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Abstract Butcher series, also called B-series, are a type of expansion, fundamental
in the analysis of numerical integration. Numerical methods that can be expanded in
B-series are defined in all dimensions, so they correspond to sequences of maps—
one map for each dimension. A long-standing problem has been to characterise those
sequences of maps that arise from B-series. This problem is solved here: we prove
that a sequence of smooth maps between vector fields on affine spaces has a B-series
expansion if and only if it is affine equivariant, meaning it respects all affine maps
between affine spaces.
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1 Introduction

Let �(h, f ) : Rn → Rn be a numerical time-stepping method for the differential
equation

ẏ = f (y), y(0) = y0 ∈ Rn .

That is, the time-stepping map yk �→ yk+1 is given by yk+1 = �(h, f )(yk), where
yk ≈ y(hk). The convergence order of the method is obtained by comparing the
Taylor expansion of h �→ �(h, f )(y0) with the Taylor expansion of h �→ y(h),
using ẏ = f (y) successively to avoid derivatives of y. If �(h, f ) is a Runge–Kutta
method, then the expansion is a linear combination of elementary differentials of f .

For example, the first two terms for the midpoint method yk+1 − yk = h f
(
yk+1+yk

2

)

are

yk+1 − yk = h f (yk) + h2

2
f ′(yk) f (yk) + O(h3).

To work out higher order terms by direct methods is tedious and results in long,
convoluted tables (see, for example [18]).

In 1957, however, Merson [23] rediscovered a remarkable structure, found already
by Cayley [8] in 1857: a one-to-one correspondence between elementary differentials
and rooted trees. This structure is the basis of the influential work by Butcher, who,
in 1963, gave the first modern treatment of the order conditions for Runge–Kutta
methods [4], and, in 1974, developed an algebraic theory for series expansions of
integration methods [5].

Let T denote the set of rooted trees. The expansion of a Runge–Kutta method is of
the form

yk+1 − yk =
∑
τ∈T

h|τ |α(τ)F(τ )[ f ](yk), (1)

where |τ | denotes the number of vertices of τ , α : T → R characterises the method,
and F(τ )[ f ] is the elementary differential of f associated with τ (see Sect. 3.6 for
details). The right-hand side of (1) is called a Butcher series, or B-series, named so
in 1974 by Hairer and Wanner [15]. The rich algebraic structure of B-series has since
been studied extensively [7,10,11,17,25]. A numerical integration method �(h, f )
whose expansion in h is of the form (1) is called a B-series method. In addition to
numerical contexts, B-series have arisen in other branches of mathematics, such as
noncommutative geometry, in models of renormalization [2,3,13] and rough paths
theory [14].

Runge–Kutta methods are dense in the space of all B-series [6, §317]: given any
series of the form (1) and any p ∈ N, there exists a Runge–Kutta method whose
B-series coincides up to order h p. There are, however, methods �(h, f ) other than
Runge–Kutta whose expansions in h are B-series. Examples are Rosenbrock methods
like yn+1 = yn + h(I − 1

2h f
′(yn))−1 f (yn) [16], exponential integrators like yn+1 =

yn +hϕ(h f ′(yn)) f (yn)where ϕ(z) = (ez −1)/z, and the average vector field method
yn+1 = yn + h

∫ 1
0 f (ξ yn+1 + (1 − ξ)yn) dξ [26].

So,which integrationmethods areB-seriesmethods?Of course, given somemethod
�(h, f ), one can always check (1) by an expansion in h. But which properties char-
acterise B-series methods? This is a natural, long-standing question that we answer
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B-series methods are exactly the affine… 601

here. Our result is primarily based on two previous results: (i) that Runge–Kutta
methods (and hence B-series methods) are equivariant with respect to affine trans-
formations [21], and (ii) that local, equivariant maps can be expanded in a type of
series described by aromatic trees [24]. Our result states that an integration method
is a B-series method if and only if it defines an affine equivariant sequence, meaning
chiefly that it is equivariant and keeps decoupled systems decoupled.

Before going into the details of the result, we explain a few key points, fundamental
throughout the paper.

• Many ODE integration methods (in particular B-series methods) fulfill

�(εh, f ) = �(h, ε f )

for any positive ε. We may therefore disregard the dependency on h and write
�(h, f ) = �(h f ).

• We regard an ODE integration method as a map � from a neighbourhood of zero
of the smooth, compactly supported vector fields X0(Rn) to the set of diffeomor-
phisms Diff(Rn) (see Definition 2.1). To consider a neighbourhood of zero means
to restrict the integration method to sufficiently small time steps. Then � is an
approximation of the exponential map exp : X0(Rn) → Diff(Rn).

• We take the backward error analysis point-of-view, which represents an integra-
tion method �( f ) as � = exp ◦φ for some map φ : X0(Rn) → X0(Rn). Here,
equality holds in the sense of formal power series. To avoid technical questions
of convergence subordinate to our aim, the main result, Theorem 2.4, is formu-
lated for maps from vector fields to vector fields, independently of their relation
to numerical integration methods. The same argument is used in [24, §2.2].
The key observation is, nevertheless, that � is a B-series method if and only if
φ( f ) can be expanded in a B-series, i.e.,

φ( f ) =
∑
τ∈T

β(τ)F(τ )[ f ], (2)

for some map β : T → R. Each term in (1) is a homogeneous polynomial in f ,
so each term corresponds to a symmetric, multi-linear map

X0(Rn) × · · · × X0(Rn) → X0(Rn)

evaluated at f . For instance, the term f ′ f in a B-series corresponds to the bilin-
ear map ( f, g) �→ ( f ′g + g′ f )/2. Consequently, (1) is the Taylor series of
φ : X0(Rn) → X0(Rn), so our investigation consists of classifying those maps
φ whose Taylor series are B-series.

• An ODE integration method actually corresponds to a sequence of maps: one for
each dimension n ∈ N. From here on, we therefore use φ to denote a sequence of
maps {φn}n∈N, where φn : X0(Rn) → X0(Rn). This point of view is essential in
the characterisation of B-series maps (see Sect. 2 for details).
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602 R. I. McLachlan et al.

The paper is organised as follows. The main result is stated in Sect. 2. In Sect. 3
we give preliminary results necessary for the proof. The main part of the proof is
contained in Sect. 5, and uses results from Sect. 4 on special vector fields. Finally,
Sect. 6 connects the core result from Sect. 5 to the main result as stated in Sect. 2.

