
Groups and Symmetries in Numerical Linear
Algebra

Hans Z. Munthe-Kaas

Abstract Groups are fundamental objects of mathematics, describing symmetries
of objects and also describing sets of motions moving points in a domain, such
as translations in the plane and rotations of a sphere. The topic of these lecture
notes is applications of group theory in computational mathematics. We will first
cover fundamental properties of groups and continue with an extensive discussion
of commutative (abelian) groups and their relationship to computational Fourier
analysis. Various numerical algorithms will be discussed in the setting of group
theory. Finally we will, more briefly, discuss generalisation of Fourier analysis
to non-commutative groups and discuss problems in linear algebra with non-
commutative symmetries. The representation theory of non-commutative finite
groups is used as a tool to efficiently solve linear algebra problems with symmetries,
exemplified by the computation of matrix exponentials.

1 Introduction

‘Symmetry’ is a vaguely defined concept deeply rooted in nature, physics, biology,
art, culture and mathematics. In everyday language it refers to a harmonious
proportion and balance. In mathematics, the symmetries of an object are more
precisely defined as a set of transformations leaving the object invariant. Examples
in art are tessellations and mosaics invariant under translations and reflections.
In mechanics, symmetry can refer to invariance of a Lagrangian function under
transformations such as spatial rotations and translation in time, and the famous
theorem of Emmy Noether relates such symmetries to conservation laws. Sophus
Lie (1842–1899) revolutionised the theory of differential equations by considering
the symmetries sending solution curves to other solutions. A huge part of signal pro-
cessing and Fourier analysis is based on invariance of linear operators under time or
space translations. Classical Fourier analysis extends to non-commutative harmonic
analysis and group representation theory when the symmetry transformations do not
commute (when ab ¤ ba).
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When designing an algorithm for solving some computational problem, it is
usually a good idea to look for the symmetries of the problem. An algorithm
which preserves symmetries often results in more accurate or stable numerical
computations, and potentially also leads to huge savings in terms of time and
space consumption. For these reasons, knowledge of the mathematics of symmetries
(group theory) should be very important for students of computational science.

In these lectures we will focus our attention to applications of group theory
in numerical linear algebra, Fourier analysis and signal processing. We will in
particular focus on a unified treatment of classical Fourier analysis, based on
translational invariance in space or time (commutative symmetries), and continue
with a treatment of non-commutative groups of reflection symmetries such as the
symmetries generated by the mirrors in a kaleidoscope. This is applied to fast
solution of boundary value problems, computation of matrix exponentials and
applications to sampling theory and numerical computations on regular lattices.

It is our goal that most of the material in these lectures should be accessible
to advanced undergraduate students in applied and computational mathematics,
requiring only basic knowledge of linear algebra and calculus, and not any prior
knowledge of group theory nor abstract algebra.

1.1 Motivation for the Main Topics of the Lectures

Consider the objects below, a thirteenth century mosaic from Alhambra, a tessella-
tion by Maurice Escher, a three-foil knot and a special matrix:

A D

0

BBBBBBB@

a0 a2 a1 a3 a4 a5
a1 a0 a2 a5 a3 a4
a2 a1 a0 a4 a5 a3
a3 a5 a4 a0 a1 a2
a4 a3 a5 a2 a0 a1
a5 a4 a3 a1 a2 a0

1

CCCCCCCA
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Quiz

1. Do any of these objects have the same symmetries?
2. How can we compute the eigenvalues and eigenvectors of A?

In order to try to answer (1), we must define what we mean by ‘invariance under
a set of transformations’. The two tessellations (Alhambra and Escher) can be seen
to be invariant under certain Euclidean (rigid) motions of the plane. The exact
group of symmetries depends on whether or not one considers the colouring, or
just the shapes. Without regarding the colouring, they are both invariant under 120ı

rotations in certain points and translations in two different directions. In a certain
sense, which has not yet been made clear, it seems as the two tessellations have the
same symmetries.

The tre-foil knot, understood as a curve in R3 is invariant under transformation ˛
being a 120ı rotation around the centre as well as transformation ˇ being a 180ı

rotation around the vertical line through the plane of the knot. Any product of
˛; ˇ and their inverses are also symmetries, so that the total group of symmetries
becomes f1; ˛; ˛2; ˇ; ˛ˇ; ˛2ˇg, where 1 denotes the identity transformation (do
nothing). We can verify that ˛ and ˇ satisfy the relations

˛3 D ˇ2 D ˛ˇ˛ˇ D 1: (1)

The symmetries of A are less evident. We can verify that A commutes with some
particular (permutation) matrices; we have that PiA D APi, or equivalently A D
PiAP!1i for both

P1 D

0

BBBBBBB@

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

1

CCCCCCCA

and P2 D

0

BBBBBBB@

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

1

CCCCCCCA

and hence also for any Pi which is given as a product of these and their inverses,
Pi 2 fI;P1;P21;P2;P1P2;P21P2g. It can be shown that P1 and P2 satisfy exactly the
same relations (1) as ˛ and ˇ. However, to claim that the three-foil and A have
the same symmetries, we need to abstract the notion of a symmetry group and the
action of a group on a set so that we can discuss the properties of the abstract group
independently of the concrete transformations the group performs on a given object.
We start Sect. 3 with the modern definition of a group and group actions.

Now, back to Question 2 in the Quiz. Once we understand that A commutes
with a set of matrices, we are closer to finding the eigenvectors. From elementary
linear algebra we know that matrices with a common complete set of eigenvectors
do commute, and conversely, under quite mild conditions (e.g. distinct eigenvalues),
commutingmatrices share a complete set of common eigenvectors. However,P1 and
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P2 do not have distinct eigenvalues and furthermore they do not commute among
themselves, since P1P2 D P2P!11 , so we cannot possibly find a complete set of
common eigenvectors. However, groups representation theory provides something
almost as good; a complete list of irreducible representations, which yields a
particular basis change such that A becomes block diagonalised. Applications of
this theory is the topic of Sect. 4. A very important and special case of structured
matrices appears in classical Fourier analysis, where A commutes with a set of
matrices Pi such that also PiPj D PjPi. If the set of such matrices is sufficiently
large, we find a complete set of common eigenvectors for all these Pi and these
also form a complete set of eigenvectors for A. In the case of finite dimensional A,
the mathematical analysis becomes particularly simple, the common eigenvectors
are exponential functions and the change of basis is given by the Discrete Fourier
Transform. Also Fourier series on the continuous circle and the Fourier transform
for functions on the real line can be described within a common group theoretical
framework. A detailed study of these cases, with applications, is the topic of Sect. 3.

2 Prelude: Introduction to Group Theory

Before going into a detailed study of abelian (= commutative) groups, we will
for future reference introduce some general concepts in group theory. A detailed
understanding of this chapter is not needed for the applications in Fourier analysis
and sampling theory, where these concepts become somewhat simpler. I suggest that
this chapter is read lightly in first pass, and studied more carefully whenever needed
later.

2.1 Groups and Actions

Definition 1 (Group) A group is a set G with a binary operation !WG " G ! G,
called the group product, such that

1. The product is associative, x ! .y ! z/ D .x ! y/ ! z for all x; y; z 2 G.
2. There exits an identity element 1 2 G such that x ! 1 D 1 ! x D x for all x 2 G.
3. Every element x 2 G has an inverse x!1 2 G such that x ! x!1 D 1.

Sometimes we write the group product without the dot, as xy instead of x ! y. The
special groups where x ! y D y ! x for all x; y 2 G are called commutative or abelian
groups. In the case of abelian groups we will often (but not always) writeC instead
of !, #x instead of x!1 and 0 instead of 1.
Example 1 We list some common groups that we will encounter later.

• Zero group f0g. This is the trivial additive abelian group consisting of just the
identity element. Sometimes we write 0 instead of f0g.
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• Additive group of reals .R;C/.
• Additive circle group .T;C/: This is the real numbers Œ0; 1/ under addition

modulo 1. It is also defined as T D R=Z, a quotient group (see below). The name
T refers to this being the 1-dimensional torus.

• Additive group of integers .Z;C/.
• Additive cyclic group .Zn;C mod n/: This consists of the integers f0; 1; : : : ; n#
1gwith group operation being addition modulo n, and is also given as the quotient
Zn D Z=nZ.

• Identity group f1g: This is the trivial multiplicative group consisting of just the
identity element. The two trivial groups f0g and f1g are isomorphic (abstractly
the same group). Isomorphisms are discussed below.

• Multiplicative cyclic groupCn: This consists of the complex nth roots of 1 under
multiplication, fe2! ij=ngn!1jD0 , and it is isomorphic to Zn.

• Multiplicative circle group T: The multiplicative group of complex numbers
with modulus 1, T D fe2! i" g for " 2 Œ0; 1/, isomorphic to T.

• Dihedral group Dn: The symmetries of an regular n-gon form a group called
the Dihedral group, Dn. In particular D3 are the six symmetries of an equilateral
triangle (three rotations and three reflected rotations). Abstractly,Dn is generated
by two elements ˛ and ˇ satisfying the relations

˛n D ˇ2 D ˛ˇ˛ˇ D 1: (2)

The last relation is equivalent to ˛ˇ D ˇ˛!1, thus this is our first example of a
non-commutative group.

• General linear group GL.V/: For a vector space V (e.g. V D Rn), this group
consists of all invertible linear operators on V (e.g. all invertible real n " n
matrices), and the group product is composition of linear operators (matrix
product).

• Orthogonal group O.V/ The set of all orthogonal matrices (AT D A!1) in
GL.V/.

• The symmetric group Sn This is the group of all permutations of n objects, thus
Sn has nŠ elements.

• The alternating group An The subset of all even permutations of n objects, with
nŠ=2 elements.

• Lie groups There are two main classes of groups, discrete groups and Lie groups.
Lie groups are groups which also has a differentiable structure, so that one can
define continuous and smooth families of transformations. Among the examples
above, the Lie groups are .R;C/, .T;C/, T, GL.V/ and O.V/. The remaining
groups are discrete.

We want to connect an abstract group to a concrete group of transformations of
some ‘object’. This is done by the concept of a group action.
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Definition 2 (Group Action) A group G acts1 on a set X if there is a function
(‘group action’) !WG " X ! X satisfying

1 ! x D x for all x 2 X

g ! .h ! x/ D .g ! h/ ! x for all g; h 2 G, x 2 X:

Example 2 We define an action !WDn " C ! C on the generators of Dn as ˛ ! z D
e2! i=nz (rotation counterclockwise through the angle 2!=n) and ˇ ! z D z (complex
conjugation). These two symmetry operations are compatible with (2), we have ˛ !
.˛ ! ! ! .˛ !z// D z (n times application of ˛), ˇ !.ˇ !z/ D z and ˛ !.ˇ !.˛ !.ˇ !z/// D z.
Therefore, we can extend this to a group action of Dn on C. Consider the regular
n-gon in C, with vertices in the nth roots of unity Cn $ C. It is straightforward to
check that the set of vertices of the n-gon is invariant under this action.

Example 3 The dihedral group D3 acts on the set of all 6 " 6 matrices as ˛ ! X D
P1XP!11 and ˇ ! X D P2XP!12 , where P1 and P2 are given above.

Example 4 Any groupG can act on itself in various ways. We can let G act on itself
by left multiplication Lgg0 WD gg0 or by right multiplication Rgg0 D g0g!1 or by
conjugation Conjg g

0 WD gg0g!1. Check that all these are well defined actions.

Definition 3 (Types of Actions) An action !WG " X ! X is:

– transitive if for any pair x; y 2 X there exists a g 2 G such that g ! x D y,
– free if the identity 1 2 G is the only group element which has a fixed point on X,

i.e. for g 2 G there exists an an x 2 X such that g ! x D x only if g D 1,
– regular if it is both free and transitive,
– effective if whenever g; h 2 G and g ¤ h there exist an x 2 X such that g!x ¤ h!x.
Exercise 1

1. Show that free) effective.
2. Is the action of Dn on Cn defined in Example 2 regular?
3. Show that if an action is regular, then there is a 1–1 correspondence between

elements of G and X. Find a subset of 2n points in C on which the action of Dn

defined in Example 2 is regular.

2.2 Subgroups and Quotients

It is important to understand some basic ways of obtaining groups from other
groups, by decompositions (subgroups and quotients) and compositions (direct- and
semidirect products).

1This definition is more precisely called a left action.
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Definition 4 (Subgroup) A non-empty subset H $ G which is closed under the
group product and inversion is called a subgroup, denoted H < G.

A subgroupH < G decomposesG into subsets called cosets, these can be defined
from left or from right:

gH WD fghW g 2 G; h 2 Hg
Hg WD fhgW g 2 G; h 2 Hg:

Note that for g; g0 2 G we have either gH D g0H or gH\g0H D ;, so the collection
of all left (or all right) cosets form a disjoint partition of G.

Example 5 The dihedral group D3 D f1; ˛; ˛2; ˇ; ˇ˛; ˇ˛2g has four subgroups.
The trivial subgroup consists of just the identity f1g < D3, and the improper
subgroup is the whole groupD3 < D3. The two proper and non-trivial subgroups are
H D f1; ˛; ˛2g and eH D f1; ˇg. The left cosets ofH areH and ˇH D fˇ; ˇ˛; ˇ˛2g,
and these form a disjoint partition D3 D H [ ˇH. The right cosets are H and
Hˇ D fˇ; ˛ˇ; ˛2ˇg D fˇ; ˇ˛2; ˇ˛g D ˇH. The three left cosets of eH are eH,
˛eH D f˛; ˛ˇg D f˛; ˇ˛2g and ˛2eH D f˛2; ˇ˛g. The three right cosets are eH,
eH˛ D f˛; ˇ˛g and eH˛2 D f˛2; ˇ˛2g. Note that all left cosets of H are also right
cosets, gH D Hg for all g 2 G. This is not the case for eH.

Definition 5 (Normal Subgroup) A subgroupH < G is called normal if gH D Hg
for every g 2 G. We write a normal subgroup as H GG.

The collection of cosets of a subgroup H < G can be turned into a group if and
only if H is normal.

Definition 6 (Quotient Group) For a normal subgroup H G G we define the
quotient group G=H as a group where the elements of G=H are the cosets gH and
the product of two cosets are defined as

gH ! g0H D gg0H;

where gg0 is the product of g and g0 in G.

Example 6 Continuing Example 5, we obtain the quotient group D3=H with two
elements H and ˇH and the multiplication rule H ! H D H, ˇH ! H D H ! ˇH D
ˇH and ˇH ! ˇH D H. The group D3=H can be identified with the group C2 D
f1;#1g $ Rwith multiplication as group product, meaning that if we define the map
'WD3=H ! C2 as '.H/ D 1, '.ˇH/ D #1, we find that '.g1g2/ D '.g1/'.g2/ for
g1; g2 2 d3=H. This is an example of a group isomorphism, which identifies the two
groups as being abstractly the same.
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2.3 Homomorphisms and Exact Sequences

Definition 7 (Group Homomorphism) Let H and G be two groups. A homomor-
phism is a map 'WH ! G such that '.h1 ! h2/ D '.h1/ ! '.h2/ for all h1; h2 2 H.
The set of all such homomorphisms is denoted hom.H;G/.

