B′)
be a combinatorial Hopf algebra morphism. Then the pull-back Xst := X′

st ◦  of any γ -
regular H′-rough path X′

st is a γ -regular H-rough path.

Proof. Recall that q(x) = 1 for any x ∈ B1. The first assertion is then recursively derived from 
equation (15). Multiplicativity as well as Chen’s Lemma are immediate consequences of the fact 
that  is a Hopf algebra morphism. We now check the estimate for any x ∈ Bn with n ≥ 0:

|〈Xst , x〉| = |〈X′
st , (x)〉|

≤
∑
y∈B′

n

bx
y |〈X′

st , y〉|

≤ Cn
∑
y∈B′

n

qγ (y)bx
y |t − s|γ n.

The proof of functoriality of the inverse factorial character (17) can be easily adapted to its 
counterpart qγ , although it is generally not a character when γ differs from 1. Hence we can 
derive the desired estimate:

|〈Xst , x〉| ≤ Cnqγ (x)|t − s|γ n. (43)

Note that we have used the non-negativity of the coefficients bx
y of the matrix of  expressed 

in the bases B and B′. �
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5. Lie–Butcher theory

Butcher’s B-series are a special form of Taylor expansion indexed by trees. They have become 
a fundamental tool for analysing numerical integration algorithms. The numerical analysis of 
general Lie group methods requires the generalisation of the B-series theory to so-called Lie–
Butcher series, which are based on planar rooted forests, possibly decorated.

5.1. Rooted trees and forests

For any positive integer n, a rooted tree of degree n is a finite oriented tree with n vertices. 
One of them, called the root, is a distinguished vertex without any outgoing edge. Any vertex 
can have arbitrarily many incoming edges, and any vertex other than the root has exactly one 
outgoing edge. Vertices with no incoming edges are called leaves. A planar rooted tree is a 
rooted tree together with an embedding in the plane. A planar rooted forest is a finite ordered 
collection of planar rooted trees. Here are the planar rooted forests up to four vertices:

∅

Let A be any set. An A-decorated planar rooted forest is a pair σ = (σ , ϕ) where σ is a planar 
forest, and where ϕ is a map from the vertex set V (σ) into A. We denote by T pl

A (respectively 
F

pl

A ) the set of all A-decorated planar rooted trees (respectively forests), and by T pl

A (respectively 
Fpl

A ) the linear space spanned by the elements of T pl

A (respectively F pl

A ).
A-decorated non-planar rooted forests are denoted by σ̃ = (̃σ , ϕ), where ϕ is the decoration 

and σ̃ is the underlying non-planar forest. When A is reduced to one element the notion of 
A-decoration is superfluous, hence any A-decorated forest can be identified with its overlined 
counterpart.

Every A-decorated planar rooted tree can be written as:

σ = B+
a (σ1 · · · σk), (44)

where B+
a is the operation on forests which grafts each connected component σi of a planar 

rooted forest σ1 · · ·σk on a common root decorated by a ∈ A. Note that in numerical analysis the 
bracket notation for σ = [σ1 · · · σk]a is often used instead of the B+

a operator.

5.2. Post-Lie and post-associative algebras

A left post-Lie algebra [38,17] is a vector space A (over some field k) together with two 
bilinear maps [−, −] and � from A ⊗ A to A such that

• [−, −] is a Lie bracket, i.e., it is antisymmetric and verifies the Jacobi identity.
• For any a, b, c ∈ A we have

a � [b, c] = [a � b, c] + [a, b � c].
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• For any a, b, c ∈ A we have

[a, b] � c = a � (b � c) − (a � b) � c − b � (a � c) + (b � a) � c.

The bracket �−, −� defined by �a, b� := [a, b] + a � b − b � a is another Lie bracket on A. 
The particular case when the Lie bracket [−, −] vanishes on A is referred to as left pre-Lie 
algebra. See [34] for details. Associative counterparts of post-Lie algebras are referred to as 
post-associative algebras. They first appear under the terminology “D-algebras” in [35]. A post-
associative algebra is a vector space B endowed with two linear maps · and � from B ⊗ B to B , 
a filtration B0 = k.1 ⊂ B1 ⊂ B2 ⊂ · · · with B =⋃j Bj , and an augmentation ε : B →→ k such 
that

(1) L1 = IdB , and a � 1 = 0 for any a ∈ Ker ε.
(2) The product · is associative with unit 1, and Bp · Bq ⊂ Bp+q for any p, q ≥ 0.
(3) A := B1 ∩ Ker ε is stable under the product � as well as under the Lie bracket obtained by 

anti-symmetrisation of the associative product, and generates the unital associative algebra 
(B, ·).

(4) For any a, b, c ∈ B with a ∈ A we have

a � (b · c) = (a � b) · c + b · (a � c).

(5) For any a, b, c ∈ B with a ∈ A we have

(a · b) � c = a � (b � c) − (a � b) � c.

In particular, A is a post-Lie algebra. The other way round, the enveloping algebra of a post-Lie 
algebra is a post-associative algebra.

The Grossman–Larson product on a post-associative algebra is characterised by the identity:

(a ∗ b) � c = a � (b � c) (45)

for any a, b, c ∈ B , in other words La∗b = La ◦ Lb . It is defined as follows: the map M : A →
DerU(A, [−, −]) defined by Mab := ab + a � b is easily seen to verify

[Ma,Mb] = M[[a,b]].

Hence M yields an associative algebra morphism, still denoted by M , from U(A, �−, −�) to 
EndU(A, [−, −]). Using for example a Poincaré–Birkhoff–Witt basis, one can see that the mor-
phism

� : U(A, �−,−�) −→ U(A, [−,−])
v �−→ Mv.1

of U(A, �−, −�)-modules is bijective, which yields a new associative product ∗ on U(A, [−, −])
given by u ∗v := �

(
�−1(u).�−1(v)

)
. Now the identity of A extends to a unique surjective post-

associative algebra morphism κ : U(A, [−, −]) →→ B . The ideal Kerκ is stable by both products 
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. and �, hence by the product ∗, which thus descends to the quotient B . In particular, for any 
a, b, c ∈ B1 we have a ∗ b = ab + a � b, and

a ∗ b ∗ c = a · b · c + (a � b) · c + b · (a � c) + a · (b � c) + (a · b) � c + (a � b) � c.

