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Abstract We organize colored aromatic trees into a pre-Lie–Rinehart algebra (i.e.,
a flat torsion-free Lie–Rinehart algebra) endowed with a natural trace map, and show
the freeness of this object among pre-Lie–Rinehart algebras with trace. This yields
the algebraic foundations of aromatic B-series.
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1 Introduction

In the analysis of structure preserving discretisation of differential equations, series
developments indexed by trees are fundamental tools. The relationship between alge-
braic and geometric properties of such series has been extensively developed in recent
years. Themother of all these series is B-series, introduced the seminal works of John
Butcher in the 1960s [2, 3]. However, the fundamental idea of denoting analytical
forms of differential calculus with trees was conceived already a century earlier by
Cayley [4].
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Amodern understanding ofB-series stems from the algebra of flat and torsion-free
connections naturally associatedwith locally Euclidean geometries. The vector fields
on R

d form a pre-Lie algebra L with product given by the connection � in (9). The
free pre-Lie algebra is the vector space spanned by rooted trees with tree grafting as
the product [5]. A B-series can be defined as an element Ba in the graded completion
of the free pre-Lie algebra, yielding infinite series of trees with coefficients a(t) ∈ R

for each tree t . By the universal property, a mapping �→ f ∈ L , sending the single
node tree to a vector field, extends uniquely to amapping Ba �→ Ba( f ), where Ba( f )
is an infinite series of vector fields

Ba( f ) = a( ) f + a( ) f � f + a( )( f � f ) � f + a( )
(
f � ( f � f ) − ( f � f ) � f

) + · · · .

On the geometric side, it has recently been shown [11] that B-series are intimately
connected with (strongly) affine equivariant families of mappings of vector fields on
Euclidean spaces. An infinite family of smooth mappings �n : XR

n → XR
n for

n ∈ N has a unique B-series expansion Ba if and only if the family respects all affine
linear mappings ϕ(x) = Ax + b : Rm → R

n . This means that f ∈ XR
n being ϕ-

related to g ∈ XR
m implies�n( f ) beingϕ-related to�m(g). Subject to convergence

of the formal series we have �n( f ) = Ba( f ).
AromaticB-series is a generalizationwhichwas introduced for the studyof volume

preserving integration algorithms [6, 10], more recently studied in [1, 12]. The
divergence of a tree is represented as a sum of “aromas”, graphs obtained by joining
the tree root to any of the tree’s nodes. Aromas are connected directed graphs where
each node has one outgoing edge. They consist of one cyclic sub-graph with trees
attached to the nodes in the cycle. Aromatic B-series are indexed by aromatic trees,
defined as a tree multiplied by a number of aromas.

The geometric significance of aromatic B-series is established in [12]. Con-
sider a smooth local mapping of vector fields on a finite-dimensional vector space,
� : XR

d → XR
d . “Local”means that the support is non-increasing, supp (�( f )) ⊂

supp ( f ). Such a mapping can be expanded in an aromatic B-series if and only
if it is equivariant with respect to all affine (invertible) diffeomorphisms ϕ(x) =
Ax + b : Rd → R

d . An equivalent formulation of this result is in terms of the pre-
Lie algebra L = (XR

d , �) defined in the Canonical example of Sect. 2.4. The iso-
morphisms of L are exactly the pullback of vector fields by affine diffeomorphisms
ξ( f ) = A−1 f ◦ ϕ, hence,

Theorem 1.1 Let L be the canonical pre-Lie algebra of vector fields on a finite-
dimensional euclidean space. A smooth local mapping � : L → L can be expanded
in an aromatic B-series if and only if � ◦ ξ = ξ ◦ � for all pre-Lie isomorphisms
ξ : L → L.

This result shows that aromatic B-series have a fundamental geometric signif-
icance. The question to be addressed in this paper is to understand their algebraic
foundations. In what sense can aromatic B-series be defined as a free object in some
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category? Trees represent vector fields and aromas represent scalar functions on a
domain. The derivation of a scalar field by a vector field is modeled by grafting
the tree on the aromas. A suitable geometric model for this is pre-Lie algebroids,
defined as Lie algebroids with a flat and torsion-free connection [13]. Lie algebroids
are vector bundles on a domain together with an “anchor map”, associating sections
of the vector bundle with derivations of the ring of smooth scalar functions.

The algebraic structure of Lie algebroids is captured through the notion of Lie–
Rinehart algebras; the aromatic trees form a module over the commutative ring of
aromas, acting as derivations of the aromas through the anchormap given by grafting.
However, it turns out that the operations of divergence of trees and the grafting anchor
map are not sufficient to generate all aromas. Instead, a sufficient set of operations
to generate everything is obtained by the graph versions of taking covariant exterior
derivatives of vector fields and taking compositions and traces of the corresponding
endomorphisms. These operations are well defined on any finite-dimensional pre-Lie
algebroid. However, for the Lie–Rinehart algebra of aromas and trees the trace must
be defined more carefully, since, e.g., the identity endomorphism on aromatic trees
does not have a well-defined trace.

In this paper, we define the notion of tracial pre-Lie-Rinehart algebras and show
that the aromatic B-series arise from the free object in this category.

2 Lie–Rinehart and Pre-Lie–Rinehart Algebras

Lie–Rinehart algebraswere introducedbyGeorgeS.Rinehart in 1963 [14]. Theyhave
been thoroughly studied by several authors since then, in particular by J.Hübschmann
who emphasized their important applications in Poisson geometry [8]. After a brief
reminder on these structures, we introduce pre-Lie–Rinehart algebras which are
Lie–Rinehart algebras endowed with a flat and torsion-free connection. We also
introduce the mild condition of traciality for Lie–Rinehart algebras. The main fact
(Corollary2.8) states the traciality of any finite-dimensional Lie algebroid over a
smooth manifold.