Definition 8 (Kernel and Image) The kernel and image of ' 2 hom.H;G/ are
defined as

ker.'/ D fh 2 HW'.h/ D 1g
im.'/ D fg 2 GW g D '.h/ for some h 2 H:g

Definition 9 (Epimorphism, Monomorphism and Isomorphism) If ker.'/ D 1
then ' is injective, meaning that '.h/ D '.h0/ ) h D h0. If im.'/ D G
we say that ' is surjective (onto G). A surjective homomorphism is called an
epimorphism, denoted $ 2 epi.G1;G2/ and an injective homomorphism is called
a monomorphism, denoted $ 2 mono.G1;G2/. A homomorphism which is both
injective and surjective is called an isomorphism, denoted $ 2 iso.G1;G2/. If there
exists an isomorphism between G1 and G2 we write G1 ' G2 and say that G1 and
G2 are isomorphic groups, meaning that they are structurally identical.

Exercise 2 Show that the additive group of real numbers .R;C/ and the multi-
plicative group of positive reals .RC; !/ are isomorphic. Hint: use the exponential
map.

Exercise 3 Let ' 2 hom.H;G/. Show that ker.'/ GH and that im.'/ < G.

Definition 10 (Coimage) Let ' 2 hom.H;G/. Since ker.'/ G G (always normal
subgroup), we can form the quotient. This is called the coimage

coim.'/ WD H= ker.'/:

Definition 11 (Cokernel) Let ' 2 hom.H;G/. If im.'/ G G we can form the
quotient C D G= im.'/. This is called the cokernel of '.

It is very useful to present homomorphisms in terms of exact sequences.

Definition 12 (Exact Sequence) A sequence

G0 G1 G2 ! ! ! Gn
'1 '2 '3 'n

of groups and group homomorphisms is called an exact sequence if im.'i/ D
ker.'iC1/ for every i.
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Let 1 denote the trivial group containing just the identity element. An exact
sequence

1 H G
'

indicates that ' 2 hom.H;G/ is a monomorphism. To see this we note that the
only homomorphism in hom.1;H/ is the trivial map 1 7! 1, thus ker.'/ D 1.
We will frequently also use a hooked arrow H G

$ to indicate that $ is a

monomorphism.
Exactness of the sequence

H G 1
'

means that ' 2 hom.H;G/ is an epimorphism, since the only homomorphism in
hom.G; 1/ is the map sending G to 1 and hence im.'/ D G. We will also use a
double arrow H G

$ to visualise $ 2 epi.H;G/. The exact sequence

1 H G 1
'

means that ' is both epi- and mono- and hence it is an isomorphism and H ' G.

Definition 13 (Short Exact Sequence) A short exact sequence is an exact se-
quence of the form

1 H G K 1
'G 'K : (3)

This indicates that H ' im.'G/ GG and that K ' G= im.'G/ D coker.'G/, or by a
slight abuse of notation (identification by isomorphisms) we write this as H GG and
K D G=H.

We ask the reader to think through the meaning of the short exact sequence
carefully! Since 'G is injective, it must define an isomorphism between H and its
image in G. To see that H GG is a normal subgroup and that 'K is a projection of G
onto G=H, we compute for g 2 G and h 2 im.'G/ D ker.'K/:

'K.gh/ D 'K.g/'K.h/ D 'K.g/1 D 1'K.g/ D 'K.h/'K.g/ D 'K.hg/;

so all elements of gH and Hg are sent to the same element in C. Furthermore, if
'K.g/ D 'K.g0/, we must have 1 D 'K.g0/!1'K.g/ D 'K.g0!1g/ thus g0!1g D
h 2 ker.'K/ and g D g0h. We conclude that 'K.g/ D 'K.g0/ if and only if g and
g0 belong to the same left and right coset. Finally we check that 'K.gH ! g0H/ D
'K.gg0H/ and hence K ' G=H.
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Example 7 Let Dn be the dihedral group and Cn D fe2! ij=ngn!1jD0 $ C the cyclic
group of n elements, identified with the multiplicative group of complex nth roots
of unity. There is a short exact sequence

1 Cn Dn C2 1
'1 '2 ; (4)

where '1.e2! ij=n/ D ˛j and '2.˛j/ D 1, '2.ˇ˛j/ D #1.
An exact sequence of the form

1 K H G C 1
ker.'/ ' coker.'/ (5)

indicates that K ' ker.'/ and C ' coker.'/. Note that we have now called the
injection arrow of K into H for the kernel of ' and the projection arrow fromG onto
C the cokernel of '. This definition of kernels and cokernels as arrows rather than
objects (groups) is standard in category theory language, where any mathematical
property of an object is defined in terms of arrows into and out of the object. We will
call both the arrows and their images for kernels and cokernels. If we really need to
distinguish, we call the arrow ‘(co)kernel homomorphism’ and the group ‘(co)kernel
group’.

Definition 14 (Kernel and Cokernel Homomorphisms2) The kernel homomor-
phism of ' 2 hom.H;G/ is defined as a monomorphism, denoted ker.'/ 2
mono.K;H/, such that the image of ker.'/ is the kernel group of '. The cok-
ernel homomorphism of ' 2 hom.H;G/ is defined as an epimorphism, denoted
coker.'/ 2 epi.G;C/, such that the image of coker.'/ is the cokernel group of '.

Definition 15 (Image and Coimage Homomorphisms) Let ' 2 hom.G1;G2/
and let K D G1= ker.'/ be the coimage group. The coimage homomorphism is
defined as an epimorphism coim.'/ 2 epi.G1;K/ and the image homomorphism is
a monomorphism im.$/ 2 mono.K;G2/ such that

' D im.'/ı coim.'/:

Note that these homomorphisms are defined up to an isomorphism of K, so there
is a freedom in how to represent K D G1= ker.'/. However, the image and coimage
homomorphisms must be consistent with this choice. The following example is
illustrating this point.

Example 8 This example should make the above discussion more familiar to
computational scientists. Consider the set of all abelian groups .Rn;C/ for all
n 2 N and the continuous homomorphisms between these. This is an example of

2Check Wikipedia for a proper categorical definition of kernel and cokernel which only refers to
properties of arrows.
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a category,3 where Rn are ‘objects’ and homomorphisms are the ‘arrows’. The set
hom.Rn;Rm/ can be identified with the set of m " n matrices

hom.Rn;Rm/ % Rm"n

and the composition of homomorphisms is given as matrix products. A monomor-
phism is a matrix with full column-rank, and an epimorphism a matrix with full
row-rank. The isomorphisms are the invertible matrices.

For A 2 Rm"n we want to compute the homomorphisms (matrices) im.A/,
coim.A/, ker.A/ and coker.A/. Recall the singular value decomposition

A D U˙V;

where˙ 2 Rm"k is a diagonalmatrix with non-negativediagonal elements %i D ˙i;i

called singular values. We assume that %i & %iC1 and %kC1 D 0, so there are k
positive singular values. The two matrices U 2 Rm"m and V 2 Rn"n are orthogonal.
We block up the three matrices as

U D
!
U1 U2

"
; ˙ D

#
˙11 ˙12

˙21 ˙22

$
; V D

#
V1
V2

$
;

where U1 2 Rm"k, U2 2 Rm".m!k/, ˙11 2 Rk"k, ˙12 2 Rk".n!k/, ˙21 2 R.n!k/"k,
˙22 2 R.n!k/".n!k/, V1 2 Rk"n and V2 2 R.n!k/"n. The matrix ˙11 is diagonal with
positive diagonal and ˙12, ˙21 and ˙22 are all zero. Since U and V are orthogonal,
their inverses are U!1 D UT and V!1 D VT . From A 2 hom.Rn;Rm/ we get the
four homomorphisms

ker.A/ D VT
2 2 mono.Rn!k;Rn/

coker.A/ D UT
2 2 epi.Rm;Rm!k/

coim.A/ D V1 2 epi.Rn;Rk/

im.A/ D U1˙11 2 mono.Rk;Rm/:

We leave the verification of this to the reader. To check that the kernel and cokernel
homomorphisms are correctly defined, you must verify that

0 Rn!k Rn Rm Rm!k 0
VT
2 A UT

2

is an exact sequence.

3A category is a collection of objects and arrows between the objects such that the composition of
an arrow from A to B and an arrow from B to C yields an arrow from A to C.
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To check the image and coimage, you must verify that the diagram

0

Rn Rk 0

Rm

A

V1

U1˙11

commutes (meaning that you get the same result if you follow different paths
between two objects) and that the row and the column are exact.

The image- coimage factorisation is A D .U1˙11/V1, where the left term has
full column rank and the right has full row-rank. Such a factorisation is not unique,
for any invertible k " k matrix X, we could instead do the factorisation as A D
.U1˙11X/.X!1V1/, which is another factorisation of A in a product of a matrix with
full column rank and a matrix with full row-rank. The possibility of choosing X is
expressed as ‘defined up to isomorphisms’.

Exercise 4 Repeat the example using the QR-factorisation instead of SVD.

2.4 Products of Groups and Split Exact Sequences

How can we construct more complicated groups from simpler ones? The two most
important operations are called direct product and semidirect product.

Definition 16 (Direct Product) For two groups G and H we define their direct
productG "H as a group defined on the set of pairs

G "H D f.g; h/W g 2 G; h 2 Hg

with product defined componentwise

.g; h/ ! .g0; h0/ D .gg0; hh0/:

Example 9 For additive abelian groups we write the direct product as ˚ instead
of ". The abelian group R2 D R ˚ R is defined on pairs of reals with the sum
.x; y/C .x0; y0/ D .xC x0; yC y0/ and 0 D .0; 0/.

The semidirect product is a bit more involved. To motivate the definition, let us
look at a particular group of all affine linear mappings on a vector space.

Example 10 (Affine Group) Let V D Rn be a vector space. Any vector space is also
an abelian group (by forgetting scalar multiplication), so we can let V act on itself
by translation v;w 7! v C w. An other action is the linear action of GL.V/ on V by
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matrix-vector product A ! v D Av. The affine action for .A; b/ 2 GL.V/" V on V is
given as

.A; b/ ! v WD Av C b:

What is the group structure on GL.V/"V compatible with this action?We compute:

.A0; b0/ ! ..A; b/ ! v/ D .A0; b0/ ! .Av C b/ D A0AvC A0bC b0 D .AA0; b0 C A0b/ ! v;

thus we obtain the group product

.A0; b0/ ! .A; b/ D .AA0; b0 C A0b/:

The identity element is .I; 0/, where I is the identity matrix. This is an important
example of a semidirect product.We write the affine group as Aff.V/ WD GL.V/ÌV .
Definition 17 (Semidirect Product) A semidirect product is defined from two
groups G and H and an action !WG " H ! H. We write the products in G and
H as gg0 and hh0, and the action as g ! h. The semidirect product of G and H, written
G Ì H is the set of pairs .g; h/ with the product

.g; h/ ! .g0; h0/ WD .gg0; h.g ! h0/:

The direct product is the special case of semidirect product where g ! h D h for
all g and h.

Example 11 Let C2 act on Cn by complex conjugation, .#1/ ! z D z for all z 2 Cn.
We claim that Dn ' C2 Ì Cn, with respect to this action. We have that C2 " Cn D
f.˙1; !j/gn!1jD0 where! D e2! i=n. Let ˛ D .1; !/ andˇ D .#1; 1/. We ask the reader
to verify that these two elements generate C2 Ì Cn and satisfy the relations (2).

From this example and (4) we might be tempted to believe that (3) implies G '
G=H Ì H. This is, however, NOT true in general.

Example 12 We have a short exact sequence

1 Z2 Z8 Z4 1#4 mod 4 ;

however, there is no way Z8 can be written as a direct or semidirect product of Z2
and Z4. On the other hand, we have

1 Z3 Z12 Z4 1#4 mod 4 ;

corresponding to a decompositionZ12 ' Z3"Z4. The difference between these two
cases is that the latter splits in the sense defined below. We return to this example in
Sect. 3.1.
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Definition 18 (Split Exact Sequence) The short exact sequence

1 H G K 1
'G 'K

's
(6)

is called right split if there exists a homomorphism 'sWK ! G such that the
composition 'Kı's D IdK (the identity map). The exact sequence

1 H G K 1
'G 'K

's
(7)

is called left split if there exists a homomorphism 'sWG ! H such that 'sı'G D
IdH .

Theorem 1

• A semidirect product decomposition G D K Ì H is equivalent to a right split
short exact sequence.

• A direct product decomposition G D H"K is equivalent to a left split short exact
sequence.

• Any left split short exact sequence is also right split (but not vice versa).

Before we prove this theorem, let us discuss decomposition of G with respect to
any subgroup H < G. As a set, G decomposes into a disjoint union in right cosets
G D [iHki, where the subset fkig $ G consists of exactly one element ki from
each coset Hg. Such ki are called coset representatives. Hence, we have a unique
factorisation g D hk, h 2 H, k 2 fkig, identifying G and fkig " H as sets. An
important question is whether or not the coset representatives can be chosen in a
canonical (natural) way, so that this identification also carries along a (semidirect
product) group structure.

Proof (Theorem 1) Given the right split short exact sequence (6). For any function
'sWK ! G such that 'Kı's D IdK we have that im.'s/ $ G is a set of coset
representatives. This defines a set-mapping

&WK " H ! G; .k; h/ 7! g D 'G.h/'s.k/;

with inverse given as k D 'K.g/, and we find h from 'G.h/ D g's.k/!1. Now let
g D &.k; h/ and g0 D &.k0; h0/ be arbitrary. If 's is a homomorphism

gg0 D 'G.h/'s.k/'G.h0/'s.k0/ D 'G.h/'s.k/'G.h0/'s.k!1/'s.kk0/:

The K-part of gg0 is 'K.gg0/ D kk0, hence 'G.h/'s.k/'G.h0/'s.k!1/ 2 im.H/, and
we conclude that k ! hWK " H ! H defined such that

'G.k ! h/ D 's.k/'G.h0/'s.k!1/
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is a well-defined action of K on H. We see that K Ì H with the semidirect product
.k; h/.k0; h0/ D .kk0; h.k ! h0// is isomorphic to G.

Conversely, it is straightforward to check that ifG D KÌH we have that 'G.h/ D
.1; h/, 'K.k; h/ D k and 's.k/ D .k; 1/ defines a right split short exact sequence,
and we have established the first point in the theorem.

To prove the second point, we assume the existence of a left split short exact
sequence (7). We want to factor g D hk for h 2 im.'G/ and k in some set of coset
representatives. We find h D 'Gı's.g/ and k D h!1g, thus k D %.g/ where

%.g/ WD .'Gı's.g//!1 g:

If 's is a homomorphism we can check that %.hg/ D %.g/ and H%.g/ D Hg, hence
% picks a unique representative from each coset. We conclude that the mapping
 WG! K"H, g 7! .'K.g/; 's.g// is an invertible set function. It is clearly a group
homomorphism and hence also an isomorphism. We conclude that G ' K " H.
Conversely it is easy to check that any direct product G D K " H is left split.