An important example of post-Lie algebra is given by C∞(M, g). We suppose that the Lie 
group G, with Lie algebra g, acts transitively on the smooth manifold M. Any smooth map 
f ∈ C∞(M, g) defines a smooth vector field #f on M (i.e., a derivation of C∞(M)) via:

#f (g) := d

dt |t=0
g
(

exp
(
tf (x)

)
.x
)
. (46)

In the language of Lie algebroids, considering the tangent vector bundle and the trivial vector 
bundle E = M × g, the map # : C∞(M, g) → DerC∞(M) is the composition on the left with 
the anchor map ρ : E → TM defined by ρ(x, X) := d

dt |t=0
(exp tX).x.

Formula (46) also makes sense for g ∈ C∞(M, g) or g ∈ C∞(M, U(g)
)
. It is shown in [35]

that C∞(M, U(g)
)
, endowed with the pointwise product in U(g) as well as the product � given 

by f � g := #f (g) is a post-associative algebra. The Grossman–Larson product reflects the 
composition of differential operators, in the sense that we have

#(f ∗ g) = #f ◦ #g.

Similarly C∞(M, g), endowed with the pointwise Lie bracket in g and the product � given by 
f � g := #f (g) is a post-Lie algebra.

5.3. Free post-Lie algebras

It is proven in [35] that the free post-associative algebra DA generated by the set A is the 
algebra of A-decorated planar forests endowed with concatenation and left grafting. The latter is 
defined for any A-decorated planar rooted tree σ and forest τ :

σ � τ =
∑

v vertex of τ

σ ↘v τ , (47)

where σ ↘v τ is the decorated forest obtained by grafting the planar tree σ on the vertex v of 
the planar forest τ , such that σ becomes the leftmost branch, starting from vertex v, of this new 
tree. It is also well-known that the usual grafting product “→” given for non-planar rooted trees 
τ̃ by the same formula (47), satisfies the left pre-Lie identity:

σ̃1 → (̃σ2 → τ̃ ) − (̃σ1 → σ̃2) → τ̃ = σ̃2 → (̃σ1 → τ̃ ) − (̃σ2 → σ̃1) → τ̃ .

On the other hand, the linear span of A-decorated planar rooted trees endowed with the operation � of (47) is the free magmatic algebra,4 see [16]. The definition of σ � τ when σ is a decorated 

4 The free magma (MA, ∗) on a set A is the set of well-parenthesised words with letters in A. The binary operation 
∗ consists in putting each component between an extra pair of parentheses and concatenating them, e.g. ab ∗ c(de) =
(ab)
(
c(de)

)
. The free magmatic algebra 〈MA〉 is the vector space freely generated by MA , endowed by the bilinear 
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forest is given recursively with respect to the number of connected components of σ , using axiom 
(5).

As a result, the free post-Lie algebra PA generated by A is the free Lie algebra generated by 
the linear span of A-decorated planar rooted trees (see also [38]).

5.4. Lie–Butcher series

Let M be a homogeneous space under the action of a Lie group G with Lie algebra g, and let 
f := {fi}i∈A be a collection of smooth maps from M to g indexed by a set A. By freeness prop-
erty, there is a unique post-Lie algebra morphism Ff : PA → C∞(M, g) such that Ff ( i) = fi . 
The vector fields #Ff (σ ), where σ is a planar rooted A-decorated tree, are the so-called el-
ementary differentials. Similarly, Ff extends uniquely to a post-associative algebra morphism 
Ff : DA → C∞(M, U(g)

)
. This extended morphism also respects the Grossman–Larson prod-

uct of both sides.
A Lie–Butcher series is an element of C∞(M, U(g)

)[[h]] given by

LB(α,hf ) :=
∑
k≥0

∑
σ∈F

pl
A,k

hkα(σ )Fhf (σ ), (48)

where F pl

A,k is the set of A-decorated planar rooted forests with k vertices and α is a linear map 
from PA to the field k.

5.5. Three partial orders on planar forests

Let σ be any planar rooted forest, and v, w be two elements in its vertex set V (σ). Define a 
partial order < on V (σ) as follows: v < w if there is a path from one root to w passing through 
v. Roots are the minimal elements, and leaves are the maximal elements.

Following [1], we define a refinement � of this order to be the transitive closure of the relation 
R defined by: vRw if v < w, or both v and w are linked to a third vertex u ∈ V (σ), such that v
lies on the right of w, like this:

u

w v

,

or both v and w are roots, with v on the right of w.
A further refinement ≪ on V (σ) is the total order defined as follows: v ≪ w if and only if 

v occurs before w on a path exploring the rooted forest from right to left, starting from the root 
of the rightmost connected component:

extension of the product ∗. It is determined up to isomorphism by the universal property so that for any vector space V
endowed with a bilinear map # : V ×V → V and for any set map f : A → V , there is a unique linear map f : 〈MA〉 → V

respecting both bilinear products.
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1

27

9 58 36

410

A planar rooted tree with its vertices labelled according to total order≪.

5.6. The Hopf algebra of Lie group integrators

The universal enveloping algebra over the free post-Lie algebra PA endowed with the 
Grossman–Larson product and deshuffle coproduct5 is a connected Hopf algebra, graded by 
the number of vertices. Its graded dual is the Hopf algebra of Lie group integrators HA

MKW in-
troduced by Munthe-Kaas and Wright [35]. The convolution product on L(HA

MKW, k) is then the 
Grossman–Larson product naturally extended to series. The product is the shuffle product of pla-
nar forests (where the trees are the letters), and the coproduct is given in terms of left-admissible 
cuts [35]:


(τ) =
∑

V ′�V ′′=V (τ)
V ′′�V ′

(τ |
V ′)

�� ⊗ τ |
V ′′. (49)

Here (τ |
V ′)

�� is the shuffle product of the connected components of the poset (V ′, � |
V ′). Note 

that the restriction of the partial order � to V ′ is generally weaker than the partial order � of 
the forest τ |

V ′: the latter makes the poset V ′ connected, which is generally not the case for the 
former.

We note that the Hopf algebra of Lie group integrators HA
MKW, endowed with the basis of 

A-decorated planar forests, is a combinatorial Hopf algebra in the sense of Paragraph 3.2.

6. Planarly branched rough paths

We prove in this section the non-degeneracy of the combinatorial Hopf algebra HA
MKW of Lie 

group integrators endowed with the basis of A-decorated rooted forests, and we define planarly 
branched rough paths as HA

MKW-rough paths.

6.1. Tree and forest factorials, volume computations

For any s ≤ t ∈ R and any finite poset P we consider the domain

�st
P := {(tv)v∈P , s ≤ tv ≤ t and tv ≥ tw for v < w

}⊂ RP .