2.1 Reminder on Lie–Rinehart Algebras

Let k be a field, and let R be a unital commutative k-algebra. Recall that a Lie–
Rinehart algebra over R consists of an R-module L and an R-linear map

ρ : L �→ Derk(R, R)

(the anchor map), such that

• L is a k-bilinear Lie algebra with bracket [[−,−]],
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• The anchor map ρ is a homomorphism of Lie algebras,
• For f ∈ R and X,Y ∈ L the Leibniz rule holds:

[[X, f Y ]] = (
ρ(X) f

)
Y + f [[X,Y ]]. (1)

Remark 2.1 In the original article [14], G.Rinehart does not state that the anchor
map should be a Lie algebra homomorphism. However, all articles on Lie-Rinehart
algebras from the last two decades seem to require this. In the much-cited article by
J. Hübschmann [8] from 1990 it is not quite clear whether this is required, but again
in later articles like [9] from 1998 and onwards, he explicitly requires the anchor
map to be a Lie algebra homomorphism.

If one does not require the anchor map to be a Lie algebra homomorphism, then
if Ann(L) is the annihilator of L in R, it is easy to see that L will be a Lie–Rinehart
algebra over R/Ann(L), with the anchor map being a Lie algebra homomorphism.
In particular, for Lie algebroids (see Sect. 2.2), then Ann(L) = 0, and the anchor
map will automatically be a Lie algebra homomorphism.

A homomorphism (α, γ) : (L , R) → (K , S) of Lie–Rinehart algebras consists
of a Lie k-algebra homomorphism α and k-algebra homomorphism γ:

α : L → K , γ : R → S

such that for f ∈ R and X ∈ L:

• α( f X) = γ( f )α(X),
• γ((ρL(X) · f ) = ρK (α(X)) · γ( f ).

A connection on a R-module N is a R-linear map

∇ : L −→ Endk(N )

X �−→ ∇X

such that
∇X ( f Y ) = (

ρ(X). f
)
Y + f ∇XY.

The curvature of the connection is given by

R(X,Y ) := [∇X ,∇Y ] − ∇[[X,Y ]].

If N = L , the torsion of the connection is given by

T (X,Y ) := ∇XY − ∇Y X − [[X,Y ]].

The curvature vanishes if and only if N is a module over the Lie algebra L (via
∇). In that case, N is called a module over the Lie–Rinehart algebra (L , R). This is
equivalent to the map ∇ being a homomorphism of Lie algebras where Endk(N ) is
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endowed with the commutator as the Lie bracket. In particular, the k-algebra R is a
module over the Lie–Rinehart algebra (L , R).

Let N be a R-module endowed with a connection ∇ with respect to the Lie–
Rinehart algebra (L , R). The R-module HomR(N , N ) can be equipped with the
connection defined by (where u ∈ HomR(N , N ), X ∈ L and Y ∈ N )

(∇Xu)(Y ) := ∇X
(
u(Y )

) − u(∇XY ). (2)

This connection verifies the Leibniz rule

∇X (u ◦ v) = ∇Xu ◦ v + u ◦ ∇Xv, (3)

as can be immediately checked.

Proposition 2.2 If the connection ∇ on N is flat, the corresponding connection ∇
on HomR(N , N ) given by (2) is also flat.

Proof If ∇ is flat on N , it is well known that the corresponding L-module structure
on N yields a L-module structure on HomR(N , N ) via (2), hence a flat connection.
To be concrete, a direct computation using (2) yields

([∇X ,∇Y ] − ∇[[X,Y ]]u)(Z) = ∇X

(
∇Y

(
u(Z)

) − u(∇Y Z)
)

− ∇Y (u∇X Z) + u(∇Y∇X Z)

−∇Y

(
∇X

(
u(Z)

) − u(∇X Z)
)

+ ∇X (u∇Y Z) − u(∇X∇Y Z)

−∇[[X,Y ]]
(
u(z)

) + u(∇[[X,Y ]]Z)

= ([∇X ,∇Y ] − ∇[[X,Y ]])
(
u(Z)

) − u
(
([∇X ,∇Y ] − ∇[[X,Y ]])(Z)

)
.

�

Definition 2.3 Let (L , R) be a Lie–Rinehart algebra. An R-module N is tracial if
there exists a connection ∇ on N and a R-linear map τ : HomR(N , N ) → R such
that

• τ (α ◦ β) = τ (β ◦ α) (trace property),
• τ is compatible with the connection and the anchor, i.e., for any X ∈ L and

α ∈ HomR(N , N ) we have

τ (∇Xα) = ρ(X).τ (α). (4)

If N is a module over (L , R), this means that τ is a homomorphism of (L , R)-
modules.
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2.2 Aside on Manifolds and Lie Algebroids

Recall that a Lie algebroid on a smooth manifold M is a Lie–Rinehart algebra over
theC-algebra of smoothC-valued functions on M . It is given by the smooth sections
of a vector bundle E , and the anchor map comes from a vector bundle morphism
from E to the tangent bundle T M . The terminology “anchor map” and the notation
ρ are often used for the bundle morphism in the literature on Lie algebroids.

Theorem 2.4 Let M be a finite-dimensional smooth manifold, and let V be a
Lie algebroid on M. Any finite-dimensional vector bundle W endowed with a V -
connection is tracial, i.e., the C∞(M)-module N of smooth sections of W is tracial
with respect to the Lie–Rinehart algebra L of sections of V .