2 Main result

Our main result is a simple criterion to decide whether a method is a B-series method.
The essence of the result is captured as follows.

Let � = {�n}n∈N be an integration method, defined for all vector fields on all
dimensions n. Then � is a B-series method if and only if the property of affine
equivariance is fulfilled: if a(x) := Ax + b is an affine map from Rm to Rn ,
and f ∈ X0(Rm), g ∈ X0(Rn) fulfil g(Ax + b) = A f (x), then a ◦ �m( f ) =
�n(g) ◦ a.

The rigorous version of this result, using, as explained, the backward error analysis
point of view, is stated in Theorem 2.4 at the end of this section. Before that, we need
to define the essential concept of equivariance.

Our definition of equivariance is an extended version of that in [24, §2.4], [21,
§4.3]. We first define the main object of study: sequences of smooth maps from a
neighbourhood of zero in the space of compactly supported vector fields to itself. As
we reuse this object several times, we encapsulate it in the following definition.

Definition 2.1 (Integrator map ) Let X0(Rn) be the space of compactly supported
vector fields on Rn with the test function topology. We define an integrator map as a
sequence of smooth maps

φ = {
φn : Un ⊂ X0(Rn) → X0(Rn)

}
n∈N ,

where each Un is a suitable neighbourhood of the zero vector field in X0(Rn).

In order for an integrator mapφ to correspond to a B-series, there must clearly be
some relationship between the individual maps φn . We denote by aff (Rn,Rm) the set
of affine maps:

aff (Rn,Rm) = {
a : Rn → Rm |a(x) = Ax + b, A ∈ Rm×n, x ∈ Rn and b ∈ Rm}

.

Pullback of vector fields along invertible diffeomorphisms is generalised for non-
invertible maps by the concept of intertwining (relatedness) of vector fields. We say
that a ∈ aff (Rn,Rm) intertwines the vector fields f ∈ X0(Rn) and g ∈ X0(Rm),
which we denote by f

a�g, if

g(Ax + b) = A f (x). (3)
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B-series methods are exactly the affine… 603

Definition 2.2 (Affine equivariance) An integrator map φ (Definition 2.1) is called
affine equivariant if, for all m, n ∈ N and all a ∈ aff (Rn,Rm),

f
a�g 	⇒ φm( f )

a�φn(g).

Here are some of the properties attributed to affine equivariance:

1. Integrator maps that are equivariant with respect to invertible affine maps preserve
affine symmetries.At every fixed dimension, the integrationmethod corresponding
to such an integrator map is affine equivariant in the standard sense, used in [24].

2. Consider systems of the form
ẋ = f (x),

ẏ = g(x, y)

where x ∈ Rm , y ∈ Rn . Geometrically, they are characterised by preservation of
the foliation by planes x = constant [22]. Integrator mapsφ (and corresponding
integration methods) that are equivariant with respect to affine surjections, in this
case the surjection (x, y) �→ x , preserve this foliation. In addition, they are “closed
with respect to closed subsystems” [1]: the map φm+n(( f, g)) restricted to x in
domain and range is identical to φm( f ).

3. Integrator maps (and corresponding integration methods) that are equivariant with
respect to affine injections preserve affine weak integrals. (Recall that a weak
integral is a function I : Rn → R such that I = 0 implies İ = 0; an affine weak
integral is equivalent to an invariant affine subspace.) In addition, the map on the
affine subspace induced by such an integrator map is identical to that produced by
application directly to the system on the subspace.

Each of these are also properties of B-series methods, while non-B-series methods,
such as partitioned Runge–Kutta methods, do not have them. In addition, B-series
methods have many other structural and geometric properties [12,19]. Perhaps sur-
prisingly, all of these are now seen to be consequences of affine equivariance.

To give a rigorous definition of integrator mapscorresponding to B-series methods,
we need Taylor series of vector field maps. Let φn : X0(Rn) → X0(Rn) be smooth.
Its kth derivative at 0 ∈ X0(Rn), denoted Dkφn(0), is a k-linear, symmetric form on
X0(Rn). Taylor’s formula [20, Theorem I.5.12] states that

φn( f ) = φn(0) + Dφn(0)[ f ]
1! + · · · + Dkφn(0)[

k︷ ︸︸ ︷
f, . . . , f ]

k!

+
∫ 1

0

(1 − σ)k

k! Dk+1φ(σ f )[
k+1︷ ︸︸ ︷

f, . . . , f ] dσ.

Let, as before, T denote the set of rooted trees and F(τ )[ f ] ∈ X0(Rn) denote the
elementary differential of f ∈ X0(Rn) associated with τ ∈ T . Further, let 〈Tk〉 denote
the free R-vector space over the set Tk of trees with k vertices. That is, each element
in 〈Tk〉 is an R-linear combination of elements in Tk . By construction, Tk is a basis
for 〈Tk〉.
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604 R. I. McLachlan et al.

For each k ∈ N and f ∈ X0(Rn), F(·)[ f ] is naturally extended to a linear map
〈Tk〉 → X0(Rn). We define B-series mapsas those integrator mapwhose Taylor coef-
ficients are elementary differentials.

Definition 2.3 (B-seriesmap )An integratormapφ (Definition 2.1) is called aB-series
map if, for each k ∈ N, there exists τk ∈ 〈Tk〉 such that for all n ∈ N

Dkφn(0)[ f, . . . , f ]
k! = F(τk)[ f ], ∀ f ∈ X0(Rn).

We are now in a position to state the main result of this paper.

Theorem 2.4 Let φ be an integrator map (Definition 2.1). Then φ is a B-series
map (Definition 2.3) if and only if it is affine equivariant (Definition 2.2).

Proof Using Propositions 6.2 and 6.3, this result is equivalent to Theorem 5.1. ��
Remark 2.5 It turns out that, althoughB-series are affine equivariant, it is not necessary
to use equivariance with respect to all affine maps to prove Theorem 2.4. We only use
equivariance with respect to all surjective affinemaps to prove Theorem 5.1 (invertible
affine maps in Proposition 3.2 and surjective affine maps in Lemma 4.2) and with
respect to the trivial affine injections from R0 to Rn (in Lemma 6.1).