The factorial of the poset P is uniquely determined by

5 Uniquely determined by the fact that any A-decorated planar rooted tree is primitive.



9764 C. Curry et al. / J. Differential Equations 269 (2020) 9740–9782
Volume(�P
st ) = |t − s||P |

P ! . (50)

For any planar rooted forest τ (decorated or not), we set [25]:

τ ! := (V (τ),� )!
In particular, the factorial of a poset is the product of factorials of its connected components. 
Note, however, that our definition differs from L. Foissy’s definition given in [24, Definition 
33]. In particular, our notion of factorial is invariant under the canonical involution reversing the 
partial order, which is not the case for the poset factorial of [24].

The factorial τ̃ ! of a non-planar rooted forest τ̃ is the factorial of the underlying poset (
V (̃τ ), <

)
. The notations will always make clear whether a planar or non-planar forest factorial 

is considered, hence the common notation −! should not cause any confusion.

Lemma 6.1 ([25]). Let τ̃ (respectively σ ) be a non-planar (respectively planar) rooted forest. 
Then:

(1) For any s ≤ t ∈ R, the volume of the domain �st
τ̃ := �st

V (̃τ ),< is equal to 1
τ̃ ! (t − s)|̃τ |.

(2) For any s ≤ t ∈ R, the volume of the domain �st
V (σ ),� is equal to 1

σ ! (t − s)|σ |.
(3) The following identity holds:

1

τ̃ ! = Sym(̃τ )
∑
σ�τ̃

1

σ ! ,

where the sum runs over all the planar representatives σ of τ̃ , and where Sym(σ ) is the 
symmetry factor of the planar rooted forest σ .

Proof. The volume of �st
τ̃ is multiplicative, i.e., it is the product of the volumes of �st

c where 
c runs over the connected components of τ̃ . The inverse of the forest factorial shares the same 
property. Hence it is sufficient to check the result on trees. We proceed by induction on the 
number of vertices. The case of one vertex boils down to:

Vol(�st ) = t − s = 1

! (t − s).

Suppose that ̃τ = B+(f ) is a tree with at least two vertices. From (50) we get:

1

τ̃ ! = 1

|̃τ |
1

f ! .

On the other hand, using the induction hypothesis, we have

Vol(�st
τ̃ ) =

t∫
Vol(�sz

f ) dz
s
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= 1

f !
t∫

s

(z − s)|f | dz

= 1

f !
1

|̃τ | (t − s)|̃τ |

= 1

τ̃ ! (t − s)|̃τ |.

Now let σ be a planar rooted forest. The volume of �st
V (σ ),� is multiplicative for the shuffle 

product but not for the concatenation. However, any planar rooted forest σ admits a natural 
unique decomposition:

σ = σ ′ × σ ′′ = σ ′B+(σ ′′),

where σ ′ and σ ′′ are again (possibly empty) planar rooted forests. The poset (V (σ ), �) is ob-
tained by considering the direct product of the two posets (V (σ ′), �) and (V (σ ′′), �), and 
adding an extra element (the root of σ) smaller than any other element. From (50) again we get:

σ ! = |σ |σ ′!σ ′′! (51)

The second assertion is then proved recursively with a computation analogous to one above:

Vol(�st
V (σ ),�) =

t∫
z=s

Vol(�sz
V (σ ′),�)Vol(�sz

V (σ ′′),�) dz

= 1

σ ′!σ ′′!
t∫

z=s

(s − z)|σ ′|+|σ ′′| dz

= 1

|σ |σ ′!σ ′′! (t − s)|σ |

= 1

σ ! (t − s)|σ |.

Now let τ̃ be a non-planar rooted forest. For any v ∈ V (̃τ ), let St(v) be the set of vertices 
immediately above v, let Sv be the set of total orders on St(v), and finally let Sτ̃ be the product 
of the sets Sv for v ∈ V (̃τ ). Any element ≺ ∈ Sτ̃ obviously defines a binary relation on V (̃τ ), also 
denoted by ≺: to be precise, w′ ≺ w′′ if and only if there exists v ∈ V (̃τ ) such that w′, w′′ ∈ Stv
and w′ ≺ w′′ inside Stv . For any element ≺ ∈ Sτ̃ , let R≺ be the binary relation on V (̃τ ) defined 
by:

w′Rw′′ if and only if w′ < w′′ or w′ ≺ w′′,

and let �≺ be the transitive closure of R≺. This is a partial order refining the forest order <, 
which, by ordering the branches at any vertex, defines a unique planar representative σ≺ of ̃τ .
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The third assertion comes then from the following fact: the domain �st
τ̃ is the union of the 

domains �st
V (̃τ ),�≺ (mutually disjoint apart from a Lebesgue-negligible intersection) where ≺

runs over Sτ̃ . Now two elements ≺ and ≺′ give rise to the same planar representative σ if and 
only if the unique permutation of V (τ) which induces an increasing map from (St(v), ≺) onto 
(St(v), ≺′) is an automorphism of ̃τ . �

As a consequence, we easily obtain an analogue of Lemma 4.4 in reference [27]:

Corollary 6.2. For any rooted planar forest τ and for any h, k ≥ 0 the following holds:

(h + k)|τ | =
∑

V ′�V ′′=V (τ),
V ′′�V ′

τ !
(V ′,� |

V ′)! τ |
V ′′!

h|V ′|k|V ′′|.

Proof. Let s ≤ u ≤ t three real numbers, with u − s = h and t − u = k. From the definition of 
the domain �st

τ,� we immediately can express it as the following union with Lebesgue-negligible 
pairwise intersections:

�st
V (τ),� =

⋃
V (τ)=V ′�V ′′,

V ′′�V ′

�su
(V ′,�|V ′) × �ut

(V ′′,�|V ′′).

The conclusion then follows from item 2 of Lemma 6.1. �
Remark 6.3. The inversion of the order in the definition of �st

P is not really necessary, as this 
inversion amounts to a change of variables tv �→ s + t − tv , which does not change the volume. 
But it makes the proof slightly more direct.

Remark 6.4. Applying Corollary 6.2 in the special case h = k = 1 shows that τ �→ 1/τ ! ex-
tends linearly to the unique inverse-factorial character of the Hopf algebra HA

MKW taking value 
1 on the letters of A. As a consequence, the combinatorial Hopf algebra HA

MKW endowed with 
the decorated forest basis is non-degenerate. The analogue is true for non-planar forests and the 
A-decorated Butcher–Connes–Kreimer Hopf algebra, due to Lemma 4.4 in [27]. As a conse-
quence, assertion (3) of Lemma 6.1 can be derived in a purely algebraic way, using the Hopf 
algebra morphism � : HA

BCK → HA
MKW of [35] given by (53) below, as well as the functoriality 

of inverse-factorial characters.