Proof We can consider the fiberwise trace on the algebra HomC∞(M)(N , N ) of
smooth sections of the endomorphism bundle EndW : it is given fiber by fiber by the
ordinary trace of an endomorphism of a finite-dimensional vector space. The trace
property is obviously verified.

To prove the invariance property (4), choose two V -connections ∇1 and ∇2

on W . It is well known (and easily verified) that cX := ∇2
X − ∇1

X belongs to
HomC∞(M)(N , N ), hence is a section of the vector bundle End(W ). Now for any
section ϕ of End(W ) we have for any X ∈ L and α ∈ N :

(∇2
Xϕ

)
(α) = ∇2

X

(
ϕ(α)

) − ϕ
(∇2

X (α)
)

= (∇1
X + cX )

(
ϕ(α)

) − ϕ
(∇1

X (α) + cX (α)
)

= (∇1
Xϕ

)
(α) + [cX ,ϕ](α).

The trace of a commutator vanishes, hence we get

Tr(∇2
Xϕ) = Tr(∇1

Xϕ). (5)

In other words, the trace of ∇Xϕ does not depend on the choice of the connection.
We can locally (i.e., on any open chart of M trivializing the vector bundleW ) choose
the canonical flat connection with respect to a coordinate system, namely

∇0
Xα := (

ρ(X)α1, . . . , ρ(X)αp
)

for which (4) is obviously verified (here p is the dimension of the fiber bundle W ).
Hence, from (5), we get that (4) is verified for any choice of connection ∇. �

2.3 Tracial Lie–Rinehart Algebras

When themodule N is the Lie–Rinehart algebra itself, it may be convenient to restrict
the algebra on which the trace is defined:
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Definition 2.5 Suppose that N = L , and let us introduce the k-linear operator

d : L −→ HomR(L , L)

defined by
dX (Z) := ∇Z X. (6)

Let the algebra of elementary R-module endomorphisms be the R-module subal-
gebra of HomR(L , L) generated by {∇Y1 · · · ∇YndX : X,Y1, . . . ,Yn ∈ L}. It will be
denoted by E�R(L , L).

Remark 2.6 The Leibniz rule (3) implies that the (L , R)-module structure on
HomR(L , L) (via the connection ∇) restricts to E�R(L , L), making this an (L , R)-
submodule of HomR(L , L).

Definition 2.7 A Lie–Rinehart algebra L over the unital commutative k-algebra R
is tracial if there exists a connection ∇ on L and a R-linear map τ : E�R(L) → R
such that

• τ (α ◦ β) = τ (β ◦ α) (trace property),
• τ is a homomorphism of L-modules, i.e., for any X ∈ L and α ∈ E�R(L)we have

τ (∇Xα) = ρ(X).τ (α). (7)

In this case, the divergence on L is the composition Div = τ ◦ d of

L
d−→ E�R(L)

τ−→ R.

Corollary 2.8 Any finite-dimensional Lie algebroid is tracial for its natural canon-
ical trace map.

Proof It is an immediate consequence of Theorem2.4. �
We also have a an analog for the differential of a function, the first term in the De

Rham complex:

d : R → HomR(L , R), f �→ (X �→ ρ(X)( f )).

Given an element Y in L , we get a map in HomR(L , L) denoted d f · X :

X �→ ρ(X)( f ) · Y. (8)

2.4 Pre-Lie–Rinehart Algebras

Definition 2.9 A pre-Lie–Rinehart algebra is a Lie–Rinehart algebra L endowed
with a flat torsion-free connection
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∇ : L → Endk(L , L).

We have then, with the notation X � Y := ∇XY :

• [[X,Y ]] = X � Y − Y � X ,
• X � (Y � Z) − (X � Y ) � Z = Y � (X � Z) − (Y � X) � Z (left pre-Lie rela-
tion).

A module over the pre-Lie–Rinehart algebra is the same as a module over the
underlying Lie–Rinehart algebra. If N is a module and n and element, we write
X � n for ∇Xn. In particular, for f ∈ R, the action of the anchor map ρ(X). f is
written X � f .

Canonical example [4]: Let k = R, let R = C∞(Rd) and let L be the space of
smooth vector fields on R

d . Let X,Y ∈ L , which are written in coordinates:

X =
d∑

i=1

f i∂i , Y =
d∑

j=1

g j∂ j .

Then

X � Y =
d∑

j=1

(
d∑

i=1

f i (∂ig
j )

)

∂ j . (9)

For a vector field X = ∑d
i=1 f i∂i , the endomorphism dX sends

d∑

i=1

g j∂ j �→
d∑

i, j=1

g j∂ j ( f
i )∂i .

In particular ∂ j �→ ∑d
i=1 ∂ j ( f i )∂i , so the trace of dX is the divergence

∑d
i=1 ∂i ( f i ).

Proposition 2.10 In a pre-Lie–Rinehart algebra L, the algebra E�R(L) of elemen-
tary module homomorphisms is generated by {dX : X ∈ L}.
Proof In view of Definition2.5, we first show that for any X,Y ∈ L , the endomor-
phism ∇Y (dX) is obtained by linear combinations of products of endomorphisms of
the form dZ , Z ∈ L . It derives immediately from the left pre-Lie relation, via the
following computation (recall (2)):

(∇Y dX)(Z) = ∇Y
(
dX (Z)

) − dX (∇Y Z)

= ∇Y (Z � X) − (∇Y Z) � X

= Y � (Z � X) − (Y � Z) � X

= Z � (Y � X) − (Z � Y ) � X

= (
d(Y � X) − dX ◦ dY

)
(Z).
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To then show further that∇Y1∇Y2dX is a linear combination of products of endomor-
phisms, we use the Leibniz rule

∇Y1(dX ◦ dY2) = (∇Y1dX) ◦ dY2 + dX ◦ ∇Y1dY2.