2.1 Idea of the proof

The proof of Theorem2.4 is long and containsmanydetails. In this sectionwe therefore
explain its main ingredients by proving Theorem 2.4 in the special case when the
functions φm are homogeneous quadraticmaps, instead of arbitrary nonlinear smooth
maps.

We use a transfer argument, similar to that of [24], to transfer the statement from
affine equivariant integrator maps , to linear equivariant polynomials Pm in the deriv-
atives of the vector fields (this is Propositions 6.2 and 6.3).

After the transfer argument, we have for every dimension m a vector valued homo-
geneous quadratic polynomial Pm in the derivatives of the vector field at zero (cf.
Sect. 3.2). A component of such a vector could be for f 32 f 11 in dimension three, or a
linear combination of such expressions (we follow standard practice for the notation
of components and partial derivatives, which are detailed in Sect. 3).

We make explicit the assumption that the sequence Pm is linear equivariant. Con-
sider an arbitrary linear map A fromRn toRm . We say that A intertwines a vector field
f in dimension n and a vector field g in dimension m, if g(Ax) = A f (x) for any x in
Rn (cf. Sect. 3.3). The sequence {Pm}m∈N is equivariant if whenever A intertwines f
and g, it also intertwines Pn[ f ] and Pm[g] (cf. Sect. 3.4).

We now prove the special case of quadratic linear equivariant functions.

Proposition 2.6 Suppose that P = {Pm}m∈N is a vector-valued, homogeneous
quadratic polynomial in the derivatives of vector fields at zero. Suppose further that
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B-series methods are exactly the affine… 605

for any linear map A : Rn → Rm and vector fields such that g(Ax) = A f (x), we
have P[g](Ax) = AP[ f ](x). Then P must be of the form

Pm[ f ] = λ

m∑
i, j=1

f j
i f i∂ j

for some scalar λ.

We use the following standard notations (see Sect. 3.6 for the notations pertaining
to elementary differentials used in this paper):

(4)

Themain ingredient of the proof is to notice that the term is coupling (cf. Lemmas
4.2 and 4.5), which contradicts equivariance (cf. Lemma 4.9).

Proof Consider an arbitrary vector field f in dimension k (in this proof, k will take
the value 1 or 2). For any dimension m ≥ k, we denote the vector f ⊕ 0 as the vector
equal to f on the first k components, padded with zeros (cf. Sect. 4.1), i.e.,

( f ⊕ 0)(x1, . . . , xk, . . . , xm) := ( f 1(x1, . . . , xk), . . . , f k(x1, . . . , xk), 0, . . . , 0).

For m ≥ k, we also define the linear projection 
m
k : Rm → Rk which keeps the

first k components. Note that the projection 
m
k intertwines f ⊕ 0 and f , since


m
k ( f ⊕ 0)(x) = f (
m

k x) (cf. Proposition 4.1). Finally, observe that from the for-
mulas (4), we have for any scalars λ and μ (cf. Lemma 4.6)

(5)

Given these definitions and observations, the proof proceeds as follows.

1. Using equivariance with respect to invertible linear maps on each dimension, we
obtain from [24] (see Proposition 3.2) that, for every dimension m, we have

for some real numbers λm and μm .
2. We now proceed to show that for any vector field

f in m dimensions (cf. Lemma 5.7). We first show that for m ≥ 2 we have
λm = λ2 and μm = μ2, and then show that, on one-dimensional vector fields,
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606 R. I. McLachlan et al.

(a) Consider a vector field f in dimension two. As 
m
2 intertwines f ⊕ 0

and f , equivariance of P leads to 
m
2 Pm[ f ⊕ 0](x) = P2[ f ](
m

2 x) =
(λ2 + μ2 )[f ](Πm

2 x).
Combining this with (5), we obtain that and

coincide on vector fields in dimension two. Appealing again to [24] (see Propo-
sition 3.2), we obtain that λm = λ2 and μm = μ2.

(b) Consider now a vector field f in one dimension. Construct f ⊕ 0 in two
dimensions; equivariance now gives 
2

1P2[ f ⊕ 0](x) = P1[ f ](
2
1x). Again,

by comparing this with (2.1), we obtain that

Combining the last two items,we deduce that in fact

for any integer m.
3. Thefinal step is now to show thatμ2 = 0 (cf. Lemma5.8). The idea is to apply P2 to

the special vector field g(x1, x2) = (1, x2) (cf. Lemma 4.10 for the general expres-
sion of such special vector fields).One checks that, at x = 0,we have

and that We conclude that P2[ f ](0) = μ2(1, 0), and in

particular 
2
1P2[ f ](0) = μ2. Denote by 1 the constant vector field on R; it

is clear that 
2
1 intertwines g and 1. The equivariance of P now implies that


2
1P2[g](0) = P1[1](0) = 0, which entails μ2 = 0.

We conclude that for any integer m, which, recalling the notation (4), is

the claim of the proposition. ��
The rest of the paper consists of generalizing the arguments in the proof above, in

order to accommodate homogeneous polynomials of any degree.

3 Preliminary definitions

3.1 Polynomial vector fields

For a fixed dimension n, we define an infinite dimensional vector space Fn of poly-
nomials of arbitrary degree. We use derivatives as coordinates in that space. These
coordinates are thus indexed by the partial derivatives, as

( f, f1, . . . , fn, f11, f12, . . . )

with appropriate symmetry conditions, such as f12 = f21.
We denote by Xn the set of vector-valued polynomials, which consists of n elements

of Fn , that is Xn = (Fn)n . An element in Xn should be regarded as a polynomial
vector field.

3.2 Forms

A k-form in dimension n is a homogeneous polynomial of degree k on the space of
polynomial vector fields Xn . We denote scalar k-forms on Xn by Sk(Xn). A vector
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valued k-form in dimension n is a list of n k-forms, regarded as a vector. It is thus an
element of Rn ⊗ Sk(Xn). As is customary, we use the basis ∂i . Note that we use the
same notation for the basis in all dimensions, which should not cause confusion. For
instance, in dimension n the map η defined by

η[ f ] = f 1 f 11 ∂1 + f n1 f nn ∂n

is a vector-valued 2-form. In one dimension, the coordinates are ( f 1, f 11 , f 111, . . . ),
corresponding to ( f, f ′, f ′′, . . .), and a 2-form in one dimension could be f f ′+( f ′′)2.
In two dimensions, an example of a vector valued 3-form is P[ f ] = f 2112 f

2 f 1∂1 +
( f 12 )3∂2.