Since a direct product is also a semi-direct product, we conclude the third point
that left split implies right split. ut

2.5 Domains in Computational Mathematics

It is time to be a bit more philosophical and less technical on the role of groups
in computational mathematics. A fundamental question is what do we mean by
a ‘Domain’? More specifically, what abstract properties do we require from the
‘domain’ of a differential equation? Over the last century, mathematicians agree that
the notion of a (differentiable) manifold is a powerful abstract setting for a general
theory of differential equations. Manifolds are sets endowed with a ‘differentiable
structure’, we have points in the domain as well as tangents at a given point.
Points have a position (coordinates), tangents are velocities, specifying a direction
and a speed. The most important property of manifolds is that they support scalar
functions (real or complex), and derivations of these in directions specified by
tangent vectors. Examples of manifolds are the familiar space Rn, but also spaces
like the surface of a sphere. In Rn both points and tangents are vectors in Rn, but
the spherical surface is a good example of a space where these two different things
should not be confused!

The mathematical definition of a manifold does not have enough structure to be
suitable as an abstraction of a computational domain. Manifolds have tangents, but
there is no (practical) way of moving in the direction of a given tangent. In pure
mathematics motions arise from the concept of the solution operator (flow map) of
a tangent vector field (D solution of ordinary differential equations, ODEs), but in
computations one cannot assume that differential equations can be solved exactly.
For doing computationswe need to specify a set of motions which we assume can be
computed fast and accurately. Here groups and group actions come in handy! For the
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purpose of solving ODEs, it has turned out to be very useful to study algorithms on
homogeneous spaces, which are domains together with a transitive action of a Lie
group. One example is Rn, which acts on itself by translations, the basic motions
are obtained by adding vectors. An other example is the surface of a sphere, under
the action of the orthogonal group. A substantial theory of numerical Lie group
integration has been developed over the last two decades [14].

Among the homogeneous spaces, abelian Lie groups are the most important for
practical computations. Most modelling in physics and engineering take place in Rn

or subdomains of this. As a domain (set of positions), the important structure of Rn

is its abelian Lie group structure, where we can move around using translations. As a
tangent space (set of velocities), the important structure is the vector space structure
(Lie algebra structure) of Rn. These spaces play very different roles in theory and in
computations and should not be confused!

The theory of abelian groups is much simpler than general groups and Fourier
analysis is a ubiquitous tool which is tightly associated with the group structure
of these spaces. The relationship between the continuous and the discrete is a
fundamental aspect of computational algorithms, such as the relationship between
continuous groups such as Rn and discrete subgroups (lattices). The Fourier
transform can be computed fast on finite abelian groups, but not on T norR. Without
a good mathematical theory and supporting software, it is, however not trivial to
relate the continuous and the discrete Fourier transforms. This is in particular the
case for general sampling lattices in Rn.

The general theory of subgroups, quotients and exact sequences turns out to be
a very useful framework for developing and analysing computational algorithms.
This is the topic of the next chapter.

3 Abelian Groups, Fourier Analysis, Lattices and Sampling

In this chapter we will introduce abelian groups as domains for computations. We
will in particular present a general theory of discretisation lattices, sampling theory
and the relationship between discrete and continuous Fourier analysis, and discuss a
variety of computational algorithms. Circulant matrices and their multidimensional
analogues is also a central theme.

3.1 Introduction to Abelian Groups

3.1.1 Definition and Basic Properties

Using the additive notation withC and 0, we define abelian groups:
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Definition 19 (Abelian Group) An abelian group is a setGwith a binary operation
CWG " G! G called the sum, such that

1. The sum is associative, xC .yC z/ D .xC y/C z for all x; y; z 2 G.
2. The sum is commutative, xC y D yC x.
3. There exits an identity element 0 2 G such that xC 0 D x for all x 2 G.
4. Every element x 2 G has an inverse #x 2 G such that xC .#x/ D 0.

For abelian groups the direct product is the same as a direct sum,4 we write
this as H ˚ K ' H " K. This means, as before, that H ˚ K D f.k; h/g with
.k; h/C .k0; h0/ D .kC k0; hC h0/.

Abelian groups are much simpler than general groups, since there is no difference
between ‘left’ and ‘right’, they enjoy the following properties:

• Any subgroup H < G is a normal subgroup.
• A short exact sequence is right split if and only if it is left split, thus a split short

exact sequence is always of the form

0 H G K 0
'G 'K

 H  G

(8)

corresponding to the direct sum decompositionG D H ˚ K.

3.1.2 Topology

In order to develop a mathematical theory of Fourier analysis, it is necessary to
have some topology (notion of continuity) on the groups. The standard foundation
of Fourier analysis on groups are so called locally compact groups.

Definition 20 (Locally Compact Group) A group is called locally compact if it
has a topology such that every point has a compact neighbourhood, and such that
the product and inverse in the group are continuous operations.

Definition 21 (LCA—Locally Compact Abelian) LCA denotes the locally com-
pact abelian groups.

Between topological groups, homomorphisms are always assumed continuous,
and when we talk about a subgroupH < G, we will always assume thatH is a closed
subset. For example, the rationals .Q;C/ is algebraically a subgroup of .R;C/, but
it is not a topologically closed subset.

4The category theoretical definition of products and coproducts are dual of each other, but for
abelian groups they coincide.



336 H.Z. Munthe-Kaas

3.1.3 The Elementary Groups

In these lectures we will mainly focus the elementary abelian groups, those that can
be obtained from R and Z by taking direct sums, (closed) subgroups and quotients.
The topology for these is what we are used to, e.g.Z has the discrete topology where
every subset is an open set (and also closed!), andR has the familiar topology of the
real line based on open intervals defining open subsets. The elementary LCAs are
isomorphic to one of the following:

Definition 22 The elementary LCAs are:

• The reals R under addition, with the standard definition of open sets.
• The integers Z under addition (with the discrete topology). This is also known as

the infinite cyclic group.
• The 1-dimensional torus, or circle T D R=Z defined as Œ0; 1/ $ R under addition

modulo 1, with the circle topology.
• The cyclic group of order k, Zk D Z=kZ, which consists of the integers
0; 1; : : : ; k # 1 under addition modulo k (with the discrete topology).

• Direct sums of the above spaces, G˚ H, in particular Rn (real n-space), Tn (the
n-torus) and all finitely generated abelian groups.

A set of generators for a group is a subset such that any element in the group can
be written as a finite sum (or difference) of the generators. The finitely generated
abelian groups are those having a finite set of generators. These are easy to describe,
since they are always isomorphic to a direct sum of Z and Zni . We take this
as a definition, but keep in mind that they may appear in disguise, as e.g. the
multiplicative group Cn isomorphic to Zn.

Definition 23 (Finitely Generated Abelian Group, FGA) An FGA is a group
isomorphic to

Zn1 ˚ Zn2 ˚ ! ! !˚ Znk ˚ Zd:

We represent this as the space of integer column vectors of length k C d under
addition mod ni in first k components and integer addition in the last d components.
The canonical generators are .1; 0; : : : ; 0/T , .0; 1; 0; : : : ; 0/T , . . . , .0; : : : ; 0; 1/T .
Note that Z1 D 0 and 0 ˚ G ' G, hence we can remove the terms Zni whenever
ni D 1.

We will in the sequel use the following compact notation for FGAs

Zk ˚ Zd WD Zn1 ˚ Zn2 ˚ ! ! !˚ Znk ˚ Zd;

where k D .n1; n2; : : : ; nk/ is a multi-index of length k. The number kC d (number
of generators) is called the rank of the FGA, but the rank is not an invariant under
isomorphisms.
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FGAs are similar to vector spaces, but where the ‘scalars’ are the integers Z
instead of the usual fields R or C. The generators of the FGA are similar to basis
vectors for a vector space. Homomorphisms between FGAs can always be written
as integer matrices representing how the homomorphism acts on the canonical
generators. Note that we will always assume that the target space knows the periods
of its components, e.g. the homomorphism !2WZ! Z3 (multiplication by 2), sends
0 7! 0, 1 7! 2, 2 7! 4 ' 1.mod 3/, etc. We will not write the reduction modulo 3
explicitly.

Note that not every integer matrix (of appropriate dimensions) represents a
homomorphism. The obstruction is that every integer vector congruent to 0 in the
source group must be mapped to an integer vector congruent to 0 in the target group.
For example !2 does not define a homomorphism from Z2 to Z3 since 2 ! 2 ¤
0.mod 3/, however !4WZ3 ! Z12 is a homomorphism since 4 ! 3k D 0.mod 12/
for every k 2 Z.

The notion of the dimension is less clear in the theory of FGAs compared to
standard linear algebra (where the size of a basis is invariant under basis change).
In Example 12, we claimed that Z12 ' Z3 ˚ Z4, so isomorphic groups can have
different numbers of independent generators. In this case .4; 3/WZ3 ˚ Z4 ! Z12
and .1;#1/T WZ12 ! Z3˚Z4 define isomorphisms between the two groups. (Check
this!)

In general we have that Zp ˚ Zq ' Zpq if and only if p and q are relative
prime numbers (i.e. if their greatest common divisor, gcd, is 1). To compute the
isomorphism between these, we employ the extended Euclidean algorithm (matlab
function ‘gcd’), which given two positive integers p and q produces two integers a
and b such that

apC bq D gcd. p; q/:

If gcd. p; q/ D 1, we have that .q; p/WZp ˚ Zq ! Zpq and .b; a/T WZpq ! Zp ˚ Zq

are isomorphisms. We can also illustrate the isomorphism by the split short exact
sequence

0 Zp Zpq Zq 0
#q #a
#b #p

Check yourself that this is split exact!
We have two standard ways of representing FGAs uniquely (up to isomor-

phisms), the first of these has the largest possible number of generators and the
latter the smallest possible:

Theorem 2 (Classification of FGA) If G is an FGA, and G ¤ 0, then G is
isomorphic to a group of the form called the primary factor decomposition

Zp
n1
1
˚ Zp

n2
2
˚ ! ! !˚ Zp

n`
`
˚ Zn (9)
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where pi are primes, p1 ( p2 ( ! ! ! ( p`, ni 2 N and ni ( niC1 whenever pi D piC1.
Furthermore G is also isomorphic to a group of the form called the invariant factor
decomposition

Zn1 ˚ Zn2 ˚ ! ! !˚ Znk ˚ Zn (10)

where ni > 1 and nijniC1, 1 ( i < k (ni divides niC1). In both forms the
representation is unique, i.e. two FGA are isomorphic iff they can be transformed
into the same canonical form.

3.2 Computing with FGAs

For applications in lattice sampling algorithms and computational Fourier analysis,
it is important to do computations on FGAs and homomorphisms between these. It
is our philosophy that software in computational mathematics should closely follow
mathematical definitions. Object oriented programming is founded on the idea that
programming is ‘what’C ‘how’, i.e. the software is constructed from classes where
there is a distinction between the (public) signature (what) of the class and the
(private) implementation (how). The signature consists of the functions operating
on the structure and the implementation consists of data structures and algorithms.
To help finding useful abstractions for defining the ‘what’ part of program design,
we have found mathematical category theory very useful. Categories consists of
objects and arrows between the objects, just as we have seen in the discussion of
exact sequences above. In category theory one does not explicitly describe what is
‘inside’ an object, the only mathematical properties one is interested in are those
that can be described in terms of arrows into and out of the object. This philosophy
fits very well with object oriented programming design, and a categorical definition
of a mathematical object is a good starting point for object oriented software
construction.

For example, a split exact sequence

0 G1 G1 ˚ G2 G2 0
inj1 proj2

proj1 inj2

could be taken as the definition of the direct sum G1 ˚ G2. The ‘object’ G1 ˚
G2 is defined by the existence of the four morphisms inj1, inj2, proj1 and proj2
such that proj1 ı inj1 D IdG1 (the identity homomorphism), proj2 ı inj2 D IdG2 and
exactness of the diagram in both directions. The usual implementation (‘how’) of
the direct product G1 ˚ G2 is as pairs .g1; g2/, where the arrows are inj1.g1/ D
.g1; 0/, proj1..g1; g2// D g1, and similarly forG2. Could there possibly be any other
implementation of the direct sum? Yes, for high dimensional n there are different
ways of representing Rn. The most common is just as vectors of length n, but if
many of the vectors are sparse, on could instead use a sparse representation where
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only the non-zero components are stored. It is important to realise that these two
implementations are isomorphic realisations of the ‘specification’ given by the split
exact sequence.

3.2.1 Abelian Categories

Category theory gives an important hint on what are the most fundamental properties
we should know about when designing software. The collection of all FGAs and
homomorphisms between these form an abelian category, where each object is an
FGA and each arrow is a homomorphism between two FGAs. Abelian categories
have the following properties:

• There is a zero object 0. For any object G there is a unique 0 arrow 0! G and a
unique arrow G! 0.

• We can form the product and coproduct of any two objects. In the setting of
FGAs, these two are the same, represented by the direct sum of two abelian
groups G1 ˚ G2 and the arrows in and out of the sum.

• The set hom.H;G/ of all morphisms from H to G is an object in the category,
i.e. it contains the 0-arrow, any two arrows can be added, and furthermore the
composition ıW hom.H;G/ " hom.G;K/! hom.K;H/ is bilinear.

• Every homomorphism ' 2 hom.H;G/ has a kernel ker.'/ 2 hom.K;H/ and a
cokernel coker.'/ 2 hom.G;C/, such that the following is an exact sequence

0 K H G C 0
ker.'/ ' coker.'/ :

• Every monomorphism is a kernel of some homomorphism and every epimor-
phism is the cokernel of some homomorphism.

• Every homomorphism ' 2 hom.G1;G2/ factors in the composition of an
epimorphism followed by a monomorphism The epimorphism is called the
coimage, and the monomorphism is called the image,

' D im.'/ı coim.'/:

All these properties should be implemented in a software package for computing
with FGAs. Furthermore, there are a set of operations which are derived from
the addition and composition of homomorphisms. We introduce some short hand
notation for these. First three operations which are related to direct sums. For
homomorphisms represented as matrices, these operations correspond to creating
new matrices from matrix blocks. The matrix interpretation is based on FGAs being
column vectors and the sum G1 ˚G2 interpreted as putting the two column vectors
on top of each other. For Matlab users semicolon notation is familiar. If x 2 G1 and
y 2 G2 are column vectors, then .xI y/ 2 G1˚G2 means that we put x and y together
in a long column with x on top of y.
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Definition 24 (Block Compositions of Homomorphisms)

• For $1 2 hom.G1;H1/, $2 2 hom.G2;H2/ we define

$1 ˚ $2 2 hom.G1 ˚ G2;H1 ˚ H2/

as

.$1 ˚ $2/.xI y/ WD .$1.x/I$2.y//:

This corresponds to a diagonal 2" 2 block matrix with $1 in upper left and $2 in
lower right block, or the diagram

G1 G1 ˚ G2 G2

H1 H1 ˚ H2 H2:

$1 $1˚$2 $2

• For $1 2 hom.G1;H/, $2 2 hom.G2;H/ we define

$1j$2 2 hom.G1 ˚ G2;H/

as

.$1j$2/.xI y/ WD $1.x/C $2.y/:

This corresponds to putting two matrices horizontally in a 1 " 2 block matrix, or
the diagram

G1 G1 ˚ G2 G2

H :
$1

$1j$2
$2

• For $1 2 hom.H;G1/, $2 2 hom.H;G2/ we define

$1

$2
2 hom.H;G1 ˚ G2/

as
#
$1

$2

$
.x/ WD .$1.x/I$2.x// :
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This corresponds to putting two matrices vertically in a 2"1 block matrix, or the
diagram

H

G1 G1 ˚ G2 G2:

$1 $1
$2

$2

The next two operations are factorisations of a homomorphism through another,
which is similar to solving linear equations.