In this way we may continue. �

Proposition 2.11 Let L be a pre-Lie–Rinehart algebra.

a. For any X,Y ∈ L:
X � dY = d(X � Y ) − dY ◦ dX.

b. For f ∈ R (recall (8) for d f · Y ):

X � (d f · Y ) = d f · (X � Y ) + d(X � f ) · Y − (d f · Y ) ◦ dX.

Proof a. Using (2):

(X � dY )(Z) = X � (Z � Y ) − (X � Z) � Y

= Z � (X � Y ) − (Z � X) � Y

= d(X � Y )(Z) − dY ◦ dX (Z)

b. Again using (2) this map sends Z to

(
X � (d f · Y )

)
(Z) = X �

(
(Z � f )Y

) − (d f · Y )(X � Z)

(connection property) = (
X � (Z � f )

)
Y + (Z � f )(X � Y ) − (

(X � Z) � f
)
Y

= (Z � (X � f ))Y − ((Z � X) � f )Y + (Z � f )(X � Y ).

This is the map:

d(X � f ) · Y − (d f · Y ) ◦ dX + d f · (X � Y ).

�

Definition 2.12 Let (L , R) and (K , S) be tracial pre-Lie–Rinehart algebras, and
(α, γ) : (L , R) → (K , S) a homomorphism of pre-Lie-Rinehart algebras. For each
X ∈ L there is a commutative diagram:

L
dX

α

L

α

K
dα(X)

K .

An elementary endomorphism φ : L → L is an R-linear combination of composi-
tions dX1 ◦ · · · ◦ dXr . It induces an elementary endomorphism ψ : K → K which
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is the corresponding R-linear combination of compositions of dα(Xi )’s. Note: This
ψ may not be unique since expressing φ as an R-linear combination of compositions
may not be done uniquely. For instance it could be that dX is the zero map, while
dα(X) is not the zero map.

The homomorphism (α, γ) is a homomorphism of tracial pre-Lie algebras if for
each elementary endomorphism φ the trace of φmaps to the trace ofψ: γ(τφ) = τψ.
(This is regardless of which ψ that corresponds to φ.)

3 Aromatic Trees

In this section we define rooted trees, aromas and aromatic trees, the latter being the
relevant combinatorial objects for building up the free pre-Lie–Rinehart algebra.

3.1 Rooted Trees and Aromas

Let C be a finite set, whose elements we shall think of as colors. We introduce some
notation:

Definition 3.1 TC is the vector space freely generated by rooted trees whose vertices
are colored with elements of C. We denote by VC the vector space freely generated
by pairs (v, t) where t is a C-colored tree and v is a vertex of t .

There is an injective map

VC → Endk(TC), (v, t) �→ (s �→ s �v t)

where �v is grafting the root of s on the vertex v.
The composition β ◦ α of maps β,α in Endk(TC) induces a multiplication (com-

position) ◦ on VC given by (v, t) ◦ (u, s) = (u, s �v t). We may then identify VC as
a k-subalgebra of Endk(TC). Then

d : TC → Endk(TC), t �→
∑

v∈t
(v, t). (10)

Definition 3.2 A connected directed graph with vertices colored by C and where
each vertex has precisely one outgoing edge is called a C-colored aroma or just
an aroma since we will only consider this situation. It consists of a central cycle
with trees attached to the vertices of this cycle. The arrows of each tree are oriented
towards the cycle, which will be oriented counterclockwise by convention when an
aroma is drawn in the two-dimensional plane. We let AC be the vector space freely
generated by C-colored aromas. See Fig. 1 where the first four connected graphs are
aromas.
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Now consider the linear map

τ : VC −→ AC (11)

which maps the pair (v, t) to an aroma by joining the root of t to the vertex v.

Lemma 3.3 The vector space AC spanned by the aromas can be naturally identified
with the quotient VC/[VC, VC], where [VC, VC] is the vector space spanned by the
commutators in VC , so that the map τ becomes the natural projection from VC onto
VC/[VC, VC].
Proof An aroma has a unique interior cycle. Let r1, · · · rn be the vertices on this
cycle. At r j−1 there is a tree t ′j with root r j−1. Let t j be this tree with r j−1 grafted
onto r j , so r j is the root of t j . We may the write the aroma as

a = τ
(
(r1, t1) ◦ · · · ◦ (rn, tn)

)
. (12)

and this is invariant under any cyclic permutation of the elements (ri , ti ). On the
other hand, any tree t with marked point v admits the decomposition:

(v, t) = (v1, t1) ◦ · · · ◦ (v j , t j ) (13)

where v1 (resp. v j ) is the root of t (resp. the marked vertex v) and (v1, v2, . . . , v j ) is
the path from the root to v in t . Each vertex vi of this path is the root of the tree ti .
Now if (v′, t ′) = (v j+1, t j+1) ◦ · · · ◦ (v j+k, t j+k) is another tree with marked vertex,
we have

(v, t) ◦ (v′, t ′) = (v1, t1) ◦ · · · ◦ (v j+k, t j+k) and

(v′, t ′) ◦ (v, t) = (v j+1, t j+1) ◦ · · · ◦ (v j+k, t j+k) ◦ (v1, t1) ◦ · · · ◦ (v j , t j ).