3.3 Intertwining

Given a linear map A ∈ L(Rn,Rm) we say that A intertwines f ∈ Xn with g ∈ Xm ,
denoted

f
A� g,

if the equality

g(Ax) = A f (x) (6)

is valid for all x ∈ Rn .
We give an example of intertwining with respect to a projection. Define the scalar

polynomials f1 ∈ F1 and f2 ∈ F2, the polynomial vector field f ∈ X2 by
f (x1, x2) := f1(x1)∂1 + f2(x1, x2)∂2, and g ∈ X1 by g(x) = f1(x)∂1. We denote
the projection π ∈ L(R2,R1) on the first coordinate, that is, π(x1, x2) = x1. In that
case, one can check that g(π(x)) = π( f (x)), so we have f

π� g.
We now give an example of intertwining with respect to an injection. Define the

vector field f ∈ X1 by f = f1(x1)∂1, where f1 ∈ F1. Consider now the vector field
g ∈ X2 defined by g(x1, x2) = g1(x1, x2)∂1 + g2(x1, x2)∂2, with the property that
g2(x, 0) = 0 and g1(x, 0) = f1(x) for any x ∈ R. Define the injection i ∈ L(R,R2)

by i(x) = (x, 0). As g(i(x)) = i( f (x)), we have f
i� g.

3.4 Equivariant sequences

We define an equivariant sequence of (vector-valued) k-forms as a sequence ηn of
vector-valued k-forms with the property that whenever

f
A� g, (7)

it holds that

ηn( f )
A� ηm(g).
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608 R. I. McLachlan et al.

A typical example of an equivariant sequence of 2-forms is

ηn[ f ] :=
n∑

i,k=1

f ki f i∂k .

Finally, we use the following simplifying notation. If f ∈ Xn and P is a sequence
of k-forms, we use the notation

P[ f ] := Pn[ f ].

If the dimension n is not clear from the context, we use the explicit form Pn[ f ].

3.5 Aromatic forests, trees and molecules

We now review some definitions from [24]. Let � denote the set of all directed
graphs with a finite number of vertices, where each vertex has zero or one outgo-
ing edges. A vertex with no outgoing edges is called a root. For γ ∈ �, let V(γ )

and E(γ ) denote the vertices and edges of the graph, let R(γ ) ⊂ V(γ ) denote the
root vertices. For v ∈ V(γ ), let P(v) ⊂ V(γ ) denote the set of parent vertices,
P(v) := {p ∈ V(γ ) | (p, v) ∈ E(γ )}. Let |γ | := #V(γ ) denote the number of ver-
tices and |R(γ )| the number of roots.

We have � = ⋃∞
r=0,k=1 �r

k , where �r
k denotes graphs with r roots and k vertices.

We denote �r := ⋃∞
k=1 �r

k . Let 〈�〉 and 〈�r 〉 denote the free R-vector spaces over �

and �r . An element of �1 is called an aromatic tree. For instance, the following is an
element of �1, as it has one root, so it is an aromatic tree:

By convention, we will assume that the cycles are always oriented counterclockwise
and we will draw the aromatic trees in short form as:

The set of trees is the subset T ⊂ �1 of connected graphs in �1. Similarly, the set
of aromatic molecules is the subset M ⊂ �0 of connected graphs in �0.

We define the product of graphs as their disjoint union: for γ1, γ2 ∈ � the product
γ1γ2 = γ2γ1 is the graph consisting of the union of the vertices and edges of the two
graphs.

Lemma 3.1 Let γ ∈ �1. Then γ can be decomposed as

γ = μ1μ2 . . . μkτ,

where μ1, . . . , μk ∈ M and τ ∈ T .
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B-series methods are exactly the affine… 609

Proof Any graph γ ∈ �1 can be decomposed into a union of its connected compo-
nents, where each connected component is either in T or in M . As γ has one root, the
root must belong to one of the components, which is thus in T . The other components
are also aromatic forests, but with the same number of nodes and arrows, so they
cannot have any root and must belong to M . ��

3.6 Elementary differentials

Consider f ∈ Xn and γ ∈ �r
k . The set V(γ ) denotes the set of vertices of γ . For a

node i ∈ V(γ ), we denote by P(i) the parent vertices of i . We define the elementary
differential Fn(γ )[ f ] ∈ (Rn)⊗r ⊗ Sk(Xn) in tensor component notation as

Fn(γ )[ f ] :=
∏

i∈V(γ )

f iP(i), (8)

where we use the Einstein summation convention: repeated indexes are summed over
in the range {1 . . . n}. Every lower index is paired with an upper index, but the upper
indices that correspond to roots are not paired. We rewrite that definition in a more
tractable form in (9). Note that we make sure to keep track of the dimension n in those
expressions. Consider, for instance, the expression

In one dimension it is

In two dimensions it is

Below is an example of an elementary differential where γ ∈ M and Fn(γ )[ f ] is
a scalar two-form:

Here, i is the the top vertex of γ , giving the part f i (no parents, hence no subscript),
and j is the bottom vertex of γ , giving the factor f j

i j , since P( j) = {i, j}.
We now rewrite the definition (8) of the elementary differential Fn(γ )[·] : Xn →

Xn in an equivalent, but, for our purpose, more tractable form:

Fn(γ )[ f ] =
∑

ν : V(γ )→[n]

∏
v∈V(γ )

f ν(v)

ν(P(v))

∏
r∈R(γ )

∂ν(r), (9)

Here, [n] := {1, 2, . . . , n}, R(γ ) denotes the root vertices of the graph γ , ∂ j ∈ Rn

denotes the unit vector in a direction j ∈ [n], and P(v) denotes the set of parent
vertices of vertex v, i.e., P(v) = {p ∈ V(γ )|(p, v) ∈ E(γ )}. The sum runs over all
possible maps ν : V(γ ) → [n], assigning vertices in γ to integers in [n].
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610 R. I. McLachlan et al.

To verify the re-writing (9), we note that an assignment of vertices in γ to integers
in [n] is already implicit in our interpretation of (8) where i both denotes a node in
γ and an integer in [n]. Thus f iJ in (8) is the same as f ν(v)

ν(P(v))
in (9). In (8), the root

nodes are left as tensor components which are not summed over. In (9) we pair the
root nodes ν(r) with the basis vector field ∂ν(r), and hence the sum here runs over all
possible maps ν : V(γ ) → [n].