Definition 25 (Factorisation of a Homomorphism Through Another) We define
two ways of solving for an unknown homomorphism x. The solution may not exist,
or may not be unique (conditions apply).

• For $1 2 hom.G1;H/ and $2 2 hom.G2;H/ we denote x D $2n$1 a
homomorphism x 2 hom.G1;G2/ such that $2 ı x D $1.

G2

G1 H

$2

$1

x

• For $1 2 hom.H;G1/ and $2 2 hom.H;G2/ we denote x D $1=$2 a
homomorphism x 2 hom.G2;G1/ such that x ı $2 D $1.

G2

G1 H

x
$2

$1

3.2.2 Free FGAs and Smith’s Normal Form

The free finitely generated abelian groups are those which have no relations between
the generators, i.e. the abelian groups Zn for n 2 N. These are particularly simple,
since the set of integer matrices are in 1–1 correspondence with homomorphisms

hom.Zn;Zm/ % Zm"n:

The set hom.Zn;Zm/ is an FGAwith addition defined as matrix addition and 0 being
the zero matrix. The composition of homomorphisms is given by matrix products.
From Cramers rule we realise that a matrix A 2 Zn"n has an inverse in Zn"n if and
only if det.A/ D ˙1.
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Definition 26 (Unimodular Matrix) A matrix A 2 Zn"n with det.A/ D ˙1 is
called unimodular and represents an isomorphism in iso.Zn;Zn/. The unimodular
n " n integer matrices are denoted GL.n;Z/.

Many fundamental properties of homomorphisms in hom.Zn;Zm/ are computed
from the Smith normal form of A, a decomposition quite similar to the SVD. An
algorithm for computing this is given in Wikipedia [31].

Theorem 3 An integer matrix A 2 Zm"n can be decomposed in a product

A D U˙V

where U 2 GL.m;Z/ and V 2 GL.n;Z/ are unimodular and ˙ 2 Zm"n is
diagonal with non-negative diagonal elements. The diagonal elements ni D ˙ii

satisfy nijniC1 8 1 ( i < k and ni D 0 8 k < i ( min.m; n/.

Theorem 4 Let A 2 hom.Zn;Zm/ with Smith decomposition A D U˙V, with
matrices partitioned as

U D
!
U1 U2

"
; ˙ D

#
˙11 ˙12

˙21 ˙22

$
; V D

#
V1
V2

$
;

where U1 2 Zm"k, U2 2 Zm".m!k/, ˙11 2 Zk"k, ˙12 2 Zk".n!k/, ˙21 2 Z.n!k/"k,
˙22 2 Z.n!k/".n!k/, V1 2 Zk"n and V2 2 Z.n!k/"n. The matrix ˙11 has diagonal
k D .n1; n2; : : : ; nk/ such that nijniC1 and ˙12, ˙21 and ˙22 are all zero. Partition
U!1 and V!1 as

U!1 D
#
U!11
U!12

$
;V!1 D

!
V!11 V!12

"
;

where U!11 2 Zk"m, U!12 2 Z.m!k/"m, V!11 2 Zn"k and V!12 2 Zn".n!k/. Then

ker.A/ D V!12 2 mono.Zn!k;Zn/

coker.A/ D U!1 D U!11
U!12

2 epi.Zm;Zk ˚ Zm!k/

coim.A/ D V1 2 epi.Zn;Zk/

im.A/ D U1˙11 2 mono.Zk;Zm/:

Proof Check that that the diagrams

0 Zn!k Zn Zm Zk ˚ Zm!k 0
V!1
2 A U!1
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and

0

Zn Zk 0

Zm

A

V1

U1˙11

are commutative with exact rows and columns. ut
Example 13 Given A 2 hom.Z3;Z4/ with Smith normal form

A D

0

BB@

#20 8 16

#6 0 6

0 #12 6

4 #16 4

1

CCA D

0

BB@

8 6 3 0

3 2 1 0

3 1 0 0

2 0 0 1

1

CCA

0

BB@

2 0 0

0 6 0

0 0 0

0 0 0

1

CCA

0

@
1 #4 1

#1 2 0

0 1 #1

1

A D U˙V;

where

U!1 D

0

BB@

#1 3 0 0

3 #9 1 0

#3 10 #2 0
2 #6 0 1

1

CCA ;V
!1 D

0

@
#2 #3 #2
#1 #1 #1
#1 #1 #2

1

A :

From this we see that A generates a rank-2 subgroup of Z4, spanned by
2 ! .8; 3; 3; 2/T and 6 ! .6; 2; 1; 0/T . The quotient of Z4 with this subgroup is
Z2 ˚ Z6 ˚ Z and the matrix U!1 projects onto this quotient. The kernel of A
is the rank-1 subgroup of Z3 spanned by .#2;#1;#2/T .
Example 14 Let H < Z2 be the subgroup spanned by .#1; 3/T and .2; 2/. Compute
Z2=H and the projection. We compute the Smith factorisation of the generators

A D
#
#1 2
3 2

$
D
#
#1 0
11 1

$#
1 0

0 8

$#
1 #2
#1 3

$
D U˙V;

where U D U!1. From this we see that Z2=H D Z1 ˚ Z8 ' Z8, and coker.A/ is
just the last row of U!1,

coker.A/ D
!
11 1

"
2 epi.Z2;Z8/:
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3.2.3 General Homomorphisms

We have seen that homomorphisms between the free finitely generated abelian
groups are integer matrices. How can we represent and compute homomorphisms
between general FGAs?

Lemma 1 Any FGA G of rank m is given as the image of a projection of the free
group Zm onto G, !G 2 epi.Zm;G/.

Proof For G D Zk ˚ Zd let m D k C d, k D jkj and set !G.z/ D z mod k in
the first k components and !G.z/ D z in the last d components. Since any FGA is
isomorphic to such a G we can produce a projection on any FGA by composing !G

with an isomorphism. ut
We call the above defined !G the canonical projection. In many situations it is

useful to represent G by an other projection, e.g. we can more generally choose
some A 2 Zm"n and let !G D coker.A/. In this case, if A D U˙V we have !G.z/ D
U!1z mod k, where k is the diagonal of ˙ .

Lemma 2 Let G and H be arbitrary FGAs and let !G 2 epi.Zn;G/ and
!H 2 epi.Zm;H/ be projections onto these. A matrix A 2 Zm"n % hom.Zn;Zm/
represents a homomorphism $ D .!HıA/=!G 2 hom.G;H/ if and only if
ker.!G/ < ker.!HıA/. Any $ 2 hom.G;H/ can be written this way. The matrix
A is generally not unique for a given $.

Zn Zm

G H

A

!G !H

$

Proof First we start with a given $ 2 hom.G;H/. Since $ı!G D !HıA, we
have A D !Hn.$ı!G/. Since !H is onto H, this equation can always be solved,
but the solution is not unique since we can add something in the ker.!H/ to A
without affecting the solution. From the diagram it is easy to check that ker.!G/ <
ker.!HıA/.

Now, assume we are given an A such that ker.!G/ < ker.!HıA/. This means
that for any y 2 ker.!G/ we have .!HıA/.x C y/ D .!HıA/.x/ for all x. Hence
!HıA takes constant values on each of the cosets of ker.!G/ < Zn, and it defines
a function on G ' Zn= ker.!G/. In other words, this is the necessary condition for
solving the equation $ D .!hıA/=!G 2 hom.G;H/. ut
Exercise 5 Check that A D 4 defines a homomorphism $ 2 hom.Z2;Z8/. Find an
other A representing the same homomorphism.

Definition 27 (Matrix Representation of a General Homomorphism) The no-
tation A 2 hom.G;H/ for some matrix A 2 Zm"n means that A represents
the homomorphism .!HıA/=!G 2 hom.G;H/. Unless otherwise specified, the
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projections !G and !H are the canonical projections (i.e. Zm and Zn mod the periods
of G and H).

Even if we can represent any homomorphism in terms of an integermatrix, it does
not mean that all computations are trivial. Some care must be taken! We illustrate
by an example.

Example 15 Let G D Z8 ˚ Z8 and H D h.1I 5/i < G, meaning that H is the
subgroup of G generated by the element .1I 5/ 2 G. We want to compute G=H. Let
! 2 epi.Z2;G/ be the natural projection, !.z/ D z mod .8I 8/ and A D .1I 5/ 2
hom.Z;Z2/. We have H D im.$/ where $ D !ıA, and our task is to compute
coker.$/ 2 epi.G;G=H/. Note that even if $ D !ıA, it is not so that the pre-image
of H in Z2 is the image of A. The image of A is just the line of points h.1I 5/i < Z2,
while the pre-image of H contains all the points j ! .1I 5/C y for all y 2 ker.!/. To
find the pre-image of H we compute

ker.!/ D
#
8 0

0 8

$

and

eA D Aj ker.!/ D
#
1 8 0

5 0 8

$
:

Thus, the image of eA is exactly the pre-image of H in Z2. Smith decomposition
yields

eA D
#

1 0

#3 #1

$#
1 0 0

0 8 0

$0

@
1 8 0

#1 #3 #1
0 1 0

1

A ;

from which we see that Z2= im.eA/ D Z1 ˚ Z8 and

coker.eA/ D U!1 D
#

1 0

#3 #1

$
2 epi.Z2;Z1 ˚ Z8/:

Of course Z1 ˚ Z8 ' Z8 and we have coker.eA/ D .#3 #1/ 2 epi.Z2;Z8/. Since
ker.!/ < im.eA/ we have that coker.eA/ factors through ! and we can compute

coker.$/ D coker.eA/=! D .#3 #1/ 2 epi.G;Z8/:

We conclude that G=H D Z8 with this projection.

Example 16 (Computing the Cokernel of a General Homomorphism) The above
example generalises to the general problem of computing G=H, where H < G is a
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subgroup generated by k elements ofG. Let ! 2 epi.Zn;G/ be the natural projection
and A 2 hom.Zk;Zn/ such that H is the image of $ D !ıA, i.e. the columns of A
represent the generators of H. We claim

coker.$/ D  WD !n coker.Aj ker.!//: (11)

To prove this, we must show that the bottom row of

Zn

Zk G C 0

!
coker.Aj ker.!//

$

A

 

is exact. First we check that  ı$ D 0 by following the two top diagonal arrows
(which by definition compose to zero). Next we see that  is an epimorphism (onto
C), since coker.Aj ker.!// by definition is onto. Last we pick an z 2 G such that
 .z/ D 0. This must mean that z D !.y/ for some y 2 im.Aj ker.!//, hence
y D AxC w for some x 2 Zk and w 2 ker.!/, from which it follows that $.x/ D z.
This proves that im.$/ D ker. / and the bottom line is exact. We conclude that
C D G= im.$/ D G=H and that coker.$/ D  2 epi.G;G=H/ is the projection.

3.2.4 Hermite’s Normal Form

Smith’s normal form is perfect for computing the structure of quotients. To compute
images (and coimages) of maps into general FGAs, another normal form is
sometimes more useful. Whereas Smith’s normal form is the integer matrix version
of SVD, the Hermite normal form is the integer version of LU factorisation. The
basic idea is to factorise A 2 Zm"n as AV D H, where H 2 Zm"k is in lower echelon
form and V 2 GL.n;Z/. If the columns of A are generators of some subgroup then
the columns of H constitute a set of generators for the same subgroup. The details
of Hermite’s normal form differ among different authors. There are row and column
versions and some other details that can be done differently. Since we interpret group
elements as column vectors we prefer a column version.

We say that an element hi;j in H is a pivot if hi;j ¤ 0 and everything above and to
the right of hi;j is zero, i.e. hk;` D 0 whenever k ( i and ` & j and .k; `/ ¤ .i; j/. The
matrixH is in lower echelon form if every column i has a pivot hp.i/;i and furthermore
p.i/ < p.iC 1/ for every i 2 f1; : : : ; k # 1g.
Definition 28 A matrix H 2 Zm"k is in Hermite’s normal form if

1. H is in lower echelon form.
2. Each pivot hp.i/;i > 0.
3. All elements to the left of a pivot are nonnegative and smaller than the pivot; for

every j 2 f1; : : : ; i# 1g we have 0 ( hp.i/;j < hp.i/;i.
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Lemma 3 For every non-zero A 2 Zm"n there exists a V 2 GL.n;Z/ partitioned as
V D .V1jV2/, where V1 2 Zn"k, V2 2 Zn".n!k/ such that

H D AV1 2 Zm"k

is in Hermite’s normal form.

Proof We sketch an algorithm for computing this factorisation by applying elemen-
tary unimodular matrices acting on A from the right. A matrix of the form

#
0 1

1 0

$

in the upper left, and the identity in the lower right swaps the two first columns of A.
More generally, any permutation matrix having exactly one 1 in each column and in
each row, and zeros elsewhere permutes the columns and is always unimodular. A
less trivial unimodular matrix is obtained as follows. Consider two positive integers
r and s. From the euclidean algorithm we compute integers a and b such that

arC bs D g D gcd.r; s/:

Note that

!
r s
"
 
a # s

g

b r
g

!
D
!
g 0

"
;

where the matrix is unimodular. Thus, if A11 D r and A12 D s we can multiply A by
such a matrix from the right to obtain .g; 0/ in the first two positions of row 1. We
can continue to eliminate all entries to the right of A11, possibly swapping columns
if some entries in the first row are 0. We proceed the algorithm by searching for
a new pivot in position 2 to m in row 2. If there are no pivots here we go to the
next row etc. Whenever we have eliminated everything to the right of a pivot, we
subtract multiples of the pivot column from all columns to the left of the pivot to
fulfil criterion 3. in the definition of the Hermite normal form. ut

For A 2 hom.Zn;Zm/ it is clear that the columns of H are independent and span
the image of A, hence we can find both the kernel, image and coimage of A from the
Hermite normal form decomposition:

ker.A/ D V2 2 mono.Zn!k;Zn/

im.A/ D H 2 mono.Zk;Zm/

coim.A/ D V!11 2 epi.Zn;Zk/;

where V!11 denotes the upper k " n block of V!1.
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Example 17 The matrix A of Example 13 has Hermite factorisation

0

BB@

#20 8 16

#6 0 6

0 #12 6

4 #16 4

1

CCA

0

@
#1 0 2

0 #2 1
#1 1 2

1

A D

0

BB@

4 0 0

0 6 0

#6 30 0
#8 36 0

1

CCA

from which we find

A D im.A/ı coim.A/ D HV!11 D

0

BB@

4 0

0 6

#6 30
#8 36

1

CCA

#
#5 2 4
#1 0 1

$

and ker.A/ D V2 D .2I 1I 2/.
If the matrix A represents a homomorphism in hom.Zn;G/ for an arbitrary FGA

G, things are less simple. The columns of H still span the image of A, but they need
not be independent generators, in which case H is not a monomorphism, so in order
to compute kernels and images of general homomorphisms, we must be a bit more
sophisticated.