Remark 6.5. Another interesting example comes from the extraction-contraction Hopf algebra 
HA

EC of reference [5], in which the grading is given by the number of edges. In view of the 
recursive definition of the inverse factorial character given in Paragraph 3.1, and due to the fact 
that the coproduct of a forest with n edges contains exactly 2n elements, the inverse factorial 
character is identically equal to 1 on any forest. It is however not clear whether one can consider 
the rather exotic corresponding notion of rough path as a driving object for some kind of rough 
differential equation.

By a straightforward iteration of (51) one obtains another recursive formula for the planar 
factorial:
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Proposition 6.6. Let σ = σ1 · · ·σk be a planar forest, decorated or not, with connected compo-
nents σj = B+(τj ), j = 1, . . . k. Then

σ ! = |σ1|.|σ1σ2| · · · |σ1 · · ·σk|τ1! · · · τk! (52)

6.2. Planarly branched rough paths

The notion of planarly branched rough paths is given in the next definition. It is motivated 
from a Hopf algebraic point of view. Its significance for controlled rough differential equations 
will become clear further below.

Definition 6.7. Let γ ∈]0, 1] and let A be a finite alphabet. A γ -regular planarly branched rough 
path is a γ -regular HA

MKW-rough path.

7. Simple and contracting arborification in the planar setting

7.1. A projection onto the shuffle Hopf algebra: planar arborification

Let A be an alphabet, and let HA
�� (resp. HA

MKW) be the shuffle Hopf algebra with letters in 
A (resp. the Hopf algebra of A-decorated planar forests). The planar arborification map a� :
HA

MKW → HA
�� sends any planar decorated forest to the sum of its linear extensions. It is defined 

for any degree n planar A-decorated forest τ = (τ , ϕ) as follows:

a�(τ ,ϕ) :=
∑

α:(V(τ),�)↗{1,...,n}
ϕ ◦ α−1(1) · · ·ϕ ◦ α−1(n),

where the sum runs over the increasing bijections from the poset 
(
V(τ ), �) onto {1, . . . , n}. As 

an example, we have:

a�( a

b

c) = bac, a�( c a

b

) = bca + cba.

This definition is directly inspired from the simple arborification map a :HA
BCK →HA

�� which 
sends any (non-planar) decorated forest to the sum of its linear extensions [19,20,23]. It is defined 
for any degree n non-planar A-decorated forest by:

a(f,ϕ) :=
∑

α:(V(f ),<)↗{1,...,n}
ϕ ◦ α−1(1) · · ·ϕ ◦ α−1(n),

where the sum runs over the increasing bijections from the poset 
(
V(f ), <) onto {1, . . . , n}.
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Lemma 7.1 (Canonical decomposition of planar forests).

(1) Any non-empty A-decorated planar forest τ admits a unique decomposition:

τ = τ ′ ×a τ ′′,

where τ ′ and τ ′′ are A-decorated planar forests, a ∈ A and τ ′ ×a τ ′′ stands for τ ′B+
a (τ ′′).

(2) The planar arborification map can be recursively defined by a�(1) = 1 and

a�(τ ′ ×a τ ′′) = [a�(τ ′)��a�(τ ′′)]a.

Proof. The first assertion is straightforward, the second is a direct consequence of the poset 
structure of V (τ ′ ×a τ ′′) = V (τ ′) � V (τ ′′) � {a} under the partial order �, which is entirely 
determined by the fact that

(1) the restriction of � to V (τ ′) is the partial order � determined by the planar forest τ ′, and 
similarly for τ ′′,

(2) a ∈ A is the unique minimum,
(3) vertices of τ ′ are incomparable with vertices of τ ′′. �
Theorem 7.2. The planar arborification map a� is a surjective Hopf algebra morphism, combi-
natorial if the alphabet A is finite, and the diagram below commutes.

HA
BCK

�

a

HA
MKW

a�

HA
��

where � is the symmetrization map [35, Definition 8].

Proof. It is well-known that a and � are Hopf algebra morphisms [23,35]. The map � is given 
by:

�(f ) = Sym(f )
∑

τ→→f

τ , (53)

from which the commutation of the diagram easily follows. It only remains to prove by direct 
checking that a� respects the Hopf algebra structures. For any A-decorated planar forests τ, ω
which admit canonical decompositions τ = τ ′ ×a τ ′′ and ω = ω′ ×b ω′′ according to Lemma 7.1, 
we compute, using induction on the sum of degrees |τ | + |ω|:
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a�(τ ��ω) = a�
(
(τ ′ ×a τ ′′)�� (ω′ ×b ω′′)

)
= a�

(
τ ′B+

a (τ ′′)��ω′B+
b (ω′′)

)
= a�

(
[τ ′ ��ω′B+

b (ω′′)]B+
a (τ ′′) + [τ ′B+

a (τ ′′)��ω′]B+
b (ω′′)

)
= a�

(
[τ ′ �� (ω′ ×b ω′′)] ×a τ ′′ + [(τ ′ ×a τ ′′)��ω′] ×b ω′′)

=
[
a�
(
τ ′ �� (ω′ ×b ω′′)

)
��a�(τ ′′)

]
a +
[
a�
(
(τ ′ ×a τ ′′)��ω′)��a�(ω′′)

]
b

=
[
a�(τ ′)��a�(ω′ ×b ω′′)��a�(τ ′′)

]
a +
[
a�(τ ′ ×a τ ′′)��a�(ω′)��a�(ω′′)

]
b

=
[
a�(τ ′)��

[
a�(ω′)��a�(ω′′)

]
b��a�(τ ′′)

]
a

+
[[
a�(τ ′)��a�(τ ′′)

]
a ��a�(ω′)��a�(ω′′)

]
b

=
[
a�(τ ′)��a�(τ ′′)

]
a ��
[
a�(ω′)��a�(ω′′)

]
b

= a�(τ )��a�(ω).

To check compatibility with coproducts, we introduce the linear operator of left concatenation, 
La : HA

�� → HA
�� , defined by La(w) = wa for any word w ∈ A∗. It clearly verifies:

La ◦ a� = a� ◦ B+
a .