For each dimension n, Eq. (9) defines the elementary differential map Fn . In par-
ticular, on the subspace 〈�1

k 〉 of aromatic trees with k vertices, we have

Fn : 〈�1
k 〉 → Rn ⊗ Sk(Xn).

For fixed dimension n, the map Fn is not injective. For instance,

The elementary differential map is not injective even when restricted to 〈T 〉. For
instance,

This is one of the motivations for regarding the elementary differential as acting on
all dimensions. Indeed, we build a sequence

F : 〈�1
k 〉 → {sequences of vector-valued k-forms}

defined by

F(γ ) := (F1(γ ),F2(γ ), . . .).

In the sequel, we use the following simplified notation: for γ ∈ � and f ∈ Xn , we
define

γ [ f ] := Fn(γ )[ f ].

Note that the dimension n is implicitly defined by the space Xn that f belongs to.
When ambiguity remains, we resume the explicit notation Fn(γ )[ f ].

As a first result for the elementary differential map, consider the following result,
established in [24, §7.4]:

Proposition 3.2 For each dimension n ∈ N and degree k ∈ N,Fn is a surjection from
〈�1

k 〉 to the space Rn ⊗ Sk(Xn) of vector-valued equivariant k-forms in dimension n.
Moreover, if k ≤ n, then Fn is a bijection.
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4 Special vector fields

The proof of Theorem 5.1 below is based on the construction of special vector fields. In
particular, we need vector fields with block-diagonal Jacobians. We also need special
vector fields that form a dual basis with respect to aromatic trees and molecules.

4.1 Partitioned vector fields

Vector fields with block-diagonal Jacobian matrices are called partitioned. They serve
a special role in the sequel.

Proposition 4.1 Consider the decomposition

Rn+m = Rn ⊕ Rm,

and denote the associated projections by π1 and π2. Then, given f ∈ Xn and g ∈ Xm,
there is a unique vector field h ∈ Xn+m characterized by

h
π1� f, h

π2� g.

That vector field is denoted

f ⊕ g := h.

Proof h
π1� f means by definition (6) that π1h(x, y) = f (x), where we denote a

point (x, y) ∈ Rn+m so that π1(x, y) = x . This means that h(x, y) has f (x) as first
components, and likewise, g(y) as last components. ��

We thus immediately obtain the following property of equivariant sequences.

Lemma 4.2 If f ∈ Xn and g ∈ Xm, and P is an equivariant sequence of k-forms,
we have

P[ f ⊕ g] = P[ f ] ⊕ P[g].

Proof Consider the vector field h = f ⊕g, defined as in Proposition 4.1. By definition
of the equivariance of the sequence (7), we have P[h] π1� P[ f ], and P[h] π2� P[g],
which, again by Proposition 4.1 ensures that P[h] = P[ f ] ⊕ P[g]. ��

Thus, equivariant sequences “keep decoupled systems decoupled”; this is essen-
tially the difference between aromatic series and B-series.

We now derive special formulas for elementary differentials of partitioned vector
fields. To do that, we first reformulate the elementary differential formula (9) using
dependency graphs.

123



612 R. I. McLachlan et al.

Definition 4.3 The dependency graph of f ∈ Xn , denoted dep( f ), is the directed,
labeled graph defined by

V(dep( f )) = [n]
( j, i) /∈ E(dep( f )) ⇐⇒ ∂ j f

i (x) = 0 ∀x ∈ Rn .

Note that a vector field is partitioned if and only if its dependency graph is discon-
nected.

Lemma 4.4 For μ ∈ M the elementary differential is given as

μ[ f ] =
∑

ν∈hom(μ,dep( f ))

∏
v∈V(μ)

f ν(v)

ν(P(v))
, (10)

where hom(μ, dep( f )) denotes graph homomorphisms of μ into dep( f ), i.e. a map
of graphs sending vertices to vertices and edges to edges. For τ ∈ T , component k of
the elementary differential is given as

τ [ f ]k =
∑

ν∈hom(τ,dep( f ))
ν(R(τ ))=k

∏
v∈V(μ)

f ν(v)

ν(P(v))
.

Proof Equation (9) expresses the elementary differential as a sum over all possible
maps ν : V(γ ) → V(dep( f )). By definition of the dependency graph Definition 4.3,
we see that all maps which are not sending edges to edges must yield 0. Hence, we
can restrict the sum to homomorphisms. Both formulas follow from this argument; in
the first case μ has no roots. In the latter case component k is the multiplier in front of
∂ν(R(τ )), i.e., k = ν(R(τ )). Thus we restrict to all homomorphisms sending the root
of τ to k. ��

Our next result shows that trees and molecules preserve, in a sense, the structure of
partitioned vector fields.

Lemma 4.5 Consider the partitioned vector field f = f1⊕ f2 ∈ Xm+n, with f1 ∈ Xm

and f2 ∈ Xn. If μ ∈ M and τ ∈ T , then

μ[ f1 ⊕ f2] = μ[ f1] + μ[ f2] (11)

τ [ f1 ⊕ f2] = τ [ f1] ⊕ τ [ f2]. (12)

Proof The dependencies δ = dep f decomposes δ = δ1δ2 in two disjoint graphs
δ1 = dep( f1), δ2 = dep( f2). Since μ is connected, hom(μ, δ) = hom(μ, δ1) ∪
hom(μ, δ2) and the sum in Lemma 4.4 splits accordingly, yielding (Lemma 4.5).
Similarly hom(τ, δ) = hom(τ, δ1) ∪ hom(τ, δ2) yields (Lemma 4.5). ��

As opposed to trees and molecules, aromatic trees (which by Lemma 3.1 are prod-
ucts of molecules and a tree) do not preserve the structure of partitioned vector fields.
This is the key to the characterisation of B-series. In the special case, however, when
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the partition represents an injection of a vector field in a higher dimensional space,
aromatic trees do preserve the partitioned structure.

Lemma 4.6 If f = g ⊕ 0 with f ∈ Xn and g ∈ Xm, then

γ [g ⊕ 0] = γ [g] ⊕ 0 ∀γ ∈ 〈�1
k 〉.