Example 18 (Computing the Image/Coimage of a General Homomorphism) Given
a homomorphism in terms of m generators, A 2 hom.Zm;G/, we want to compute
im.A/ 2 mono.Zp1 ˚ Zp2 ˚ ! ! !˚ Zpk ;G/ such that

Zm G

Zp1 ˚ ! ! !˚ Zpk :

A

coim.A/
im.A/

The image splits in components im.A/ D ˛1j˛2j ! ! ! j˛k, where the components
˛i 2 mono.Zpi ;G/ are the generators. The numbers pi are called the order of the
generator, i.e. the smallest positive integer such that pi˛i D 0. The idea of the
algorithm is to compute the generators ˛i by recursion in the rank m of A. First
we show that we can compute one generator. Then we show that if one generator is
known, we can reduce the computation to finding the image of a rank m # 1 map.

• Computing one generator. Start by eliminating the first row of A as in the
Hermite normal form algorithm, obtaining

AV D .a1jA/;

where a1 is the first column with a non-zero top element and A 2 hom.Zm!1;G/
are the remaining columns eliminated to 0 on the top row. Clearly, a1 is
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independent from A, so it must be a generator. We compute p1, the order of this
generator, and find

˛1 2 mono.Zp1 ;G/;

where a1 and ˛1 are represented by the same column vector.
• Computing the rest by recursion in the rank. The following diagram is of help

in explaining the recursion step.

Zm G G=˛1

Zp1 ˚ Zm!1 Zp1 ˚ Zp2 ˚ ! ! !˚ Zpk ;

A

V!1

!1

˛1jA

$

im.A/
 

where !1 D coker.˛1/ and  is defined as

 D !1ı imA D 0j.!1ı˛2/j.!1ı˛3/j ! ! ! j.!1ı˛k/;

which is a monomorphism. Since  is mono, and $ is epi, we must have

 D im.!1ı.˛1jA// D im.0j!1ıA/ D 0j.im.!1ıA//;

hence

im.!1ıA/ D .!1ı˛2/j.!1ı˛3/j ! ! ! j.!1ı˛k/: (12)

Since !1ıA is of lower rank, we get by recursion the image of this

im.!1ıA/ D ˛02j˛03j ! ! ! j˛0k;

and from (18) we obtain

˛i D !1n˛0i ; 2 ( i ( k;

from which we get the answer

im.A/ D ˛1j˛2j ! ! ! j˛k:

It will often happen that a column of A at some stage of the recursion becomes
0. In this case the column is swapped out to the right, and V!1 is replaced by the
upper .m # 1/ " m block of V!1.

• Computing coim.A/. We have

$ D coim.!1ı.˛1jA//
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Example 19 Let G D Z4 ˚ Z12. The matrix

A D
#
2 0

4 8

$
2 hom.Z2;Z4 ˚ Z12/

is in Hermite normal form, but the columns are not independent, since

A
#

2

#1

$
D
#
0

0

$
2 G:

Following the above procedure to compute im.A/ we find

˛1 D .2I 4/ 2 mono.Z6;Z4 ˚ Z12/;

and by the technique of Example 16 we compute

!1 D coker.˛1/ D
#
1 0

0 #1

$
2 epi.Z4 ˚ Z12;Z2 ˚ Z4/:

Since !1.0I 8/ D 0, we are done (the projection discovered dependence between the
generators), and we obtain

im.A/ D ˛1 D .2I 4/ 2 mono.Z6;Z4 ˚ Z12/:

Example 20 Compute im.A/ for

A D
#
1 1

3 5

$
2 hom.Z2;Z4 ˚ Z8/:

• We eliminate first row
#
1 1

3 5

$#
1 #1
0 1

$
D
#
1 0

3 2

$
;

yielding

˛1 D .1I 3/ 2 mono.Z8;Z4 ˚ Z8/:

• From the Smith normal form decomposition

#
1 4 0

3 0 8

$
D
#

1 0

#1 #1

$#
1 0 0

0 4 0

$0

@
1 #1 0

4 #1 #1
0 #2 1

1

A
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we find !1 D .#1;#1/ 2 hom.Z4 ˚ Z8;Z4/ and A D !1.0I 2/ D 2 2
hom.Z;Z4/ and im.A/ D 2 2 mono.Z2;Z4/. Solving ˛2 D !1n im.A/ yields
˛2 D .2I 4/ 2 mono.Z2;Z4 ˚ Z8/.

• We assemble and find

im.A/ D
#
1 2

3 4

$
2 hom.Z8 ˚ Z2;Z4 ˚ Z8/:

3.2.5 Summary

In this section we have sketched the outline of a software system for doing
general computations in the category of finitely generated abelian groups. We have
introduced the main operations in such a package and indicated the algorithms
behind the construction.

3.3 Circulant Matrices and the Discrete Fourier Transform

To pave the road for later developments, we will start with a discussion of linear
operators which are invariant under discrete circular shifts, and generalisations to
finite abelian groups. This example has many of the properties of the general theory,
but is simpler, since the spaces involved are finite dimensional vector spaces, and
there are no questions of convergence. The classical notion of a circulant matrix is
an n " n matrix

A D

0

BBBBBB@

a0 an!1 ! ! ! a2 a1
a1 a0 an!1 a2
::: a1 a0 an!1

: : :
: : :

: : :

an!1 a1 a0

1

CCCCCCA
;

where the ‘wrap-around’ diagonals are constant, Ai;j D ai!j mod n. The special
circulant

S D

0

BBBBB@

1

1

1
: : :

1

1

CCCCCA
;
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where a1 D 1 and ai D 0 for i ¤ 1 is called the unit shift operator. LetCŒZn' denote
the vector space of all complex valued functions on Zn. The shift matrix S can be
defined by its action on CŒZn'

Sx. j/ D x. j # 1/ for all j 2 Zn:

Lemma 4 For a matrix A 2 Cn"n the following are equivalent

1. A is circulant.
2. A is a polynomial in the shift operator

A D
X

j2Zn

ajSj:

3. A acts on a vector x 2 CŒZn' through the convolution product Ax D a ) x,
defined as

.a ) x/. j/ WD
X

`2Zn

a.`/x. j # `/:

4. A is a linear translation invariant (LTI) operator on CŒZn', i.e. AS D SA.
5. The eigenvectors of A are f(kgk2Zn given as

(k. j/ D e2! ijk=n:

The reader is encouraged to prove this result for this case of classical circulant
matrices (over the cyclic group Zn). We generalise to the case of a general finite
abelian group.

Definition 29 (Group Ring) Let G be a finite abelian group. The group ring CŒG'
is the vector space of all complex valued functions aWG! C.

Alternatively (since G is finite), we can identify the group ring with the C-linear
combinations of elements of G,

CŒG' D

8
<

:
X

j2G
a. j/j

9
=

; :

The structure of the domainG being a group yields important additional structure
of CŒG'. For any t 2 G we define the shift operator StWCŒG'! CŒG'

.Sta/. j/ WD a. j# t/: (13)
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It is easy to check that the shifts define an action of G on CŒG', i.e. we have StSu D
StCu, and furthermore this action is by linear transformations on a vector space.
Such linear actions are called group representations and are fundamental objects in
Fourier analysis (both on commutative and non-commutative groups).

Since G forms a basis for CŒG', we can extend the product on G by linearity to a
product )WCŒG' "CŒG'! CŒG' called the convolution, given as

.a ) b/. j/ WD
X

`2G
a.`/b. j# `/ D

X

`2G
a. j# `/b.`/: (14)

The convolution product is associative and commutative, and the delta-function ı 2
CŒG', defined such that

ı. j/ D
%
1 if j D 0
0 otherwise

is the unit of the convolution product, satisfying a ) ı D ı ) a D a for all a 2 CŒG'.
Convolutions and translation invariant operators go hand-in-hand.

Definition 30 (Linear Translation Invariant Operator (LTI)) A mapping
AWCŒG'! CŒG' is called LTI if it is linear and commutes with shifts

ASt D StA for all t 2 G:

For a vector space V let End.V/ denote the linear mappings AWV ! V
(endomorphisms). The elements of G form the natural basis for CŒG', and with
respect to this basis any A 2 End.CŒG'/ is represented by a matrix Ai;j for indices
i; j 2 G, such that .Ax/.i/ DPj Ai;jx. j/. From this it is straightforward to verify the
following result:

Lemma 5 A 2 End.CŒG'/ is LTI if and only if

Ai;j D Ai!t;j!t

for all i; j; t 2 G.

We can reconstruct an LTI A from its first column. Let a D Aı 2 CŒG', in
coordinates a.i/ D Ai;0, then

Ai;j D a.i # j/:

We see that in the case G D Zn, the LTI operators are exactly the circulant matrices.
Writing the matrix-vector product in terms of a we find

.Ax/.i/ D
X

`2G
Ai;`x.`/ D

X

`2G
a.i# `/x.`/ D a ) x:
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Conversely, any linear operator defined in terms of a convolution must be LTI.
Hence, we conclude

Lemma 6 For a finite abelian group G a matrix A 2 End.CŒG'/ is LTI if and only
if it is given as a convolution

Ax D a ) x:

We want to understand the eigenvectors of convolutional operators. Recall thatT
is the multiplicative group of complex numbers on the unit circle.

Lemma 7 The eigenvectors of a convolutional operator Ax D a ) x are exactly the
non-zero homomorphisms ( 2 hom.G;T/, i.e. the ( 2 CŒG' such that

(. jC k/ D (. j/(.k/ for all j; k 2 G:

For ( 2 hom.G;T/ we have A( Dba.(/ ! (, where the eigenvalueba.(/ is

ba.(/ D
X

j2G
a. j/(. j/:

Proof We start by picking a ( 2 hom.G;T/. Then, using (.#j/ D (. j/

.a ) (/.k/ D
X

j2G
a. j/(.k # j/ D

0

@
X

j

a. j/(.#j/

1

A(.k/ Dba.(/(.k/:

When we compute hom.G;T/ explicitly, we will see that hom.G;T/ ' G. Since
dim.CŒG'/ D jGj, this is a complete set of eigenvectors. ut

The mapping a 7! ba is called the discrete Fourier transform (DFT), and can
be understood as an expansion in the orthogonal basis for CŒG' given by the
eigenvectors hom.G;T/, henceforth called the characters of G. Let h!; !iWCŒG' "
CŒG'! C denote the inner product on CŒG'

h f ; gi WD
X

`2G
f .`/g.`/:

Theorem 5 (Discrete Fourier Transform (DFT)) Let G D Zn1˚Zn2˚ ! ! !˚Znd
be a FAG. The characters hom.G;T/ are in 1–1 correspondence with G; for every
k 2 G there is a unique character (k 2 hom.G;T/ given at j 2 G as

(k. j/ D exp
#
2!i

#
k1j1
n1
C k2j2

n2
C ! ! !C kdjd

nd

$$
:
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The characters are orthogonal

h(k;(k0i D
%
jGj if k D k0

0 otherwise
:

The discrete Fourier transformbWCŒG'! CŒG' and its inverse are given as

ba.k/ D
X

j2G
a. j/(k. j/ D h(k; ai (15)

a. j/ D
X

k2G
ba.k/(k. j/: (16)

Proof We first compute the characters on the group Zn. For any character ( we
have that (.0/ D 1. Now, since n!1 D 0 in G, we find that (.1/n D (.0/ D 1, thus
(.1/ D exp.2!ik=n/ for some k 2 f0; 1; : : :n # 1g. Let (k be the character with
(k.1/ D exp.2!ik=n/. Then (k. j/ D (k.1/

j D exp.2!ijk=n/. Thus the characters
on Zn are given as

(k. j/ D exp.2!ijk=n/ for k 2 Zn: (17)

By the formula for a geometric sum, it is straightforward to verify the orthogonality

h(k;(k0i D
%
jGj if k D k0

0 otherwise
:

(Orthogonality of characters is proven for general LCAs in the next section.)
ForG D G1˚G2 we check that (1 2 hom.G1;T/ and (2 2 hom.G2;T/ produces

a character ( D (1 ˚ (2 2 hom.G;T/, and furthermore

h(1 ˚ (2;e(1 ˚e(2i D h(1;e(1i ! h(2;e(2i:

From this the characters on G D Zn1 ˚ Zn2 ˚ ! ! ! ˚ Znd and their orthogonality
relations follow, thus hom.G;T/ forms a complete orthogonal basis for CŒG'. The
DFT and its inverse follow from the orthogonal expansion in CŒG'

a D
X

(2hom.G;T/

h(; ai
h(;(i(:

ut
The basic facts that LTI , convolutions, that Fourier transforms diagonalise

convolutions,

d.a ) b/.(/ Dba.(/ !bb.(/
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and that the DFT can be computed blazingly fast using the Fast Fourier Transform
(FFT) explains why the FFT is one of the most important algorithms in compu-
tational mathematics. In the sequel we discuss Fourier analysis on more general
LCAs. It is only for finite G that we have a direct fast algorithms for computing
the Fourier transform. Hence, a detailed understanding of the relationship between
the continuous and the discrete Fourier analysis is crucial for computational
Fourier analysis. We will detail these relationships using the language of group
homomorphisms introduced above.

3.4 Fourier Analysis on General LCAs

In this section we provide a quick survey of the general theory of Fourier analysis
on general Locally Compact Abelian groups. The general theory has many of the
properties of the finite case, but more care must be taken with respect to analytical
properties of function spaces.

3.4.1 Functions on G

For finite G the group ring CŒG' is a well defined space of all functions on G. For
infinite G we have to be more careful, due to convergence issues. We will use the
following notation:

• CG: Complex valued functions on G. This space is too large to be useful for
mathematical analysis and we use this notation when we want to convey an idea
without being very accurate on convergence issues. Read this as “an appropriate
space of functions on G”.

• L2.G/: Square integrable functions,

L2.G/ D
%
f 2 CGW

Z

G
j f .x/j2dx <1

&
;

where
R
G is defined below.

• S.G/: Schwartz functions. Defined below, this space consists of rapidly de-
creasing, infinitely smooth functions.

• S 0.G/: Tempered distributions. Defined below, this is the dual space of S.G/
and consists of generalised functions such as the Dirac ı function (point mass).
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3.4.2 Shifts, Integrals and Convolutions

Let G be an LCA. Shifts of functions are defined as

.Syf /.x/ D f .x # y/ for x; y 2 G and f 2 CG: (18)

In [24] it is shown that for any LCA there exists a non negative measure ) which
is shift invariant, i.e.