For any A-decorated planar forest τ = τ ′ ×a τ ′′ we compute, using induction on the degree |τ |:


a�(τ ) = 

([
a�(τ ′)��a�(τ ′′)

]
a
)

= (Id⊗La)

(
a�(τ ′)��a�(τ ′′)

)
+ a�(τ ) ⊗ 1

= (Id⊗La)
(

a�(τ ′)��
a�(τ ′′)

)
+ a�(τ ) ⊗ 1

= (Id⊗La)
(
(a� ⊗ a�)
τ ′ �� (a� ⊗ a�)
τ ′′)+ a�(τ ) ⊗ 1

= (a� ⊗ a�)
(
(Id⊗B+

a )(
τ ′ ��
τ ′′) + τ ⊗ 1
)

= (a� ⊗ a�)
(
(Id⊗B+

a )
(

(τ ′ �� τ ′′)

)+ τ ⊗ 1
)

= (a� ⊗ a�)(
τ).

Compatibility with units and co-units is immediate, and compatibility with antipodes comes for 
free due to connectedness of both Hopf algebras. �
Proposition 7.3. Let γ ∈]0, 1], let A be a finite alphabet with d letters, and let Xst be a γ -
regular rough path in the classical sense on Rd . Then its arborified version X̃st := Xst ◦ a� is a 
γ -regular planarly branched rough path on Rd .

Proof. This is an immediate consequence of Proposition 4.8. �
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Proposition 7.3 calls for the following definition:

Definition 7.4. A γ -regular planarly branched rough path Zst on Rd is geometric if there exists 
a γ -regular rough path Xst in the classical sense such that Zst is its arborified version, i.e.

Zst = Xst ◦ a�.

Remark 7.5. Any geometric rough path is then planarly branched by definition. The converse 
is true at the price of inflating the alphabet, as in the branched case [28, Paragraph 4.2]. Indeed, 
the Hopf algebra HA

MKW is, as an algebra, the shuffle algebra of the set of A-decorated planar 
rooted trees. Any planarly branched rough path is then geometric provided this bigger alphabet 
is considered.

7.2. Planar contracting arborification

We present a contracting version of planar arborification which has some interest in its own 
right, although it will not be directly used in the present paper. Suppose that the alphabet A carries 
an Abelian semigroup structure (a, b) �→ [a + b]. The quasi-shuffle Hopf algebra is isomorphic 
to HA

�� as coalgebra. The quasi-shuffle product is recursively defined by ∅ ��- w = w��- ∅ = w for 
any word w ∈ A∗ and:

av��- bw = a(v��- bw) + b(av��- w) + [a + b](v��- w)

for any letters a, b ∈ A and words (v, w) ∈ A∗. For example, a��- b = ab + ba + [a + b], and 
ab��- c = abc + acb + cab + [a + c]b + a[b + c]. It is well-known [30] that the quasi-shuffle 
product together with deconcatenation give rise to a Hopf algebra HA

��- isomorphic to the shuffle 
Hopf algebra HA

�� .
The planar contracting arborification map ac� : HA

MKW → HA
��- sends any planar decorated 

forest to the sum of its linear extensions including contraction terms. It is defined for any degree 
n planar A-decorated forest as follows:

a�(τ,ϕ) :=
∑
r≥0

∑
α:(V (τ),�)↗↗{1,...,n−r}

ϕ ◦ α−1(1) · · ·ϕ ◦ α−1(n − r)

where the inner sum runs over the increasing surjections from the poset 
(
V (τ), �) onto 

{1, . . . , n − r}, i.e., surjective maps α such that u � u′ ∈ V (τ) and u �= u′ implies α(u) < α(u′). 
It can happen that α−1(j) contains several terms: in that case, ϕ ◦ α−1(j) is to be understood as 
the sum in A of the terms ϕ(u), u ∈ α−1(j). As an example, we have:

ac�( a

b

c) = bac, ac�( c a

b

) = bca + cba + [b + c]a.

This definition is directly inspired from the contracting arborification map ac : HA
BCK → HA

��-
which sends any (non-planar) decorated forest to the sum of its linear extensions including con-
traction terms [18–20,23]. It is defined for any degree n non-planar A-decorated forest by:
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ac(f,ϕ) :=
∑
r≥0

∑
α:(V (f ),<)↗↗{1,...,n−r}

ϕ ◦ α−1(1) · · ·ϕ ◦ α−1(n)

where the inner sum runs over the increasing surjections from the poset 
(
V (f ), <) onto 

{1, . . . , n − r}, and is a surjective Hopf algebra morphism from HA
BCK onto HA

��- .
An analogue of Theorem 7.2 holds:

Theorem 7.6.

(1) The planar contracting arborification map can be recursively defined by ac�(1) = 1 and

ac�(τ ′ ×a τ ′′) = [ac�(τ ′)��- ac�(τ ′′)]a.

(2) The planar contracting arborification map ac� is a surjective Hopf algebra morphism, com-
binatorial if the alphabet A is finite, and the diagram below commutes.

HA
BCK

�

ac

HA
MKW

ac�

HA
��-

Proof. Entirely similar to proof of the analogous results on planar arborification on Paragraph 
7.1. Details are left to the reader. �
8. Rough differential equations on homogeneous spaces

In this section, we prove the convergence of the formal solutions of the rough differential 
equation (1) under particular analyticity assumptions.

8.1. Formal solutions of a rough differential equation on a homogeneous space

Let t �→ Xt := (X1
t , . . . , X

d
t ) be a differentiable path with values in Rd . Let A = {a1, . . . , ad}

be an alphabet with d letters. The controlled differential equation we are looking at writes:

dYst =
d∑

i=1

#fi(Yst ) dXi
t (54)

with initial condition Yss = y. The unknown is a path Ys : t �→ Yst in a homogeneous space M, 
with transitive action (g, y) �→ g.y of a Lie group G on it. The elements in f := {fi}di=1 are 
smooth maps from M into the Lie algebra g = Lie(G), which in turn define smooth vector fields 
y �→ #fi(y) on M:
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#fi(y) := d

dt |t=0
exp
(
tfi(y)

)
.y ∈ TyM. (55)

It has been explained in the Introduction how Equation (54) is lifted to the following differential 
equation with unknown Y st ∈ C∞(M, U(g)

)[[h]] and step size h = t − s:

dY st =
d∑

i=1

Y st ∗ fi dXi
t (56)

with initial condition Y ss = 1. Recall that the ∗ product stands for the Grossman–Larson product 
in the post-associative algebra C∞(M, U(g)