Proof The result follows from the elementary differential formula (9). We have to
prove that the term corresponding to ν : V(γ ) → [n] is zerowhenever ν(V(γ )) �⊂ [m].
This is clear since there is then a vertex v of γ such that ν(v) ∈ [n] \ [m], and we use
that f ν(v)

J = 0 for any derivative J . ��

4.2 Dual vector fields

In classical B-series theory, results on linear independence of elementary differentials
are obtained by specially constructed vector fields. We use the same technique as
in [5,19] to construct such vector fields.

First, we need to define the symmetry of a graph. Let σ(γ ) denotes the number of
symmetries of a graph, defined as the size of the automorphism group of the graph,
i.e,

σ(γ ) := #Aut(γ )

where

Aut(γ ) := {ν ∈ Aut(V(γ )) | ν(E(γ )) = E(γ )} .

We now define the labeling of graph γ ∈ � as a bijection λ : [|γ |] → V(γ ). By
convention, we number the roots first. In particular, for trees, the root will have number
one. Incidentally, a similar labeling is chosen in the proof of [24, Theorem 7.3].

In the rest of this section we choose one fixed labelling for all aromatic forests.
Identifying V(γ ) ≡ [|γ |] using this labeling, we define, for δ ∈ �r

n , the polynomial
vector field fδ ∈ Xn by

f j
δ (x) := 1

(σ (δ))1/|δ|
∏

i∈P( j)

xi , (13)

where an empty product is defined as 1. By construction, δ = dep( fδ).
As an example, consider the following labeled aromatic molecule

123



614 R. I. McLachlan et al.

Then

fδ(x) =
⎛
⎝

x2
x1x3
1

⎞
⎠ .

Lemma 4.7 If δ = δ1 δ2 then

fδ = fδ1 ⊕ fδ2 .

Proof Clear from the definition of fδ . ��
Lemma 4.8 Let μ,μ′ ∈ M ⊂ �0 be aromatic molecules and τ, τ ′ ∈ T ⊂ �1 trees.
The elementary differentials of μ and τ applied to fμ′ and fτ ′ are given by

μ[ fτ ′ ] = 0

μ[ fμ′ ] =
{
1 if μ = μ′

0 otherwise

τ [ fμ′ ] = 0

τ [ fτ ′ ]1 =
{
1 if τ = τ ′

0 otherwise.

Proof Consider two connected graphs γ, γ ′ ∈ �. Define by f the product in (13) for
the graph γ ′, i.e, f := (σ (δ))1/|δ| fγ ′ . Let P and P ′ denote the parent functions in the
graphs γ and γ ′. From (9) we find

γ [ f ] =
∑

ν∈hom(γ,γ ′)

∏
v∈V(γ )

∂ |P(v)|

∂xν(P(v))

( f )ν(v)
∏

r∈R(γ )

∂ν(r)

=
∑
ν

∏
v∈V(γ )

∂ |P(v)|

∂xν(P(v))

∏
i∈P ′(ν(v))

xi
∏

r∈R(γ )

∂ν(r)

=
∑
ν

∏
v∈V(γ )

∏
i∈P ′(ν(v))\ν(P(v))

xi
∏

r∈R(γ )

∂ν(r).

If ν ∈ hom(γ, γ ′) sendsmore than one edge in γ to the same edge in γ ′, the expression
becomes 0, so it is enough to consider graph embeddings, ν ∈ (γ ↪→ γ ′), themaps that
are injective both on vertices and edges. If some edge in γ ′ is not covered by the image
of an edge in γ , the result is a monomial

∏
i xi running over all edges not covered

by the embedding, which evaluates to 0 at x = 0. If ν is a graph isomorphism the
expression evaluates to 1. Hence, we conclude that for the root component (numbered
one by convention):

(γ [ f ])1(0) =
{

σ(γ ) if γ = γ ′,
0 otherwise.

��
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4.3 Aromatic series on dual vector fields

For regular B-series, Lemma 4.8 provides a dual basis to the elementary differen-
tial. For aromatic series we must take into account polynomial relations, such as
(μμ)[ fμ] = (μ[ fμ])2 for μ ∈ M . The goal of this section is thus to construct the
equivalent of the vector fields of Lemma 4.8, but for aromatic trees. As we shall see,
we cannot achieve a corresponding result, but a result that suffices for our purpose.

We need an elementary result first. If γ ∈ � is disconnected, γ = γ1 γ2, we can
decompose γ [ f ] in the following way.

Lemma 4.9 For γ1 ∈ �r1, γ2 ∈ �r2 we have

γ1 γ2[ f ] = γ1[ f ] · γ2[ f ]

where the product on the right denotes the symmetric tensor product.

Proof If the graph γ = γ1 γ2 is disconnected then P(v1) ⊂ V(γ1) for all v1 ∈ V(γ1)

and similar for γ2, and the result is readily checked from (9). ��
Note that we will only use that result for products of graphs in �0, i.e., products of

molecules, or products of elements in �0 and �1. In particular, the tensor product on
the right will always be either a scalar or a vector.

We now come to the central result of this section.

Lemma 4.10 Fix aromatic molecules μ1, . . . , μm ∈ M, scalars λ1, . . . , λm ∈ R,
and a tree τ ∈ T . Define

f := fτ ⊕ λ1 fμ1 ⊕ · · · ⊕ λm fμm .

Let π be the projection on the first components, that is, π f = fτ . Choose an arbitrary
element γ ∈ �1. If γ = μ

p1
1 · · ·μpm

m τ for some integers p1, . . . , pm ≥ 0, then

π(γ [ f ]) = λ
|μ1|p1
1 . . . λ

|μm |pm
m ∂1,

otherwise, π(γ [ f ]) = 0.

Proof An aromatic tree γ can always be written as

γ = σμ
p1
1 . . . μ

pm
m τ ′

for some integers pi ≥ 0, an element σ ∈ �0 which does not contain any of the
molecules μi , and a regular tree τ ′ ∈ T .