).E/ D ).EC x/ & 0

for all Borel sets E and all x 2 G, and ).E/ > 0 for some E. This is called the Haar
measure, and is unique up to a scaling. From this we obtain a shift invariant integral
on G which we will just write as

R
G !dx. For any integrable function f it satisfies:

Z

G
f .x/dx D

Z

G
Syf .x/ for all y 2 G: (19)

Example 21 For the LCAs of Definition 22 the invariant integrals are:

R W
Z

R
f .x/dx D

Z 1

!1
f .x/dx (the standard integral)

T W
Z

T
f .x/dx D

Z 1

0

f .x/dx (the standard integral)

Z W
Z

Z
f .x/dx D

1X

jD!1
f . j/

Zn W
Z

Zn

f .x/dx D
n!1X

jD0
f . j/

For direct products G D G1"G2 it is obtained as a multiple integral

Z

G
f .x/dx D

Z

G1

Z

G2
f .x; y/dxdy:

For any finitely generated group G, the integral notation means the discrete sum

Z

G
f .x/dx D

X

j2G
f . j/:
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From the integral we get two important products on CG, the inner product and
the convolution. The inner product h!; !i W CG"CG ! C is defined as

h f ; gi D
Z

G
f .x/g.x/dx (20)

where f denotes the complex conjugate. We will sometimes write h f ; giCG to
emphasize on which domain we consider the innerproduct.

The convolution product ) W CG"CG ! CG is defined as

. f ) g/.y/ D
Z

G
f .x/g.y # x/dx: (21)

Note that the convolution can be understood as a weighted linear combination of
shifts. This is evident in the finite case, . f )g/.y/ DPx2G f .x/g.y# x/ thus f )g DP

x2G f .x/Sxg. The various shifts Sxg are multiplied with the weights f .x/. By a
change of variables we verify that f ) g D g ) f , so one may also think of g as being
the weights and f the function that is shifted.

Convolutions are ubiquitous in computational mathematics, common examples
being finite difference approximations and linear digital filters. As a rule of thumb,
convolutions are important whenever a problem is invariant under shifts. To be more
precise, we say that a linear operator A W CG ! CG is translation invariant
(LTI) if ASg D SgA for all g 2 G. Thus linear differential operators with constant
coefficients such as d=dx and r2 are examples of LTI operators on CRn

.
In the case of finite G, we saw that LTI operators are the same as convolutions.

This is generally not the case for infinite G. E.g. there exists no (classical) function
f 2 CR such that f ) g D dg=dx for all differentiable g, and there is no (classical)
function being the identity of convolution, ı ) g D g. However, there are various
ways of approximating LTI operators on CR by convolutions, and the convolutional
identity exists as a distribution ı 2 S 0.G/. So, we think of LTI and convolutional
operators as being essentially the same, also for infinite G.

3.4.3 The Dual Group

Since all shifts commute, they share a common set of eigenfunctions. Convolutions
are linear combinations of shifts, and do hence also share the same eigenfunctions.
These are called the characters of the group. We will see that the characters
form an orthogonal basis for L2.G/, the square integrable functions on G. The
Fourier transform is an expansion of functions in this basis. In the Fourier basis
all convolutions become diagonal matrices. This diagonalizing property is the most
important property of the Fourier transform.We will in this section see that the space
of all Fourier coefficients also has the structure of an abelian group. It is called the
dual group.
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As above, let T denote the unitary complex numbers

T D f z 2 C j jzj D 1 g: (22)

As a multiplicative abelian group T is isomorphic with T, via the map T 3 x 7!
exp.2!ix/ 2 T.

Definition 31 (Group Character) A character on a group G is a (continuous5)
homomorphism ( 2 hom.G;T/ i.e.

(.xC y/ D (.x/(.y/ for all x; y 2 G: (23)

Note that .Sy(/.x/ D (.x#y/ D (.#y/(.x/, which shows that the characters are
eigenfunctions of shifts. In Theorem 5 we have found that forG finite, the characters
are in 1–1 correspondence with G itself.

Example 22 We want to find the characters on R. We have (.x C t/ D (.t/(.x/,
differentiation with respect to t at t D 0 yields

(0.x/ D (0.0/(.x/:

Since j(.x/j D 1 we must have (0.0/ D i! for some ! 2 R. Combined with
(.0/ D 1 this yields the complete family of continuous characters

(!.x/ D exp.i!x/ for ! 2 R: (24)

To complete the argument we have to show that every continuous (.x/ is differen-
tiable. We can always choose a small ı > 0 such that

R ı
0 (.t/dt D ˛ > 0. Thus

˛ !(.x/ D (.x/
Z ı

0

(.t/dt D
Z ı

0

(.xC t/dt D
Z xCı

x
(.t/dt:

The right hand side is the integral of a continuous function, and is thus differentiable.
Hence (.x/ is differentiable.

Example 23 Let us compute the continuous characters on the unit circle T D R=Z.
Let x 2 T be an irrational number, thus the sequence x; 2x; 3x; : : : fills a dense subset
of T. Once we have fixed the value of a character at x, we can derive the value of the
character on this dense subset, (. jx/ D (.x/j. If we require (.x/ to be continuous,
we can extend it uniquely to the whole of T. We leave it to the reader to verify that
the resulting continuous characters on T are given as

(k.x/ D exp.2!ikx/ for k 2 Z: (25)

5For topological groups hom.G;H/ denotes the continuous homomorphisms.
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One may alternatively arrive at the same result using the technique of the previous
example. Note that if we did not have the condition that the characters should be
continuous functions, we would get an awful lot of them, since we could make a
separate choice of ( on each coset of Q in R.

We define the product of two characters as

.(k !(l/.x/ D (k.x/!(l.x/: (26)

The product is obviously commutative. A simple computation shows that .(k!(l/.xC
y/ D .(k !(l/.x/!.(k !(l/.y/, thus also the product is a character.

Definition 32 (Dual Group) Let G be an LCA. The dual group * is defined as the
collection of all (continuous) characters on G with the product (26). * has a natural
topology turning it into an LCA.6

A natural question to ask is what is the dual of the dual group? For a given x 2 G
and ( 2 * , let  x.(/ D (.x/. Since

 x.(k !(l/ D (k.x/(l.x/ D  x.(k/! x.(l/;

we see that  x is a character on * . It is also easy to verify that  x ! y D  xCy,
thus G can at least be identified with a subgroup of the group of characters on * .
If topology is taken into the picture it can be shown that G and the dual of * are
isomorphic as LCAs, see [24].

Theorem 6 (Pontryagin Duality) The identification of x 2 G with the character
 x.(/ D (.x/ is an isomorphism between G and the dual of * .

Example 23 showed that the dual of T is isomorphic with Z under the map Z 3
k 7! (k.!/ D exp.2!ik!/ and Theorem 6 implies that the dual of Z is naturally
isomorphic to T. In order to recover the characters on T and on Z, we define the
function .!; !/WZ"T ! T as

.k; x/ ' (k.x/ D exp.2!ikx/:

If we fix k then .k; !/ gives us all the characters on T, and when x is fixed we get
all the characters .!; x/ on Z. Thus we may simply say that T and Z are dual spaces,
where the characters are recovered by the dual pairing .!; !/.
Definition 33 (Dual Pair) Two LCAs G and bG are called a dual pair of LCAs if
there exists a continuous function .!; !/ W bG"G! T such that the map

bG 3 k 7! .k; !/ 2 CG

6It is given the weakest topology such that for any x 2 G, the map k 7! (k.x/W* ! T is
continuous in k, see [24].
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is an LCA isomorphism between bG and the dual of G, and the map

G 3 x 7! .!; x/ 2 CbG

is an LCA isomorphism between G and the dual of bG.

In particular the reader is encouraged to verify the following identities:

.kC k0; x/ D .k; x/!.k0; x/ (27)

.k; xC x0/ D .k; x/!.k; x0/ (28)

.0; x/ D .k; 0/ D 1 (29)

.k; x/ D .#k; x/: (30)

Furthermore, if .k; x/ D 1 for all k then x D 0, and if .k; x/ D 1 for all x then k D 0.
Since T D R=Z is isomorphic to T through the exponential mapping x 7!

exp.2!ix/, we will often present the dual pairing in its bi-additive form h!; !iWbG "
G! T such that

.k; x/ D exp .2!ihk; xi/ :

This satisfies the following equations

hkC k0; xi D hk; xi C hk0; xi (31)

hk; xC x0i D hk; x/C hk; x0i (32)

h0; xi D hk; 0i D 0 (33)

hk; xi D 0 8k, x D 0 (34)

hk; xi D 0 8x, k D 0; (35)

thus we can think of h!; !i as an abelian group version of a non-degenerate bilinear
pairing between vector spaces.

3.4.4 The Fourier Transform

The main goal of this section is to study the expansion of functions f 2 CG in terms
of characters (the Fourier basis),

f .x/ D
Z

bG
bf .k/.k; x/dx D

Z

bG
bf .k/e2! ihk;xidx for somebf .k/ 2 CbG: (36)
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If G is finite, than any f 2 CG can be expanded in this basis, but this is not
generally true for infinite G. Necessary and sufficient conditions for functions to
be expressible in terms of Fourier series is discussed in many textbooks on Fourier
analysis, see e.g. [11].

The following lemma shows that the Fourier basis is orthogonal.

Lemma 8 The characters are orthogonal under the inner product defined in (20)

h.k; !/; .l; !/i D
Z

G
.k; x/ ! .l; x/dx D 0 when k ¤ l: (37)

Proof Assume k ¤ l.

Z

G
.#k; x/ ! .l; x/dx D

Z

G
.l # k; x/dx D

Z

G
.m; x/dx

where m ¤ 0. Pick a point x0 2 G such that .m; x0/ ¤ 1. Using the invariance of
the integral, we find

Z

G
.m; x/dx D .m; x0/

Z

G
.m; x # x0/dx D .m; x0/

Z

G
.m; x/dxdx:

Hence,
R
G.m; x/dx D 0. ut

Definition 34 (Fourier Transform) The Fourier transform is a linear mapb W
CG ! CbG given as

bf .k/ D h.k; !/; f .x/iG D
Z

G
.#k; x/f .x/dx: (38)

We also use the alternative notation

FGŒ f ' WDbf (39)

to specify the domain G explicitly.

Inversion of the Fourier transform is simple due to orthogonality of the charac-
ters. If G is compact thenbG is discrete, Theorem 12, and the integral overbG is given
as a sum

R
bG g.k/dk D

P
k2bG g.k/.

Lemma 9 If G is compact, then

f .x/ D 1

C

Z

G

bf .k/.k; x/dk D 1

C

X

k2bG
bf .k/.k; x/dk; (40)

where C D
R
G 1dx.
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Proof Given f as in (36). Using the orthogonality of the characters we find

h.k; !/; f .!/iG D
Z

x2G
.#k; x/

X

`2bG
g.`/.`; x/dx

D
X

`2bG
g.`/

Z

x2G
.#k; x/.`; x/dx D g.k/

Z

G
1dx;

thus g.k/ D 1
C
bf .k/. ut

A similar result holds also in the general case, see [24] for a proof:

Theorem 7 (Fourier Reconstruction) Given any LCA G there exists a constant C
so that Fourier reconstruction is given as

f .x/ D 1

C

Z

G

bf .k/.k; x/dk: (41)

As stated in the beginning of this section, the most fundamental property of the
Fourier transform is the diagonalization of convolutions:

Theorem 8 (Convolution Theorem)

2. f ) g/.k/ Dbf .k/bg.k/: (42)

Proof

2. f ) g/.k/ D
Z

G
. f ) g/.x/.#k; x/dx D

Z

G

Z

G
f .x # y/g.y/.k;#x/dxdy

D
Z

G
f .x # y/.k;#xC y/dx

Z

G
g.y/.k;#y/dy Dbf .k/bg.k/: ut

A very related result is the following, which states that a shift of a function f 2
CG corresponds to a multiplication ofbf by a character on bG, while a multiplication
of f by a character on G corresponds to a shift ofbf . The proof is a straight forward
computation left as an exercise.

Theorem 9 (Shift Formulas) Let (k D .k; !/ and (x D .!; x/ be characters on G
and bG. Let Sx and Sk be shifts on F.G/ and F.bG/ defined in (18). Then

cSxf D (!x !bf (43)

Skbf D b(k !f : (44)

The final fundamental result of this section states that the Fourier transformb W
CG ! CbG preserves the inner product on the two spaces. It bears the name of
Parseval or Plancherel, depending on whether or not f and g are equal.
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Theorem 10 (Parseval–Plancherel) Let C be the constant of the Fourier inver-
sion (41). Then

Z

G
f .x/g.x/dx D 1

C

Z

bG
bf .k/bg.k/dk: (45)

Proof

Z

G
f .x/g.x/dx D

Z

G
f .x/

1

C

Z

bG
bg.k/.k; x/dkdx

D 1

C

Z

bG

Z

G
f .x/.k; x/dxbg.k/dk D 1

C

Z

bG
bf .k/bg.k/dk:

ut
Example 24 (Fourier Analysis on the Classical Groups) The following table
presents the group and dual groups, the dual pairing, the Fourier transform and
reconstruction for the basic groupsR, T, Z and Zn.

G bG .!; !/ bf .!/ f .!/
x 2 R ! 2 R e2! i!x

R1
!1 e!2! i!xf .x/dx

R1
!1 e2! i!xbf .!/d!

x 2 T k 2 Z e2! ikx
R 1
0 e!2! ikxf .x/dx

P1
kD!1 e2! ikxbf .k/

j 2 Zn k 2 Zn e
2!ikj
n

Pn!1
jD0 e

!2!ikj
n f . j/ 1

n

Pn!1
kD0 e

2!ikj
n bf .k/

Multidimensional versions are given by the componentwise formulae:

x D .x1; x2/ 2 G D G1 ˚G2

k D .k1; k2/ 2 bG DcG1 ˚cG2
.k; x/ D .k1; x1/!.k2; x2/

bf .k1; k2/ D
Z

G1

Z

G2
.#k1; x1/.#k2; x2/f .x1; x2/dx1dx2

f .x1; x2/ D
1

C1C2

Z

bG1

Z

bG2
.k1; x1/.k2; x2/f .k1; k2/dk1dk2:

This gives the explicit form of the multidimensional transforms

G bG h!; !i bf .!/ f .!/
x 2 Rn ! 2 Rn P

` x`!`
R1
!1 e!2! ih!;xif .x/dx

R1
!1 e2! ih!;xibf .!/d!

x 2 Tn k 2 Zn P
` x`k`

R
Tn e!2! ihk;xif .x/dx

P
k2Zn e2! ihk;xibf .k/

j 2 Zm k 2 Zm
Pn

`D1
j`k`
m`

P
j2Zm

e!2! ihk;jif . j/ 1
M

P
k2Zm

e2! ihk;jibf .k/
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where Zm D Zm1 ˚ Zm2 ˚ ! ! ! ˚ Zmn and M D Qn
`D1mi is the number of grid

points in Zm.