)
. The formal solution of (54) is recovered by

ψ(Yst ) = (#Y st .ψ)(y), (57)

for any test function ψ ∈ C∞(M). A further step in abstraction leads to the fundamental differ-
ential equation in the character group of the Hopf algebra HA

MKW:

dYst =
d∑

i=1

Yst ∗ i dXi
t (58)

with initial condition Yss = 1. The ∗ product now stands for the Grossman–Larson product in 
the completed free post-associative algebra D̂A generated by A. The solution of (56) then is 
obtained by Yst = Ff (Yst ), where Ff is the h-adic completion (with h = t − s) of the unique 
post-associative algebra morphism from DA to C∞(M, U(g)

)
which sends j to fj . By using 

the integral formulation and Picard iteration, the solution of (58) is given by the word series 
expansion:

Yst =
∑
�≥0

∑
w=ai1 ···ai�

∈A∗
〈Xst ,w〉 i� ∗ · · · ∗ i1 . (59)

Theorem 8.1 (Planar arborification-coarborification transform). The solution of (58) is given 
by the following expansion indexed by A-decorated planar rooted forests:

Yst =
∑

τ∈FA
pl

〈Xst ◦ a�, τ 〉τ. (60)

Proof. For any τ ∈ Fpl, let L(τ ) be the set of linear extensions of τ , i.e., the set of total orders ≺
on V (τ) compatible with the partial order �, i.e., such that u � v ⇒ u ≺ v for any u, v ∈ V (τ). 
Now let τ = (τ , α) be an A-decorated forest, and let τ≺ be the word in A∗ obtained from (τ , α)

by displaying the decorations of the vertices of τ from left to right according to the total order ≺. 
We will use the notation L(τ ) instead of L(τ). It can be easily shown that the planar arborification 
admits the following explicit expression:

a�(τ ) =
∑

≺∈L(τ )

τ≺.

The following lemma is easily proven by induction on the length:
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Lemma 8.2. For any word w = ai1 · · ·ain ∈ A∗, we have:

in ∗ · · · ∗ i1 =
∑

τ∈T
[n]
pl

∑
≺∈L(τ )

(τ ,α≺), (61)

where α≺ : V (τ) → A is the decoration map which sends the j -th vertex to aij according to ≺.

The total number of terms is n!. For example we have

j ∗ i = j i + j
i , k ∗ j ∗ i = k j i + k

j i + jk
i + j

i

k

+ j
k
i + k

j
i .

We compute, using Lemma 8.2:

Yst =
∑
�≥0

∑
w=ai1 ···ai�

∈A∗
〈Xst ,w〉 i� ∗ · · · ∗ i1

=
∑
�≥0

∑
w=ai1 ···ai�

∈A∗
〈Xst ,w〉

∑
τ∈T

[n]
pl

∑
≺∈L(τ )

(τ ,α≺)

=
∑

τ∈T A
pl

∑
≺∈L(τ )

〈Xst , τ≺〉 τ

=
∑

τ∈T A
pl

〈Xst ◦ a�, τ 〉τ. �

Theorem 8.1 calls for the following definition.

Definition 8.3. Let γ ∈]0, 1] and let t �→ Xt := (X1
t , . . . , X

d
t ) be a γ -Hölder continuous path 

with values in Rd . A formal solution of Equation (54) driven by X is defined by

Yst = #Ff (Yst )(y) (62)

where Yst is given by the expansion

Yst =
∑

τ∈FA
pl

〈X̃st , τ 〉τ (63)

where X̃st is any γ -regular planarly branched rough path such that 〈X̃st , j 〉 = X
j
t − X

j
s for any 

j ∈ {1, . . . , d}.

We will freely identify the planarly branched rough path X̃st with the expansion Yst as grou-
plike elements of the dual of HA

MKW.
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8.2. Cauchy estimates

We borrow material from [19], see also [20,12], adapting it to general homogeneous spaces. 
For any compact neighbourhood U of the origin in Cn, let AU be the subspace of analytic germs 
defined on U . We have precisely

AU = {ϕ, ‖ϕ‖U < +∞},

with the norm

‖ϕ‖U := sup
y∈U

|ϕ(y)|

making AU a Banach space. Now let V be another compact neighbourhood of the origin such 
that V ⊂ Ů . We consider the operator norm defined for any linear operator P : AU → AU by

‖P ‖U ,V = sup
ϕ∈AU−{0}

‖Pϕ‖V
‖ϕ‖U .

The two following lemmas are straightforward.

Lemma 8.4. Let 0 ∈ V ⊂ Ů ⊂ U be two compact neighbourhoods of the origin, and let f ∈ AU . 
Let P : AU →AU be a linear operator. Denoting by f : AU → AU the pointwise multiplication 
operator by f , then the following estimate holds:

‖f P ‖U ,V ≤ ‖f ‖V‖P ‖U ,V .

Lemma 8.5. Let 0 ∈ V ⊂ W̊ ⊂ W ⊂ Ů ⊂ U be three compact neighbourhoods of the origin, and 
let P, Q : AU → AU be a two linear operators. Then we have:

‖P ◦ Q‖U ,V ≤ ‖P ‖W,V‖Q‖U ,W .

Proposition 8.6. Let 0 ∈ V ⊂ Ů ⊂ U be two compact neighbourhoods of the origin, and let r > 0
be such that the n-fold product of open disks of radius r centred at y is included in U for any 
y ∈ V . Let f =∑n

α=1 f α∂α be a vector field on U with analytic coefficients, and let us define

‖f ‖V := sup
α=1,...,n

‖f α‖V .

Then we have:

‖f ‖U ,V ≤ n‖f ‖V
r

.

Proof. This is an immediate application of Lemma 8.4 and the Cauchy estimate for the partial 
derivation operator ∂α , which is immediately derived from the Cauchy integral formula
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ϕ(y) = ϕ(y1, . . . , yn) = 1

(2iπ)

∫
Cα

ϕ(y1, . . . yα−1, ηα, yα+1, . . . , yn)

ηα − yα

dηα,

valid for any ϕ ∈ AU and for any y ∈ V , where Cα is the circle of radius r in C centred at yα , 
counterclockwise oriented. �
Corollary 8.7. Let 0 ∈ V ⊂ Ů ⊂ U be two compact neighbourhoods of the origin, and let r > 0
be such that the open polydisk of radius r centred at y is included in U for any y ∈ V . Let 
f = {f1, . . . , fk} be a finite collection of vector fields

fj =
n∑

α=1

f α
j ∂α

on U with analytic coefficients, and let us define

‖f ‖V := sup
α=1,...,n
j=1,...,k

‖f α
j ‖V ,

and ‖f ‖U similarly. Then we have:

‖f1 ◦ · · · ◦ fk‖U ,V ≤
(

n‖f ‖U
r

)k

kk.