The trace property τ
(
(v, t) ◦ (v′, t ′)

) = τ
(
(v′, t ′) ◦ (v, t)

)
is then obvious by cyclic

invariance of the decomposition of an aroma. Now any aroma is the image by τ of at
most n trees with marked points, where n is the length of the cycle. It is clear that two
such trees admit the same decomposition as abovemodulo cyclic permutation, which
implies that they differ by a commutator. Now, we have to prove that any element
T ∈ VC with τ (T ) = 0 is a linear combination of commutators. Decomposing T in
the basis of trees with one marked points:

T =
∑

(v,t)

α(v,t)(v, t)

=
∑

a aroma

∑

(v,t), τ (v,t)=a

α(v,t)(v, t),
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from τ (T ) = 0 we get
∑

(v,t), τ (v,t)=a α(v,t) = 0 for any aroma a. Hence, the sum∑
(v,t), τ (v,t)=a α(v,t)(v, t) is a sum of commutators for any aroma a, which proves

that T is also a sum of commutators. �

The canonical embedding of C into TC is given by c �→ •c. It is well-known [5,
7] that TC with grafting of trees as the operation � is the free pre-Lie algebra on the
set C. Then (TC, k) becomes a pre-Lie–Rinehart algebra, with anchor map zero.

Lemma 3.4 The algebra E�k(TC) of elementary module morphisms of Defini-
tion2.5, for the pre-Lie–Rinehart algebra (TC, k), coincides with the algebra VC
of trees with one marked point.

Proof Since dt = ∑
v∈t (v, t) by (10) we need only to show that each marked tree

(v, t) is in E�k(TC). Let tv be the subtree of t which has v as root. If v is not the root
of t , it is attached to a node w. Take tv away from t and let t ′ be the resulting tree.
Then (v, t) = (w, t ′) ◦ (v, tv). We now show by induction on the number of nodes
of (i) |t | and (ii) |tv|, that (v, t) is in E�k(TC).

(i) If the marked tree is (•c, •c), then it is d(•c) and is in E�k(TC).
(ii) If v is a root, then

d(t) = (v, t) +
∑

w �=v

(w, t).

The left term is in E�k(TC), and the right term also by induction.
(iii) If v is not a root then both (w, t ′) and (v, tv) are in E�k(TC) by induction,

and so also (v, t). �

As a result VC is a TC-module by grafting:

s � (v, t) = (v, s � t),

where the latter is a sum of pairs (v, ti ) coming from that s � t is a sum of trees
ti . The aromas AC also form a TC-module by grafting the trees on all vertices in an
aroma. Lastly, the map τ : VC → AC is a TC-module map.

3.2 The Free Pre-Lie Algebra

Let L be a pre-Lie algebra over the field k. The pre-Lie algebra TC has the universal
property that given any map C → L there is a unique morphism of pre-Lie algebras
TC → L such that the diagram below commutes:

C

TC
α

L .



The Universal Pre-Lie–Rinehart Algebras of Aromatic Trees 149

Theorem 3.5 Let L be a tracial pre-Lie–Rinehart algebra over the k-algebra R,
with trace map EndR(L , L)

τ−→ R.

a. Given a set map ψ : C → L, the unique pre-Lie algebra homomorphism TC
α−→

L such thatα(•c) = ψ(c) for any c ∈ C induces auniquemorphismof associative

algebras VC
β−→ E�R(L) such that the following diagram commutes:

TC
d−−−−→ VC

α

⏐⏐� β

⏐⏐�

L
d−−−−→ E�R(L).

(14)

b. Moreover, there is a unique linear map γ extending the diagram (14) to a com-
mutative diagram

TC
d−−−−→ VC

τ−−−−→ AC

α

⏐⏐
� β

⏐⏐
� γ

⏐⏐
�

L
d−−−−→ E�R(L)

τ−−−−→ R.

c. These maps fulfill the following for an aroma a, tree t , and φ ∈ VC ⊆ Endk(TC):

i. β(φ)(α(t)) = α(φ(t)),
ii. β(t � φ) = α(t) � β(φ),
iii. γ(t � a) = α(t) � γ(a).

Proof Part a. Any tree (v, t) with one marked point different from the root can be
written as

(v, t) = (v′′, t ′′) ◦ (v, t ′), (15)

where the associative product on VC has been described in Sect. 3.1. Here, t ′ is any
upper sub tree containing the marked vertex v, and t ′′ is the remaining tree, on which
the marked vertex v′′ comes from the vertex immediately below the root of t ′. We
then proceed by induction on the number of vertices: if t is reduced to the vertex v

colored by c ∈ C, we obviously have

β(v, t)(x) = dα(•c)(x) = x � α(•c) (16)

for any x ∈ L . Suppose that the map β has been defined for any tree up to n vertices.
Now if t has n + 1 vertices and one marked vertex v different from the root, we must
have:

β(v, t) = β
(
(v′′, t ′′) ◦ (v, t ′)

) = β(v′′, t ′′) ◦ β(v, t ′). (17)

It is easily seen that this does not depend on the choice of the decomposition. Indeed,
if v is not the root of t ′, then (v, t ′) = (v′, s ′)(v, s)where s is the subtree with root v,
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and s ′ is the remaining tree inside t ′. The vertex v′ comes from the vertex immediately
below v in t ′. We have then

β(v, t) = β(v′′, t ′′) ◦ β(v′, s ′) ◦ β(v, s) = β(v′, t̃) ◦ β(v, s)

where t̃ is obtained by grafting s ′ on t ′′ at vertex v′′. Hence any decomposition boils
down to the unique one with minimal upper tree, for which the marked vertex is the
root. Now if t has n + 1 vertices and if the marked vertex is the root, we must define
β(v, t) as follows:

β(v, t) = dα(t) −
∑

v′ �=v

β(v′, t). (18)

Part b. The map β is an algebra morphism, hence induces a map

β : VC/[VC, VC] → HomR(L , L)/[HomR(L , L), HomR(L , L)].