3.4.5 Schwartz Space and Tempered Distributions

For a proper discussion of sampling we need to introduce Schwartz functions and
tempered distributions. The set S.G/ of Schwartz functions on the elementary
groups are defined as follows:

• On a finite G the Schwartz functions are all functions in CŒG'.
• On Zn the Schwartz functions are the functions that decrease faster than

polynomially towards infinity.
• On Tn, the Schwartz functions are C1.T/, the smooth functions.
• On Rn the Schwartz functions are those f 2 C1.R/ such that both f .x/ andbf .&/

decrease fast (faster than polynomially) as x; & !1.

On a general LCA G there is also a notion of such functions called Schwartz–Bruhat
functions. These can be defined as the functions f on G, such that both f andbf have
rapidly decreasing L1-norms [23]. Important for introducing these functions are the
following properties:

• S.G/ is closed under sums, products, translations and convolutions.
• S.G/ is dense in Lp.G/ for all 1 ( p (1.
• The space of bump functions C1c .G/ (smooth functions with compact support) is

dense in S.G/.
• The Fourier transform is a linear isomorphism between S.G/ and S.bG/.
• If $ 2 mono.H;G/ and f 2 S.G/ then fı$ 2 S.H/.

The tempered distributions S 0.G/ is the set of all linear functionals on S.G/,
linear mappings from S.G/ to C. For T 2 S 0.G/ and $ 2 S.G/ it is convenient
to use the notation hT;$i for the evaluation of T at $. Every measurable function
f WG ! C growing slowly (not faster than polynomial) defines a distribution Tf 2
S 0.G/ via the integral

hTf ;$i WD
Z

x2G
f .x/$.x/dx for all $ 2 S.G/:

These are called the regular distributions. There are, however, also other (singular)
distributions which are not given by classical functions, such as the Dirac function
ı.x/, which physicists interpret as a unit mass in 0 such that

R
x2G ı.x/$.x/dx D

$.0/. Such a function ı.x/ is not a classical function, and the correct way to think
of this is as the functional ı 2 S 0.G/ defined such that

hı;$i WD $.0/ for all $ 2 S.G/:
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We can define Fourier transforms and derivatives of distributions by dualisation.
The regular distributions give the hint on the correct definitions. For smooth slowly
growing functions f .x/ on G D R, integration by parts yields

Z
f .x/

d$.x/
dx

dx D
Z
#df
dx
$.x/dx:

For this reason, we define the derivative of T 2 S 0.R/ as

hdT
dx
;$.x/i WD hT;#d$.x/

dx
i: (46)

Similarly, for a nice function f 2 CG we have, by Plancherel’s theorem

h f ;z$iG D
1

C
hbf ;$ibG;

wherezWCbG ! CG denotes the inverse Fourier transform. Thus, we define the
Fourier transform of a distribution T 2 S 0.G/ as

hbT;$i WD ChT;z$i; (47)

where C is the constant from Plancherel’s theorem.

Exercise 6 Check that this definition impliesbı D 1.
We refer to [11] for more details on tempered distributions.

3.4.6 Pullback and Pushforward of Functions on Groups

The central topic of our lectures are the relationship between functions defined on a
group and related functions on a subgroup and the quotient.

Definition 35 (Pullback and Pushforward of Functions) For $ 2 hom.H;G/ we
define pullback $$WCG ! CH and pushforward $$WCH ! CG as adjoint operators
with respect to the inner products

$$. f / WD fı$ (48)

h$$.g/; f iCG WD hg;$$. f /iCH (49)

for f 2 CG and g 2 CH .
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Exercise 7 Show that for $ 2 hom.G1;G2/ where G1;G2 are finite, we have

$$f .$. j// D
X

k2ker.$/
f . jC k/

$$f .`/ D 0 for ` … im.$/:

The pullback is easy to understand, e.g. if $ 2 mono.H;G/ defines a discrete
lattice, then $$f is the sampling of f in the lattice points $.H/ < G. The push
forward $$f along $ 2 epi.G;K/ is summing up the values of f in all points of G
mapping to the same point in K. It can be shown that for $ 2 epi.G;K/ there always
exists a constant C (depending on the choice of Haar measures on G and K) such
that

$$f .$.x// D C
Z

y2ker.$/
f .xC y/dy:

It follows that:

Lemma 10 For  2 mono.H;G/ pullback is well-defined for Schwartz functions,
 $WS.G/ ! S.H/. For $ 2 epi.G;K/ pushforward is well-defined for Schwartz
functions $$WS.G/! S.K/.

Example 25 Pullback along epimorphisms does not in general send Schwartz
functions to Schwartz functions, for example take $ 2 epi.R;T/ as $.x/ D x.
The constant function f .x/ D 1 2 S.T/, but $$.1/ D 1 … S.R/. The result is,
however, a distribution in S 0.R/. Similarly, pushforward along monomorphisms is
in general well-defined for distributions and not for Schwartz functions.

Definition 36 (Pullback and Pushforward of Distributions) For 2mono.H;G/
we define pushforward of distributions  $WS 0.H/! S 0.G/ as

h $T; f i WD hT;  $f i for all f 2 S.G/:

For $ 2 epi.G;K/ we define pullback of distributions $$WS 0.K/! S 0.G/ as

h$$T; f i WD hT;$$f i for all f 2 S.G/:

Example 26 Let $ 2 mono.0;R/ (the 0-arrow). Since

h$$1; f i D h1;$$f i D f .0/;

we have $$1 D ı, the Dirac distribution on R. There is nothing particular about R
here, indeed for any LCA G we have the following equivalent characterisations of
the ı-distribution:

ı D 0$1 2 S 0.G/, hı; f i D f .0/: (50)
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3.5 Duality of Subgroups and Quotients

3.5.1 Dual Homomorphisms

Recall the discussion above, for an LCA G, the dual group bG is isomorphic to
hom.G;T/, which contains all eigen functions of the shift operators St acting onCG,
or as mappings to the additive group T D R=Z we havebG ' hom.G;T/. Similar to
the adjoint of a linear mapping, we define the adjoint of a LCA homomorphism

Definition 37 (Dual Homomorphism) Given $ 2 hom.H;G/ the dual homomor-
phismb$ 2 hom.bG;bH/ is defined for bH D hom.H;T/ and bG D hom.G;T/, acting
on an element ˛ 2 hom.G;T/ as

b$.˛/ D ˛ı$ 2 hom.H;T/:

Equivalently, for dual pairs G, bG and H, bH with pairings h!; !iGWbG "G! T and
h!; !iHWbH " H ! T , we define

hb$.˛/; hiH D h˛;$.h/iG;

for all ˛ 2 bG and h 2 H.

Example 27 Let H D Zn and bH D Tn with pairings h&; jiZn D &T j mod 1 and
h&; xiRn D &Tx mod 1. A non-singular matrix A 2 Rn"n defines a homomorphism
$ 2 hom.Zn;Rn/ as $.j/ D Aj. The dual homomorphism b$ 2 hom.Rn;Tn/ is
given asb$.&/ D AT& mod 1. If the columns of A are linearly independent then $ is
a monomorphism andb$ an epimorphism.

3.5.2 The Fundamental Duality Theorem

The main topic of this section is a theorem relating subgroup and quotient
decompositions of a group to decompositions of the dual spaces. To prepare for this
we discuss duality of sequences of homomorphisms in general. A chain complex
is a sequence of groups Gi and homomorphisms $i 2 hom.Gi;GiC1/ such that
$iC1ı$i D 0 for all i. A co-chain complex is similarly defined, where the indices
decrease rather than increase. Recall that the chain complex is exact if im.$i/ D
ker.$iC1/ for all i, and similarly for the co-chain. An equivalent way of defining
exactness is to say that whenever x 2 GiC1 such that $iC1.x/ D 0, there exists an
y 2 Gi such that x D $i.y/.
Lemma 11 If .$i;Gi/ is a chain complex, then the dual .b$i; bGi/ is a co-chain
complex, and if one of them is exact, then also the other is exact.

Proof Let bGi D hom.Gi;T/. For ˛ 2 GiC2, we see .b$iıb$iC1/.˛/ D ˛ı$iC1ı$i D 0,
hence .b$i; bGi/ is a co-chain complex.
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To prove the statement about exactness, assume .$i;Gi/ exact. We pick a ( 2
bGiC1 such that $$i .(/ D (ı$i D 0 and want to show that there exists a (0 2 G$iC2
such that b$iC1.(0/ D (. Pick an x 2 GiC1 such that $iC1.x/ D 0. Exactness implies
that x D $i.y/ for some y 2 Gi, hence (.x/ D .(ı$i/.y/ D 0. Thus (ı ker.$iC1/ D
0, and since it is zero on the kernel we can solve the equation (0 D (=$iC1 for
(0 2 bGiC2. This proves exactness of .b$i; bGi/.

If .b$i; bGi/ is exact then .$i;Gi/must be exact because of Pontryagin duality. ut
A very important consequence of this lemma is the following theorem, which is

fundamental for the understanding of sampling theory and computational Fourier
transforms:

Theorem 11 (Fundamental Duality Theorem of LCAs) A short sequence

0 H G K 0
$1 $2 (51)

is exact if and only if the dual sequence

0 bH bG bK 0
b$1 b$2 (52)

is exact. Furthermore, $1.H/ < G is a closed subgroup if and only if b$2.bK/ < bG is
closed.

A proof of the final statement about closed subgroups is found in [24].

Corollary 1 Let H be a closed subgroup of G and K D G=H. Then bK is a closed
subgroup of bG and bH % bG=bK.
Corollary 2 If $ 2 mono.H;G/ then b$ 2 epi.bG;bH/, and if $ 2 epi.G;K/ then
b$ 2 mono.bK;bG/.

Definition 38 (Annihilator Subgroup) For a closed subgroup H < G the closed
subgroup bG=H < bG is called the annihilator subgroup of bG, denoted

H? WD bG=H:

The annihilator H? consists exactly of exactly those characters in hom.G;T/ %
bG (a.k.a. Fourier basis functions) which evaluate to 1 at all points h 2 H:

Lemma 12 Referring to diagrams (51)–(52) we have that

.&;$1.H//G ' 1

if and only if & 2 b$2.bK/.
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Proof For x D $1.h/ and & D b$2.k/ we get

.&; x/G D .b$2.k/;$1.h//G D .k;$2ı$1.h//K D .k; 0/K D 1:

On the other hand, if .&;$1.h//G D 1 for all h 2 H, then .b$1.&/; h/H D 0/, and
hence b$1.&/ D 0. Exactness implies the existence of a k 2 bK such that b$2.k/ D &.

ut
In terms of the bi-additive pairing h!; !iG, we have

$1.H/? D
n
& 2 bGW h&;$1.H/iG ' 0 2 T

o
;

so the annihilator is the abelian group version of orthogonal complement in linear
algebra. We also have

!
H?

"? D H.

3.6 Lattices and Sampling

An LCA K is called compact if

vol.K/ WD
Z

K
dx <1:

An LCA H is called discrete if every point in H (and every subset of H) are open
sets. We say that H is continuous if it is not discrete. The following result is proven
in [24]. We have not discussed enough topology to reproduce the proof.

Theorem 12 An LCA G is compact if and only if the dual group bG is discrete, and
G is discrete if and only if the dual bG is compact.

Example 28

• R$ bR % R (continuous, non-compact$ continuous, non-compact).
• Z$ bZ % T (discrete, non-compact$ compact, continuous).
• Zn $ bZn % Zn (discrete, compact$ discrete, compact).

Perhaps it is worth noting that we could choose G D R with a discrete topology.
In this case bG is a compact space which is called the Bohr compactification of R,
after Harald Bohr, the brother of Niels Bohr, who studied the Fourier analysis of so-
called almost periodic functions. A discussion of this topic is interesting, but brings
us beyond the scope of these notes.

Definition 39 (Lattice) A lattice is a discrete and closed subgroup H < G such
that G=H is compact.
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Recall that H? % bG=H hence if H is a lattice, then the annihilator H? < bG
is also a lattice, called the reciprocal lattice. In the sequel we will study sampling
theory as movements of functions between the domains in the diagram

0 bH bG H? 0

0 H G G=H 0;

b$1 b$2

$1 $2

(53)

where the vertical lines indicate dual pairs of groups, $1.H/ < G and b$2.H?/ < bG
are the reciprocal lattices and both rows are exact. In particular we study the
relationship between Fourier transforms on G and on H, and we will even see
that there is a relationship between functions on the spaces bH and G=H, which
explains the Fast Fourier Transform. First, let us give a few concrete examples of
this diagram.

Example 29 (Sound Sampling) The classical setting of sampling of sound is the
case where G D R, H D Z, $1. j/ D j ! h, where h is the sampling interval. We can
set G=H D h with $2.t/ D t=h mod 1, and H? D Z with b$2.k/ D k=h and bH D T
with b$1.&/ D & !h. The pairings are h&; tiG D & ! t, h&; jiH D & ! j and hk; tiG=H D k ! t.
Example 30 (Multidimensional Sampling of Rn) Let G D Rn and H D Zn.
A nonsingular matrix A 2 Rn"n defines $1.j/ D Aj, where G=H D Tn and
$2.x/ D A!1x. On the dual side we have bH D Tn, bG D Rn and H? D Tn with
pairings h&; xiG D &Tx, h&; jiH D &T j and hk; xiG=H D kTx. This yields the dual
homomorphisms b$1.&/ D AT& and b$2.j/ D A!T j. Note that a matrix of rank lower
than n does not define a lattice in Rn, since the quotient G=H in that case is non-
compact.

Example 31 (Splitting for the FFT) Let G D Zmn and H D Zm with $1. j/ D jn.
We have G=H D Zn and $2. j/ D j. On the dual side we have bH D Zm, bG D Zmn,
H? D Zn with pairings hk; jiG D kj=mn, hk; jiH D kj=m and hk; jiG=H D kj=n. This
yields the dual homomorphisms b$1.k/ D k, since hb$1.k/; jiH D hk; jiH D kj=m D
hk; njiG D hk;$1. j/iG. Similarly we find b$2.k/ D km.

3.6.1 Pullback and Pushforward on Lattices

For $1 2 mono.H;G/, where H is discrete, we call the operation $$1 WCG ! CH

(down) sampling, defined as $$1 f WD f ı $1. For $2 2 epi.G;K/, where ker.$2/ is
discrete, we call $2$WS.G/! S.K/ periodisation, given as

$2$f .$2.x// D
X

k2ker.$2/
f .xC k/:
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The name ‘periodisation’ reminds us that if we compute g D $2
$ı$2$f , we obtain

g 2 S 0.G/ as a function periodic g.xC k/ D g.x/ for all k 2 ker.$2/. If we have a
lattice H < G and K D G=H D fgC Hg, as the cosets, we have

$2$f .gC H/ D
X

h2H
f .gC h/;

which can be interpreted as a H-periodic function in CG.
Distributions can be moved in the opposite direction by $1 and $2. We call

$1$WS 0.H/! S 0.G/ up sampling. This is given as

$1$f D
X

h2H
f .h/ı$1.h/;

where ı$1.h/ D ı.x # $1.h// is the shifted ı-distribution. Up sampling of a discrete
function on a lattice yields a set of point masses in the lattice points. The operation
$2$WS 0.K/! S 0.G/ yields an H-periodic distribution on G.