Proof. The case k = 1 is covered by Proposition 8.6. For k ≥ 2, we define intermediate compact 
neighbourhoods

V = V0 ⊂ V1 ⊂ · · · ⊂ Vk = U

as follows: Vj is the closure of the union of the polydisks of radius r/k centred at any point 
of Vj−1, for any j ∈ {1, . . . , k − 1}. The result follows then from Proposition 8.6 and the k-
fold iteration of Lemma 8.5 associated with these data, as well as from the obvious inequality 
‖f ‖Vj

≤ ‖f ‖U for any j = 1, . . . , k. �
8.3. Convergence of a formal solution

We address the question whether the formal diffeomorphism Yst := #Ff (Yst ) converges at 
least for |t − s| sufficiently small. Any homogeneous space M under the action of a finite-
dimensional Lie group has a canonical analytic structure. We denote by Cω(M, V ) the space of 
weakly analytic maps form M into a vector space V . We suppose that the data f = {fj }dj=1 are 
analytic maps from M to g, thus yielding analytic vector fields #fj on M. Choosing y ∈M and 
two compact chart neighbourhoods U , V such that y ∈ V ⊂ Ů , we have to prove that the operator 
norm ‖Yst‖U ,V is finite for small h = t − s.

Choosing a basis (Eα)α=1,...,N of the Lie algebra g, we have:

fj =
N∑

f̃
β
j Eβ, #Eβ =

n∑
εα
β∂α, (64)
β=1 α=1
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where the coefficients f̃ β
j and εα

β are analytic on U , and where

‖f̃ ‖V := sup
j=1,...,d
β=1,...,N

‖f̃ β
j ‖V .

Theorem 8.8. There exists a positive constant CU ,V such that for any A-decorated rooted planar 
forest σ = σ1 · · ·σk with connected components σj = B

aj

+ (τj ), the following estimates hold:

‖f̃ β
σ ‖V ≤ τ1! · · · τk!C|σ |−k

U ,V ‖f̃ ‖|σ |
U , (65)

where the coefficients f̃ β
σ ∈ Cω(U) are considered with respect to the Poincaré–Birkhoff–Witt 

basis:

Fσ =
∑

β∈{1,...,N}k
β1≤···≤βk

f̃ β
σ Eβ ,

and

‖#Fσ ‖U ,V ≤ σ !C|σ |
U ,V‖f̃ ‖|σ |

U . (66)

Proof. Let us first treat the case |τ | = 1, i.e., τ = j , j = 1, . . . , d . Estimate (65) holds by defi-
nition of ‖f̃ ‖V . Applying Proposition 8.6 we have:

‖#Eβ‖U ,V ≤ n‖ε‖V
r

, (67)

where r > 0 is chosen so that any polydisk of radius r centred at a point of V is included in U , 
and where

‖ε‖V := sup
α=1,...,n
β=1,...,N

‖εα
β‖V .

Applying Estimate (67) and Lemma 8.4 we get the estimates:

‖#fj‖U ,V ≤ nN‖f̃ ‖V‖ε‖V
r

. (68)

We introduce the constant

CU ,V := e
nN‖ε‖U

r
, (69)

so that we immediately get

‖#fj‖U ,V ≤ CU ,V‖f̃ ‖V ≤ CU ,V‖f̃ ‖U , (70)
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which is estimate (66). Let us now proceed by induction to the higher degree case. The necessity 
of the extra Euler prefactor e = 2, 71828... in (69) will appear in the proof, as a consequence 
of the inequality kk ≤ ekk! coming from Stirling’s formula. For any decorated planar forest 
σ = σ1 · · ·σk with connected components σj , we can write its decomposition in the Poincaré–
Birkhoff–Witt basis:

Fσ =
∑

β∈{1,...,N}k
β1≤···≤βk

f̃ β
σ Eβ (71)

with f̃ β
σ = f̃

β1
σ1 · · · f̃ βk

σk
and Eβ = Eβ1 · · ·Eβk

∈ U(g). Two cases occur for higher-degree forests:

(1) First case: the decorated forest τ is not a tree, i.e., k ≥ 2. In this case we have, using the 
induction hypothesis on each connected component,

‖f̃ β
σ ‖V ≤

k∏
j=1

‖f̃ βj
σ ‖U

≤ τ1! · · · τk!C|σ |−k

U ,V ‖f̃ ‖|σ |
U .

From decomposition (71) and Proposition 8.7 we get then:

‖#Fσ ‖U ,V ≤ τ1! · · · τk!C|σ |−k

U ,V ‖f̃ ‖|σ |
U

∑
β∈{1,...,N}k
β1≤···≤βk

‖Eβ‖U ,V

≤ Nkτ1! · · · τk!C|σ |−k

U ,V ‖f̃ ‖|σ |
U

(
n‖ε‖U

r

)k

kk

≤ k!τ1! · · · τk!C|σ |
U ,V‖f̃ ‖|σ |

U

≤ σ !C|σ |
U ,V‖f̃ ‖|σ |

U .

The last inequality derives from the recursive formula (52) for the planar factorial.
(2) Second case: k = 1, i.e., the decorated forest is a tree σ = B+

aj
(τ ). From the definition

Fσ = Fτ � fj (72)

we get

f̃ β
σ = (#Fτ ).f̃

β
j (73)

for any β ∈ {1, . . . , N}. Applying the induction hypothesis to τ and Lemma 8.4, we get:

‖f̃ β
σ ‖U ≤ ‖#Fτ‖U ,V‖f β

j ‖U
≤ C

|τ |
U ,Vτ !‖f̃ ‖|τ |+1

U

≤ C
|σ |−1

τ !‖f̃ ‖|σ |
.
U ,V U
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Finally, from (71) in the special case k = 1 we derive:

‖#Fσ ‖U ,V ≤ τ !C|σ |−1
U ,V ‖f̃ ‖|σ |

U
∑

β∈{1,...,N}
‖Eβ‖U ,V

≤ Nτ !C|σ |−1
U ,V ‖f̃ ‖|σ |

U

(
n‖ε‖U

r

)
≤ τ !C|σ |

U ,V‖f̃ ‖|σ |
U

≤ σ !C|σ |
U ,V‖f̃ ‖|σ |

U . �
Corollary 8.9. The series ‖Yst‖U ,V is dominated by a series of Gevrey type 1 − γ with respect 
to the variable |t − s|γ .