The map τ of the bottom line of the diagram being a trace, it induces a map τ :
HomR(L , L)/[HomR(L , L), HomR(L , L)] → L . In view of Lemma3.3, the map
γ := τ ◦ β then makes Diagram (14) commute.
Part c. We prove first ii. Let t, s be trees and first consider φ = ds. Recall by Propo-
sition2.11a:

t � ds = d(t � s) − ds ◦ dt

β(t � ds) = βd(t � s) − βd(s) ◦ βd(t)

= dα(t � s) − dα(s) ◦ dα(t)

= d(α(t) � α(s)) − dα(s) ◦ dα(t)

Again by Proposition2.11a this equals:

α(t) � dα(s) = α(t) � β(ds).

Now if part ii holds for φ1 and φ2 it is an immediate computation to verify that

β
(
t � (φ1 ◦ φ2)

) = α(t) � β(φ1 ◦ φ2),

thus showing part ii.
Part i is shown in a similar way. First consider φ = du. Then

β(du)(α(t)) = dα(u)(α(t))

= α(t) � α(u)

= α(t � u)

= α(du(t)).
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Lastly one may show that if i holds for φ1 and φ2, it holds for their composition.
For Part iii, the aroma a is an image τφ for a marked tree φ. Hence,

γ(t � a) = γ(t � τφ)

(trace is an L-homomorphism) = γτ (t � φ)

= τβ(t � φ)

(use Part ii.) = τ (α(t) � β(φ))

(trace is an L-homomorphism) = α(t) � τβ(φ)

= α(t) � γτ (φ)

= α(t) � γ(a).

�

3.3 The Pre-Lie–Rinehart Algebra of Aromatic Trees

Definition 3.6 Let RC be the vector space freely generated by C-colored directed
graphs (not necessarily connected) where each vertex has precisely one outgoing
edge. Such a directed graph is a multiset of aromas, and we call it a multi-aroma.

The vector space RC has a commutative unital k-algebra structure coming from
the monoid structure on multisets of aromas. Note that RC is the symmetric algebra
Symk(AC) on the vector space of C-colored aromas.

Remark 3.7 Denote [n] = {1, 2, . . . , n}. In the case of one color, a multi-aroma on
n vertices is simply a map f : [n] → [n]. More precisely the multi-aromas identify
as orbits of such maps by the action of the symmetric group Sn .

Definition 3.8 Denote RC ⊗k TC by LC . As a vector space it has as basis all expres-
sions r ⊗k t where r is a multi-aroma and t is a tree. For short we write this as r t
and call it an aromatic tree, [12]. See Fig. 1.

On LC we have the product

LC × LC −→ LC
(qs, r t) �−→ ∇qsr t = qs � r t

given by grafting the root of the tree s on any vertex of the aromatic tree r t and
summing up. Similarly, we can graft an aromatic tree on an aroma. From this, we
get induced maps:

∇ : LC → Homk(LC , LC) ρ : LC → Derk(RC , RC) d : LC → HomRC (LC , LC)

r t �→ (qs �→ r t � qs) r t �→ (q �→ r t � q) r t �→ (qs �→ qs � r t)
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Fig. 1 An example of aromatic tree made of four aromas and a rooted tree

Proposition 3.9 LC is a pre-Lie-Rinehart algebra over the commutative algebra RC
spanned by multi-aromas, with anchor map ρ and connection ∇ defined above.

Proof Checking the Leibniz rule for the anchor map and the left pre-Lie relation for
� is an easy exercise left to the reader. �

3.4 The Algebra of Marked Aromatic Trees

Definition 3.10 Let ÊC be the free RC-module spanned by all pairs (v, r t) where r t
is an aromatic tree and v is a vertex of r t . It identifies naturally as an RC-submodule
of EndRC (LC) by

(v, r t) �→ (u �→ u �v r t).

In fact by composition ◦ it is an RC-submodule subalgebra.

Extending the map τ of (11) we get an RC-linear map

τ : ÊC → RC .

It maps an element (v, r t) to the multi-aroma we get by joining the root of t to the
vertex v.

Lemma 3.11

a. ÊC is an LC-submodule of EndRC (LC),
b. τ is an LC-module map,
c. τ is a trace map, i.e., it vanishes on commutators.

Proof a. For an aromatic tree r t and amarked aromatic treeα = (v, qs), one obtains
r t � αbygrafting the root of t on anyvertex ofqs andby summingup all possibilities,
keeping of course the marked vertex v in each term.

b. Consider the operations:
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• First graft t on each vertex of qs and then attach the root of s to v. This gives
τ (r t � (v, qs)).

• First attach the root of s on v and then graft the root of t to any vertex of the
resulting aroma. This gives r t � τ (v, qs).

We see these operations give the same result, and so

τ (r t � (v, qs)) = r t � τ (v, qs).

c. Look at τ ((w, r t) ◦ (v, qs)). We get this by

1. Composition ◦: Graft the root of s on w.
2. Map τ : Graft the root of t on v.

But the order of these two operations can be switched without changing the result.
Hence τ is a trace map. �

3.5 The Algebra of Elementary Endomorphisms

Let BC be the vector space freely generated by pairs (v, a) where a is an aroma in
AC and v a vertex of a. There is an injection

BC → Homk(TC , AC), (v, a) �→ (s �→ s �v a),

where the tree s is grafted on the vertex v in a. The TC-module structure on AC gives
by adjunction an injective linear map

d : AC → Homk(TC, AC ), a �→ (t �→ t � a).