First, using Lemma 4.9 we obtain that

γ [ f ] = σ [ f ] (μ1[ f ])p1 . . . (μm[ f ])pm τ ′[ f ] (14)
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Now, usingLemma4.5 and thatμ is |μ|-linear, we obtain that for anymoleculeμ ∈ M :

μ[ f ] = μ[ fτ ] + λ
|μ|
1 μ[ fμ1 ] + · · · + λ|μ|

m μ[ fμm ]. (15)

Using (15) with μ = μi , we obtain using Lemma 4.8 that μi [ f ] = λ
|μi |
i . If σ is not

empty, it contains one molecule μ, which, by assumption is distinct from any of the
μi , and (15) is then zero. As (15) factors σ [ f ] which in turn factorises (14), the whole
expression (14) is zero. If σ is empty, we have by convention that σ [ f ] = 1. Similarly,
we obtain from Lemma 4.5 that

τ ′[ f ] = τ ′[ fτ ] ⊕ λ
|τ ′|
1 τ ′[ fμ1 ] ⊕ · · · ⊕ λ|τ ′|

m τ ′[ fμm ].

We conclude that if τ ′ �= τ then the root component (which, by convention, has label
1) of (14) is zero. If τ ′ = τ then τ ′[ f ]1 = τ [ f ]1 = 1, which concludes the proof. ��

5 Proof of the core result

We now set out to prove what is the core result of this paper. Indeed, the following
result is the main ingredient in the proof of Theorem 2.4.

Theorem 5.1 For any degree k, F induces a bijection between elements of 〈Tk〉 and
equivariant sequences of k-forms.

Theorem 5.1 is proved through Proposition 5.2 (injectivity), Proposition 5.3 (com-
patibility), and Proposition 5.6 (surjectivity).

5.1 Injectivity

Proposition 5.2 The elementary differential map F is injective.

Proof Suppose that γ ∈ 〈�1
k 〉 and thatF(γ ) = 0. Then we have in particularFk(γ ) =

0 and Proposition 3.2 yields γ = 0. ��

5.2 B-series are equivariant sequences

In this subsection we prove the following result.

Proposition 5.3 F maps 〈Tk〉 to the space of equivariant sequences of k-forms.
The geometry of affine spaces is closely related to the existence of a flat, torsion-free

connection. Note that for each n ∈ N the following connection �n : Xn × Xn → Xn

is well defined because its result is also a polynomial vector field:

( f �n g)(x) := ∂

∂t

∣∣∣∣
t=0

g
(
f (x + t f (x)

)
.

123



B-series methods are exactly the affine… 617

As before, we consider now a connection � as a sequence of the connections on all
dimensions n. We also omit the dimension when the context is clear, so we write:

f � g := f �n g f, g ∈ Xn .

Lemma 5.4 The connection � is an equivariant sequence in the following sense:

f
A� f̃ and g

A� g̃ 	⇒ ( f � g)
A�( f̃ � g̃) A ∈ L(Rn,Rm).

Proof Let y = Ax . Then

A( f � g)(x) = ∂

∂t

∣∣∣∣
t=0

Ag(x + t f (x)) = ∂

∂t

∣∣∣∣
t=0

g̃(Ax + t A f (x))

= ∂

∂t

∣∣∣∣
t=0

g̃(y + t f̃ (y)) = ( f̃ � g̃)(y).

��
In the language of algebra, {Xn, �n} is an example of a pre-Lie algebra [7], i.e., a

vector space with a bilinear binary operation � = �n that is neither commutative nor
associative, but satisfies the pre-Lie relation

f � (g � h) − ( f � g) � h = g � ( f � h) − (g � f ) � h.

Recall that T denotes the set of all rooted trees, that for τ ∈ T , |τ | denote the
number of vertices in τ and that 〈T 〉 is the free R-vector space over T .

The free pre-Lie algebra, denoted {〈T 〉, �}, is defined by the binary operation
�: 〈T 〉 × 〈T 〉 → 〈T 〉 given by grafting on trees. That is, the binary operation �
given by summing over all trees resulting from attaching successively the tree τ1 to
each vertex of τ2:

τ1 � τ2 :=
∑

v∈V (τ2)

τ1 ◦v τ2,

where τ1 ◦v τ2 denotes attachment of the root of τ1 to the vertex v of τ2 via a new
edge. The free pre-Lie algebra is universal in the category of pre-Lie algebras:

Proposition 5.5 [9] For any pre-Lie algebra {A, �} and any f ∈ A, there exists a
unique map F(·)[ f ] : 〈T 〉 → A defined by linearity and the recursion

F(•)[ f ] = f

F(τ1 � τ2)[ f ] = F(τ1)[ f ] � F(τ2)[ f ], τ1, τ2 ∈ 〈T 〉. (16)

When A = Xn and τ ∈ T , the elements F(τ )[ f ] ∈ Xn are thus the elementary
differentials that we defined in Sect. 3.6, as the recursion equations (3) are fulfilled in
that case.

The following result establishes a proof of Proposition 5.3.
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Proof of Proposition 5.3 By Proposition 5.5, we can express the elementary differen-
tial map F using connections and the tree •. As F(•)[·] is obviously an equivariant
sequence, and as the connection is equivariant in the sense of Lemma 5.4, we conclude
that F(τ )[·] also is, for any tree τ ∈ T . ��

5.3 Surjectivity

The main result of this subsection is the following result.

Proposition 5.6 F is a surjection from 〈Tk〉 to the space of equivariant sequences of
k-forms.

Proof The proof contains two steps: assuming P is an equivariant sequence of k-
forms, we prove that there exists a γ ∈ 〈�1

k 〉 such that P = F(γ ) (Lemma 5.7), then
we prove that γ must in fact be in 〈Tk〉 (Lemma 5.8). ��
Lemma 5.7 F is a surjection from 〈�1

k 〉 to the space of equivariant sequences of
k-forms.

Proof Let P be an equivariant sequence of k-forms. For any n, using Proposition 3.2
we have γn ∈ 〈�1

k 〉 such that Fn(γn) = Pn . We aim to show that P = F(γk).

1. We first show that for m ≤ n, we have

Fm(γm) = Fm(γn). (17)

Indeed, take a g ∈ Xm and construct f = g ⊕ 0. The equivariance property
Lemma 4.2 implies that Pn[g ⊕ 0] = Pm[g] ⊕ 0, which gives Fn(γn)[g ⊕ 0] =
Fm(γm)[g] ⊕ 0. Using Lemma 4.6 we obtain Fm(γn)[g] ⊕ 0 = Fm(γm)[g] ⊕ 0,
so (1) is proved.

2. In particular, for n ≤ k, (1) gives Fn(γk) = Fn(γn) = Pn . For k ≤ n (1) gives
Fk(γk) = Fk(γn), but as γn is a k-form, we can use Proposition 3.2 and obtain
γk = γn . For n ≥ k, this gives Pn = Fn(γk).