Proof. Recall that a power series 
∑

k≥0 bkx
k is of Gevrey type β ≥ 0 if and only if there exists 

a constant C > 0 such that

|bk| ≤ Ck(k!)β . (74)

The series Yst is given by 
∑

k≥0 ak , with

ak =
∑

τ∈FA
pl,k

〈X̃st , τ 〉#Fτ .

We compute, using estimates (29), (42), (66), and the majoration of the number of planar A-
decorated rooted forests of degree k by (4d)k :

‖ak‖U ,V =

∥∥∥∥∥∥∥
∑

τ∈FA
pl,k

〈X̃st , τ 〉#Fτ

∥∥∥∥∥∥∥
U ,V

≤
∑

τ∈FA
pl,k

|〈X̃st , τ 〉|.‖#Fτ‖U ,V

≤
∑

τ∈FA
pl,k

c|τ |qγ (τ )‖#Fτ‖U ,V

≤
∑

τ∈FA
pl,k

c|τ |C|τ |
γ

|τ !|1−γ

τ ! τ !|t − s|γ |τ |C|τ |
U ,V‖f̃ ‖|τ |

V

≤ (4dcCγ CU ,V‖f̃ ‖V
)k

(k!)1−γ |t − s|γ k. �
Corollary 8.10. In the case when the driving path X is Lipschitz, i.e., if γ = 1, the norm 
‖Yst‖U ,V is finite for small h = t − s.
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Appendix A. The sewing lemma

Let S, T be two real numbers with S < T . A map  from [S, T ] × [S, T ] into a vector space 
B is additive if it verifies the chain rule (s, t) = (s, u) + (u, t) for any s, u, t ∈ [S, T ]. 
In that case there obviously exists a map ϕ : [S, T ] → B , unique up to an additive constant, 
such that (s, t) = ϕ(t) − ϕ(s). Indeed, choose an arbitrary origin o ∈ [S, T ] and set ϕ(t) :=
(o, t).

Loosely speaking, the sewing lemma stipulates that, under an appropriate completeness as-
sumption on the vector space B , a nearly additive map (s, t) �→ μ(s, t) is nearly given by a 
difference ϕ(t) − ϕ(s), in the sense that if μ(s, t) − μ(s, u) − μ(u, t) is small, then there is a 
unique ϕ, defined up to an additive constant, such that μ(s, t) − ϕ(t) + ϕ(s) is small. In view of 
the importance of this result, we give an account of it in the precised version given by Gubinelli, 
together with a detailed proof adapted from [21]. See also [22]. For the original proof, see [26, 
Appendix A1].

Proposition A.1. [26, Proposition 1] Let μ be a continuous function on a square [S, T ] ×[S, T ]
with values in a Banach space B , and let ε > 0. Suppose that there exist a positive integer n and 
two collections ai, bi ≥ 0 indexed by i ∈ {1, . . . , n}, with ai + bi = 1 + ε, such that μ satisfies:

|μ(s, t) − μ(s,u) − μ(u, t)| ≤
n∑

i=1

Ci |t − u|ai |u − s|bi (75)

for any s, t, u ∈ [S, T ] with s ≤ u ≤ t or t ≤ u ≤ s, where the Ci ’s are positive constants. Then 
there exists a function ϕ : [S, T ] → B , unique up to an additive constant, such that:

|ϕ(t) − ϕ(s) − μ(s, t)| ≤ C′|t − s|1+ε, (76)

where the best constant in (76) is

C′ := 1

21+ε − 2

n∑
i=1

Ci.

The proof, adapted from reference [21], is based on dyadic decompositions of intervals. A 
sequence (μn)n≥0 of continuous maps from [S, T ] × [S, T ] into B is defined by μ0 = μ and

μn(s, t) :=
2n−1∑
i=0

μ(ti, ti+1) (77)

with ti = s + i(t − s)2−n. Denoting by C the sum C1 + · · · + Cn, the estimate

|μn+1(s, t) − μn(s, t)| ≤ C2−nε−1−ε|t − s|1+ε

holds, which is easily seen by applying (75) to each of the 2n intervals in (77). Hence the se-
quence (μn)n≥0 is Cauchy in the complete metric space C([S, T ]2, B) of continuous maps from 
[S, T ] × [S, T ] into B endowed with the uniform convergence norm:
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‖f ‖ := sup
(s,t)∈[S,T ]2

‖f (s, t)‖B,

and thus converges uniformly to a limit , which moreover verifies:

|(s, t) − μ(s, t)| ≤ 2−1−εC|t − s|1+ε
∑
n≥0

2−nε = C|t − s|1+ε 1

21+ε − 2
. (78)

Lemma A.2. The limit  is additive, that is, it satisfies

(s, t) = (s,u) + (u, t)

for any s, u, t ∈ [S, T ].

Proof. From μn+1(s, t) = μn

(
s, (s + t)/2

)+ μn

(
(s + t)/2, t

)
we get that  is semi-additive, 

i.e., it satisfies

(s, t) = 
(
s, (s + t)/2

)+ 
(
(s + t)/2, t

)
for any s, t ∈ [S, T ]. Moreover,  is the unique semi-additive map satisfying estimates (78). 
Indeed, if � is another one, then

|( − �)(s, t)| =
∣∣∣∣∣∣
2n−1∑
i=0

( − �)(ti+1 − ti )

∣∣∣∣∣∣
≤ 2C′

2n−1∑
i=0

|ti+1 − ti |1+ε

≤ 2C′|t − s|2−nε

with C′ = C/(21+ε − 2). Hence � =  by letting n go to infinity. Now, if r is any positive 
integer, then the map �r defined by

�r(s, t) =
r−1∑
j=0

(tj , tj+1),

with tj = s + j (t − s)/r , is also semi-additive, hence �r = . From this we easily get

(s, t) = (s,u) + (u, t)

for any rational barycentre u of s and t , i.e., such that u = as + (1 − a)t with a ∈ [0, 1] ∩ Q. 
Additivity of  follows from continuity. �

The proof of Proposition A.1 follows by choosing ϕ(t) := (o, t) for any fixed but arbitrary 
o ∈ [S, T ]. Uniqueness of ϕ up to an additive constant follows immediately from the uniqueness 
of the additive function  satisfying estimate (78).
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