Its image lies in the image of BC . Thus AC may be considered a subspace of BC ,
identifying da = ∑

v∈a(v, a). Let DC be thek-vector space generated by expressions
da · t , where a is an aroma and t a tree. It identifies as d AC ⊗k TC .

We have compositions:

VC ◦ VC → VC : (v, s) ◦ (w, t) =(w, t �w s)

DC ◦ VC : (da · t) ◦ (v, s) =
∑

u∈a
(v, s �u a) · t

(19)

VC ◦ DC → DC : (v, s) ◦ (da · t) �→da · (t �v s)

DC ◦ DC → RC ⊗k DC : (da · t) ◦ (db · s) �→(s � a) · db · t

Proposition 3.12 The RC-submodule EC of ÊC generated by DC, VC and their com-
position DC ◦ VC , is the algebra of elementary endomorphisms E�RC (LC).
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It decomposes as a free RC-module:

EC = (
RC ⊗k VC

)⊕ (
RC ⊗k DC

)⊕ (
RC ⊗k (DC ◦ VC)

)
. (20)

Proof By the relations (19) above, we see that EC is an RC-module subalgebra of
ÊC .
Inclusion E�RC (LC) ⊆ EC: Considering the map d:

d(r t) = dr · t + r · dt.

Looking at the right side of this, the first term is in DC , and the second term in
RC ⊗k VC .
Inclusion EC ⊆ E�RC (LC): By Lemma3.4, VC ⊆ E�RC (LC). Since

d(at) − adt = da · t,

also DC ⊆ E�RC (LC).
Free decomposition: An element of RC ⊗k VC has its marks on trees, and so cannot
be an R-linear combination of the two other parts. Any element of RC ⊗k DC must
have a term with a mark on the interior cycle of an aroma and so cannot be a sum of
terms in DC ◦ VC . �

By Lemma3.11 and Proposition3.12 above we have

Corollary 3.13 The pre-Lie–Rinehart algebra LC of aromatic trees is tracial.

4 The Universal Tracial Pre-Lie–Rinehart Algebra

We show that the pair (LC, RC) is a universal tracial pre-Lie-Rinehart algebra.

Remark 4.1 Originally we aimed to show that the pair (LC, RC) was a universal
pre-Lie–Rinehart algebra. However from a given map of sets

C → L

we could not extend this to maps

LC → L , RC → R.

The problem is that one cannot generate all of LC or RC by starting from C and
using the operations Div = τ ◦ d and � applied on the algebra LC , either between
aromatic trees s � t or on an aroma s � a. In particular, one cannot generate all of
the multi-aromas RC .
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To remedy this we have introduced the subalgebra VC of Endk(TC) generated by
the image of TC → Endk(TC) together with its trace map τ . From this subalgebra,
one can get all aromas by applying the trace map. Furthermore, VC is “fattened up”
to the subalgebra E�C of EndRC (LC) over RC . To get the universality property, we
have therefore introduced the class of tracial pre-Lie–Rinehart algebras.

The map γ of Theorem3.5 extends to γ̂ : RC → R given by

γ̂(a1 · · · ap) := γ(a1) · · · γ(ap).

The map α of Theorem3.5 extends to α̂ : LC → L given by

α̂(a1 · · · ai t) := γ̂(a1 · · · ap)α(t) = γ(a1) · · · γ(ai )α(t)

for any a1, . . . , ai ∈ AC and t ∈ TC ,.

Theorem 4.2 (Universality property) Let (L , R)be a tracial pre-Lie–Rinehart alge-
bra, and C → L a map of sets.

a. This extends to a unique homomorphism of tracial pre-Lie–Rinehart algebras:

(α̂, γ̂) : (LC, RC) → (L , R).

b. The map β of Theorem3.5 extends to a homomorphism β̂ of associative algebras
giving a commutative diagram

LC
d−−−−→ E�C

τ−−−−→ RC

α̂

⏐⏐� β̂

⏐⏐� γ̂

⏐⏐�

L
d−−−−→ E�R(L)

τ−−−−→ R.

(21)

c. It fulfills the following for u ∈ LC and φ ∈ EC:

i. β̂(φ)(α̂(u)) = α̂(φ(u)),
ii. β̂(u � φ) = α̂(u) � β̂(φ).

Proof Part a. We show

ai. γ̂ is a k-algebra homomorphism,
aii. For an aromatic tree r t and a multi-aroma q: γ̂(r t � q) = α̂(r t) � γ̂(q). Note:

It is to establish this property that we require the trace map τ to be an L-module
homomorphism.

aiii. α̂ is a homomorphism of pre-Lie algebras,
aiv. For a multi-aroma q and an aromatic tree r t : α̂(q · r t) = γ̂(q) · α̂(r t).
av. Uniqueness of α̂ and γ̂.
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Property ai is by construction since RC is a free commutative algebra. Property aiv
is by definition of α̂.

Since the action of � of LC on RC is a derivation (the anchor map), it is enough
for Property aii to show for an aroma a and tree t that:

γ(t � a) = α(t) � γ(a)

and this is done in Theorem3.5.
For Property aiii, we have for multi-aromas r, q and trees t, s that

α̂(r t � qs) = α̂
(
r(t � q)s + rq(t � s)

)
,

= γ̂
(
r(t � q)

)
α(s) + γ̂(rq)α(t � s)

= γ̂(r)(α(t) � γ̂(q))α(s) + γ̂(r)γ̂(q)(α(t) � α(s)).