We have shown that Fn(γk) = Pn for any n, so we conclude that P = F(γk). ��
Lemma 5.8 Let P be an equivariant sequence of k-forms. IfF(γ ) = P for γ ∈ 〈�1

k 〉,
then γ ∈ 〈Tk〉.
Proof Fix a tree τ ∈ T . The element γ ∈ 〈�1

k 〉 can be written as

γ = p(μ1, . . . , μm)τ + γ ′

where γ ′ does not contain any occurrence of the tree τ , and p is a polynomial over
some molecules μ1, . . . , μn . For instance, if γ = (3(μ1)

2μ2 + (μ1)
3)τ + γ ′, then

p(X1, X2) = 3X2
1X2 + X3

1. The goal is now to prove that p is constant. Recall
the notations of Lemma 4.10, in particular the special vector f := fτ ⊕ λ1 fμ1 ⊕
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· · · ⊕ λm fμm and the projection π which projects on the first components of the
decomposition of f . Using Lemma 4.10 we have

πγ [ f ] = p(λ|μ1|
1 , . . . , λ|μm |

m )∂1. (18)

Now, using that the sequence η is equivariant, that is, using Lemma 4.2 for f =
fτ ⊕ g, one obtains πγ [ f ] = γ [ fτ ]. Now, using Lemma 4.10, we obtain γ [ fτ ] =
p(0, . . . , 0)∂1, so

πγ [ f ] = p(0, . . . , 0)∂1. (19)

We deduce from (19) and (18) that as p(λ|μ1|
1 , . . . , λ

|μm |
m ) = p(0, . . . , 0), the polyno-

mial p must be constant. Finally, we conclude that γ is in 〈Tk〉. ��

6 Transfer argument

6.1 Transfer to the Taylor terms

When dealing with B-series, one treats each order separately, so that statements are
stable with respect to truncations (or, put differently, with respect to the inverse limit
topology). The terms in a B-series correspond to the terms in the Taylor expansion of a
map, so statements about B-series imply statements about Taylor terms and vice versa.
Notice, however, that Theorem 2.4 says something about the family φ as a whole, not
about its Taylor terms. Therefore, to prove Theorem 2.4 through Theorem 5.1, we
need to show that a Taylor term of an affine equivariant integrator map is also an affine
equivariant integrator map ; we call this a transfer argument.

We first show that affine equivariant sequences preserve fixed points:

Lemma 6.1 Ifφ is an affine equivariant sequence of smoothmaps, then for any integer
n, any point x ∈ Rn, and any vector field f ∈ X0(Rn), we have

f (x) = 0 	⇒ φn( f )(x) = 0.

This implies in particular φn(0) = 0.

Proof Consider the trivial affine injection R0 → Rn defined by a(0) = x . The
mapping a intertwines the zero vector field on R0 and f , so by equivariance of φn ,
we have: φn( f )(x) = 0.

Let φn : X0(Rn) → X0(Rn) be a smooth map, and consider, as in Sect. 2, the kth
Taylor coefficient Dkφn(0). Recall that this is a symmetric multi-linear, vector valued
map. The corresponding homogeneous polynomial �k(φn) : X0(Rn) → X0(Rn) is

�k(φn)( f ) := Dkφn(0)[ f, . . . , f ].

The following transfer argument is the main result of this section.
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Proposition 6.2 Let φ = {φn}n∈N be an affine equivariant sequence of smooth maps.
Then, for any fixed k ∈ N, the family of maps {�k(φn)}n∈N is an affine equivariant
sequence of homogeneous polynomials of degree k.

Proof First, by Lemma 6.1, we have that φn(0) = 0. The Taylor polynomial �k(φn)

for a smooth map φn : X0(Rn) → X0(Rn) such that φn(0) = 0 is given by [20, §5.11]

�k(φn)( f ) = ∂t1 . . . ∂tkφn((t1 + · · · + tk) f ) | t1=0,...,tk=0 . (20)

Consider two vector fields f ∈ X0(Rn) and g ∈ X0(Rm), related by an affine
map a(x) = Ax + b, i.e., f

a� g. Then (λ f )
a� (λg) for any λ ∈ R. Since φ is an

equivariant sequence, we have φn(λ f )
a� φm(λg), which, by its definition (2), means

φm(λg)(ax) = Aφn(λ f )(x) for x ∈ Rn . Therefore, taking λ = t1 + · · · + tn , we
obtain

φm((t1 + · · · + tk)g)(ax) = Aφn((t1 + · · · + tk) f )(x).

Weconclude, using the defining property of�k in (20), that�k(φn)( f )
a��k(φm)(g).

��

6.2 Extension principle

We now observe that by Lemma 6.1, and because we have polynomials instead of
nonlinear maps, we can apply Peetre’s theorem and assert that φn depends on a finite
number of derivatives of the vector field. Furthermore, by equivariance at each dimen-
sion, we can restrict the study to that of (linear) equivariant sequences of k-forms on
polynomial vector fields as defined in Sect. 3.4.

We only give a sketch of the proof, as the details are similar to [24], themain novelty
being using sequences instead of maps.

Proposition 6.3 There is a bijection between the space of affine equivariant sequences
of homogeneous polynomials of degree k on vector fields, and the space of (linear)
equivariant sequences of k-forms on polynomial vector fields.

Proof Observe that Lemma 6.1 implies in particular that φn is support non-increasing,
or local (see [24, §2.3]) so we can use the extension principle in [24, Proposition 4.2]
We thus obtain for each dimension n a map ϕn defined from polynomial vector fields
to Rn ; moreover, this map is GL(n)-equivariant. The relation between ϕ and ϕ is
ϕ( f )(x) = ϕ(T ( f ))(0), where T is the Taylor development of f . Note that ϕ has
finite order, i.e., it only needs the Taylor development up to some finite order k.

Consider an affine equivariant sequence ϕn of local k-forms on vector fields. We
thus obtain a sequence ϕn of GL(n) equivariant maps. As the sequence ϕn is affine
equivariant, we obtain that the sequence ϕn is equivariant in the sense of Sect. 3.4.

On the other hand, given an equivariant sequence in the sense of Sect. 3.4, we obtain
a sequence of affine-equivariant maps ϕn . It is then straightforward to check that this
sequence is in fact an equivariant sequence. ��
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