This again equals:

α̂(r t) � α̂(qs) = γ̂(r)α(t) � γ̂(q)α(s).

The uniqueness, Property av, of α̂ is by LC being the free pre-Lie algebra. As for
γ̂ it is determined by its restriction AC → R. By the requirement of Definition2.12
and the uniqueness of γ for making a commutative diagram in Theorem3.5 we see
that the γ̂ restricted to AC must equal γ.

Part b. Definition of β̂: EC decomposes as a free RC-module (20). We let β̂(rφ) =
γ̂(r)β̂φ when φ is a basis element for these free modules. On VC we let β̂ be given
by β. On DC we define

β̂(da · t) = dα(t) · α(t).

Lastly consider the map
DC ⊗k VC → DC ◦ VC,

where by the latter we mean the vector space spanned by all compositions. This map
is a bijection. To see this, consider (19). Note that an element ω in DC ◦ VC has no
marked point on the interior cycle of the aroma. Let then v be a marked point in
a term of the element ω which has minimal distance from v to the interior cycle.
Following the path from v to the interior cycle, the vertex attached to the interior
cycle (but not on the cycle), must be the root of a tree s with v ∈ s, which is grafted
onto an aroma a. Thus, we have reconstructed a, (v, s) and t and can subtract the
image of a multiple of (da · t) ◦ (v, s) from ω. In this way, we may continue and get
ω as the image of a unique element in DC ⊗k VC .

We may then define β̂ on DC ⊗k VC by

β̂
(
(da · t) ◦ (v, s)

) = (dγ(a) · α(t)) ◦ β(v, s).
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Now we show the homomorphism property of β̂ . It respects composition of VC
since β does. It respects compositions DC ◦ VC by the above definition. It respects
composition DC ◦ DC by

β̂
(
(da · t) ◦ (db · s)) = β̂

(
(s � a)db · t)

= γ(s � a)β̂(db · t)
= γ(s � a)dγ(b) · α(t)

= (α(s) � γ(a))dγ(b) · α(t)

= (dγ(a) · α(t)) ◦ (dγ(b) · α(s))

= β̂(da · t) ◦ β̂(db · s).

Applying β̂ to the composition VC ◦ DC

β̂
(
(v, s) ◦ (da · t)) = β̂

(
da · (t �v s)

)

= dγ(a) · α(t �v s)

(use Part i. of Theorem 3.5) = dγ(a) · β
(
(v, s))(α(t)

)
.

This map sends u ∈ LC to (u � γ(a)) · β((v, s))(α(t)), and so does the map

β̂((v, s)) ◦ dγ(a) · α(t) = β̂((v, s)) ◦ β̂(da · t).

So these maps are equal and β̂ respects composition on DC ◦ VC .

Part c. i. For φ in VC , this follows easily from Part i in Theorem3.5. For φ in DC , it
is an easy computation. Since β̂ respects compositions, we then derive it for general
φ.
ii. When φ is in VC this is by Part ii in Theorem3.5. When φ is in DC we have the
following computation using Proposition2.11b :

β̂
(
t � (da · s)) = β̂

(
da · (t � s) + d(t � a) · s − (da · s) ◦ dt

)

= dγ(a) · α(t � s) + d(γ(t � a)) · α(s) − dγ(a) · α(s) ◦ βd(t)

= dγ(a) · (α(t) � α(s)) + d(α(t) � γ(a)) · α(s) − (dγ(a) · α(s)) ◦ dα(t)

(use Proposition 2.11b) = α(t) � (dγ(a) · α(s))

= α(t) � β̂(da · s).

Now ii follows by the easily checked fact that it holds for compositions if it holds
for each factor. �
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5 Remarks on Equivariance

We finally return to some remarks on Theorem1.1 in the light of the universal dia-
gram (21). Consider the canonical example (L , �) of vector fields on R

d , where
R = C∞(Rd). Let C = { } and choose a mapping �→ f ∈ L inducing the universal
arrows α̂, β̂, γ̂ in (21). Any affine diffeomorphism ξ(x) = Ax + b on R

d induces
isomorphisms on L , EndR(L , L) and R by pullback of tensors:

ξ · f := A−1 f ◦ ξ

(ξ · G)( f ) := ξ · (G(ξ · f ))

ξ · r := r ◦ ξ

for f ∈ L , G ∈ EndR(L , L) and r ∈ R.
Given three finite series BL ∈ LC, BE ∈ E�C, BR ∈ RC we obtain threemappings

�L( f ) := α̂(BL) : L → L

�E ( f ) := β̂(BE ) : L → EndR(L , L)

�R( f ) := β̂(BR) : L → R.

It is straightforward to check that these are all equivariant with respect to the action
of affine diffeomorphisms: �L(ξ · f ) = ξ · (�L( f )

)
, �E (ξ( f )) = ξ · (

�E ( f )
)
and

�R(ξ( f )) = ξ · (
�R( f )

)
. Theorem1.1 states that any smooth local affine equiv-

ariant mapping � : L → L has an aromatic B-series BL ∈ LC , where the overline
denotes the graded completion, i.e., the space of formal infinite series. The proof
technique [12], seems to work also for smooth local mappings between different
tensor bundles. Hence, we claim:

Claim 5.1 A smooth, local mapping �E : L → EndR(L , L) has an aromatic series
BE ∈ E�C if and only it is affinely equivariant. A smooth, localmapping�R : L → R
has an aromatic series BR ∈ RC if and only it is affinely equivariant. Subject to
convergence, the mappings are represented by their aromatic B-series.
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