Many important dual relationships can be derived from the following result,
which is proven in many texts, see e.g. [22]:

Theorem 13 (Poisson Summation Formula) Let $1 2 mono.H;G/ be a lattice
with dual lattice b$2 2 mono.H?;G/, as in (53). For f 2 S.G/ we have

X

h2H
f .$1.h// D

1

C

X

k2H?

bf .b$2.k//;

where the constant C D vol.G=$1.H// is the volume of the unit-cell of the lattice (if
G is discrete C is the number of points in the unit-cell).

3.6.2 Choosing Coset Representatives

For many computational problems it is necessary to choose representative elements
from each of the cosets in the quotient groups G=H and bH D bG=H?. E.g. in
sampling theory on a latticeH < G D Rn, all characters in a cosetH?C& $ bG alias
on H (i.e. they evaluate to the same on H), but physical relevance is usually given
to the character & 0 2 H? C & which is closest to 0 (the lowest frequency mode).
Similarly, we often represent K D G=H by picking a representative from each coset
(e.g. R=Z can be represented by Œ0; 1/ $ R). The projection map $ 2 epi.G;K/
assigns each coset to a unique element in K, and we need to decide on a right inverse
of this map.

Definition 40 (Transversal of Quotient K D G=H) Given a quotient projection
$ 2 epi.G;K/, a function % WK ! G is called a transversal of $ if $1ı% D IdK (this
is often also called a section of the projection).
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Note that in general we cannot choose % as a group homomorphism (only if
G D H ˚ K), but it can be chosen as a continuous function. In many applications
G has a natural norm (e.g. Euclidean distance on Rn) and we can choose % such
that the coset representatives are as close to the origin as possible, i.e. such that
jj%.k/jj ( jj%.k/ # hjj for all h 2 H.

Definition 41 (Voronoi Transversal) Let G D Rn or G D Tn, and let H < G be a
lattice. The transversal % WG=H ! G such that jj%.k/jj ( jj%.k/#hjj for all h 2 H is
called the Voronoi transversal. The image of the Voronoi transversal is a polyhedron
around the origin in G, limited by hyperplanes orthogonal to the lines between the
origin and the closest lattice points, and dividing these in the middle.

3.6.3 Sampling and Aliasing

Shannon’s theory of sampling and reconstruction is a classical topic discussed in
any textbook on signal processing, usually presented in the setting of Example 29.
We review this in our setting of abelian groups, referring to the general lattice
decomposition in (53). Periodisation and sampling are dual operations, in the sense
that a function f 2 CG can be moved to CbH in two different ways, we can first
sample f down toH and then compute the Fourier transform onH, or we can Fourier
transform f on G and then periodisebf down to bH. The result of these two operations
is the same!

Theorem 14 For a lattice $1 2 mono.H;G/

FH
'
$1
$f
(
D b$1$FGŒ f ' 8f 2 S.G/; (54)

where FHŒ!' and FGŒ!' denotes the Fourier transforms on H and G.

Proof Pick an arbitrary & 2 bG and let (&.x/ WD .&; x/G be the corresponding
character on G. Using the shift property of the Fourier transform and the Poisson
summation formula, we find

b$1$FGŒ f '
)
b$1.&/

*
D

X

k2ker.b$1/
FGŒ f '.& C k/ D

X

k2ker.b$1/
FG

'
(!& f

(
.k/

D
X

h2H
.#&;$1.h//Gf .$1.h// D

X

h2H
.#b$1.&/; h/Hf .$1.h//

D FH
'
$1
$f
( )b$1.&/

*
:

ut
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Let f 2 CG,bf 2 CbG, fH WD $$1 f and bfH WD FH. fH/. Theorem 14 says:

bfH.b$1.&// D
X

k2ker.b$1/
bf .& C k/:

The aliasing phenomenon is the fact that Fourier components ofbf which belong
to the same coset of the reciprocal lattice add up to the same component of bfH .
To reconstructbf from bfH we must decide on which of the aliasing components in
the coset is the best representative for the coset. Reconstruction of fH is based on
choosing % WbH ! bG a transversal of b$1 2 epi.bG;bH/. The standard choice if G D Rn

or a G D Tn is the Voronoi transversal, where % picks points closest possible to 0
in the Euclidean norm. In the standard setting of Shannon sampling of Example 29
we choose % WT ! R as %.x/ D x=h for x 2 Œ0; 1

2
/ and %.x/ D .x # 1/=h for

x 2 Œ 1
2
; 1/, but other choices are also used in particular applications, where we want

to reconstruct particular parts of the spectrum (e.g. sideband coding).We will always
assume that % is chosen such that the closure of im.%/ $ bG is compact.

Definition 42 (Bandlimited Function) A function f 2 CG is bandlimited with
respect to a transversal % WbH ! bG if supp.bf / $ im.%/, where .supp.bf / is the support
ofbf i.e. the points where it takes non-zero values.

For a given transversal % we define a corresponding (low-pass) filter ˛% 2 CbG as
the indicator function on the image of % ,

˛% .x/ D
%
1 for x 2 im.%/
0 else.

Thus, f is band-limited if and only ifbf ! ˛% Dbf . Hence we have:
Lemma 13 (Shannon–Nyquist) A band-limited function f 2 S.G/ can be recon-
structed from its down-sample fH as

bf D ˛% !
)
b$1
$bfH
*
: (55)

Polyhedral Dirichlet Kernels

We henceforth assume that G D Rn or G D Tn and the transversal % WbH ! bG is
the Voronoi transversal, with an image being a polyhedron centered at 0 2 bG. The
corresponding low-pass filter is 1 inside this polyhedron and on the boundary (in
particular ifbG is discrete) we give weight 1=n on all n points which tie-break on the
distance criterion.
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Definition 43 (Polyhedral Dirichlet Kernel) Let

˝ D
n
& 2 bG W jj&jj < jj& # kjj for all k 2 b$2.H?/ n 0

o

@˝ D
n
& 2 bG W jj&jj D jj& # kjj for some k 2 b$2.H?/ n 0

o

We define the low-pass filter bDH 2 S 0.bG/ as

bDH.&/ D

8
<

:

1 for & 2 ˝
1
N for & 2 @˝;
0 otherwise

;

where N D #fk 2 b$2.H?/ W jj&jj D jj& # kjjg. The polyhedral Dirichlet kernel
DH 2 C1.G/ \ S 0.G/ is defined7 as

DH D F!1G .bDH/:

Example 32 Continuing Example 29, where G D bG D R, and $1. j/ D hj2
mono.H;G/, we find

DH.x/ D
Z 1

2h

! 1
2h

e2! i&xd& D sin.!x=h/
!x

D 1

h
sinc.!x=h/:

Example 33 For G D T, H D Z and $1. j/ D j=N, we have bG D Z, H? D Z and
b$2.k/ D Nk, which gives

DH.x/ D
N!1
2X

kD!N!1
2

e2! ikx D sin.N!x/
sin.!x/

if N is odd

DH.x/ D
N
2 !1X

kD!N
2 !1

e2! ikx C 1

2
.e! iNx C e!! iNx/

D sin..N # 1/!x/
sin.!x/

C cos.N!x/ if N is even

We want to reproduce the classical convolutional formula for band-limited
reconstruction of a sampled function in our setting. Let f 2 S.G/ and let the

7SincebDH has compact support, its inverse Fourier transform is smooth.
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Shannon–Nyquist low-pass reconstruction8 be given as

f % F!1G

h
bDH !

)
b$1
$bfH
*i
:

We have b$1
$bfH 2 S 0.bG/. Recall Theorem 14, for Schwartz functions sampling and

periodisation are dual operations. Tempered distributions belong to the dual space
and move in the opposite direction, so we have in particular

F!1G

h
b$1
$bfH
i
D $1$fH D

X

j2H
f .$1. j//ı$1. j/;

where ı$1. j/.x/ D ı.x # $1. j//. Since bDH has compact support, there is a
convolutional formula for distributions leading to the reconstruction

F!1G

h
bDH !

)
b$1
$bfH
*i
D 1

C
DH )

0

@
X

j2H
f .$1. j//ı$1. j/

1

A ;

where the constant C D DH.0/. This yields:

Theorem 15 (Shannon–Nyquist Convolution Formula) The band-limited recon-
struction of f from fH D $$1 f D fı$1 can be computed as

f .x/ % 1

DH.0/

X

j2H
DH.x # $1. j//f .$1. j//: (56)

This is an exact reconstruction for band-limited f .

We see from band limited f that the formula is interpolating in the lattice points,
and we conclude:

Lemma 14 The normalised polyhedral Dirichlet kernel satisfies for j 2 H

DH.$1. j//
DH.0/

D
%
1 for j D 0
0 else:

The translates S$1. j/DH.x/ D DH.x # $1. j// for all j 2 H form a complete set
of Lagrangian basis functions for band limited trigonometric interpolation in the
lattice points.

Analytical properties of polyhedral Dirichlet kernels are important for under-
standing sampling theory on general lattices. Detailed analysis of these functions

8For band limited f this is exact, for other functions it is an interpolating formula.



Groups and Symmetries in Numerical Linear Algebra 377

is done in [27, 30]. In particular it is important that they in the case G D Tn the
interpolation operator has a Lebesque constant scaling like O.logn.N//, where N is
the number of sampling points in H.

3.7 The Fast Fourier Transform (FFT)

We return once more to the basic splitting diagram (53), but in this section we
assume that all involved groups are finite. The aim is to compute the discrete
Fourier transform (DFT) on G by expressing FG in terms of the DFTs FH and
FK , where K D G=H. The simplest situation is when the diagram (53) splits, i.e.
the case when G D H ˚ K. Then there exists homomorphisms %1 2 epi.G;H/ and
%2 2 mono.K;G/ such that %1ı$1 D IdH and $2ı%2 D IdK , and an isomorphism
 D %1

$2
2 iso.G;H ˚ K/. On CŒH ˚ K' the DFT is FH ˚ FK , thus the whole DFT

on G factorises as

FG D b ı.FH ˚ FK/ı :

We can think of CŒH ˚ K' as a 2D table. The isomorphisms  and b are just
permutations of the data, so the factorisation has three stages; first we use  1 to
arrange the data in a 2D table, then we use FH on each column, and FK on each
row of the table, and finally we collect the data back into bG. The computation
is facilitated by a software package for doing computations of homomorphisms
between finite abelian groups. This factorisation of the DFT in the case where
G D H ˚ K is in FFT literature called twiddle-free FFT decomposition.

In the more general situation we have that H ˚ K is not isomorphic to G. In this
case we still try to use H and K as coordinates on G, but we cannot do this in a
canonical way. We choose two transversals %K WK ! G and %H WbH ! bG and write

j D $1.m/C %K.`/ for m 2 H, ` 2 K, j 2 G

k D b$2. p/C %H.n/ for p 2 bK, n 2 bH, k 2 bG:

Using the properties we have derived for dual pairings we find (exercise!)

.k; j/G D .n;m/H. p; `/K.%H.n/; %K.`//G:

The last factor .%H.n/; %K.`//G is called a ‘twiddle factor’ and it reflects the fact that
G ¤ H ˚ K. We find that the Fourier transform on G factorises as

FGŒ f '.k/ D FGŒ f '.b$2. p/C %H.n// (57)

D
X

`2K

0

@.%H.n/; %K.`//G
X

m2bH
.#n;m/Hf .$1.m/C %k.`//

1

A .#p; `/K :
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Again, interpreting f as data in a 2D array, indexed bym 2 H and ` 2 K, we see that
the DFT on G factorises in applying FH on each column, then multiplying by the
twiddle factors and finally FK on the rows. This is the basis for the Cooley–Tukey
algorithm, where this factorisation is done recursively to obtain the Fast Fourier
Transform. The fact that this can be done with respect to any subgroup H < G is
of theoretical importance, and practical importance if we want to design versions of
FFTs taking account of symmetries in the data f , see [18].

However, this factorisation is not canonical, there is a choice of transversals and
twiddle factors involved. So aesthetically this factorisation formula is not optimal. It
is possible to obtain a canonical factorisation of a similar nature. For completeness,
I would like to explain also this factorisation. This involves the lifting of f to a
larger space than H ˚ K, called the Heisenberg group (originating from quantum
mechanics). The last part of this section may be skipped without loss of continuity.

3.7.1 Heisenberg Groups and the Weil–Brezin Map

More material on topics related to this section is found in [5, 29].
We can act upon f 2 CŒG' with a time-shift Sx f .t/ WD f .t C x/ and with a

frequency shift (& f .t/ WD .&; t/f .t/. These two operations are dual under the Fourier
transform, but do not commute:

cSxf .&/ D (xbf .+/ (58)

b(& f .+/ D S!&bf .+/ (59)
!
Sx(& f

"
.t/ D .&; x/ !

!
(&Sxf

"
.t/: (60)

The full (non-commutative) group generated by time and frequency shifts on CŒG'
is called the Heisenberg group of G.

The Heisenberg group of Rn is commonly defined as the multiplicative group of
matrices of the form

0

@
1 xT s
0 In &
0 0 1

1

A ;

where &; x 2 Rn, s 2 R. This group is isomorphic to the semidirect product Rn "
Rn Ì R where

.& 0; x0; s0/ ! .&; x; s/ D .& 0 C &; x0 C x; s0 C sC x0T&/:
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We prefer to instead consider Rn " Rn Ì T (where T is the multiplicative group
consisting of z 2 C such that jzj D 1) with product

.& 0; x0; z0/ ! .&; x; z/ D .& 0 C &; x0 C x; z0ze2! ix
0T &/:

More generally:

Definition 44 For an LCA G we define the Heisenberg group
HG D bG "G Ì T with the semidirect product

.& 0; x0; z0/ ! .&; x; z/ D .& 0 C &; x0 C x; z0 ! z ! .&; x0//:

We define a left actionHG " CŒG'! CŒG' as follows

.&; x; z/!f D z ! (&Sxf : (61)

To see that this defines a left action, we check that .0; 0; 1/ ! f D f and

.& 0; x0; z0/ ! ..&; x; z/ ! f / D
!
.& 0; x0; z0/ ! .&; x; z/

"
! f :

Lemma 15 Let HG D bG " G Ì T and HbG D G " bG Ì T act upon f 2 CG and
bf 2 CbG as in (61). Then

F..&; x; z/ ! f / D z ! .#&; x/ ! (xS!&bf D .x;#&; z ! .#&; x// !bf

Proof This follows from (58)–(60).

We will henceforth assume that H;G and K form a short exact sequence as
in (53), with H discrete and K D G=H compact.

Definition 45 (Weil–Brezin Map) The Weil–Brezin map WH
G is defined for f 2

CŒG' and .&; x; z/ 2 HG as

WH
G f .&; x; z/ D

X

j2H
..&; x; z/ ! f /H . j/;

where fH WD fı$1 denotes downsampling along $1 2 mono.H;G/.

A direct computation shows that the Weil–Brezin map satisfies the following
symmetries for all .h0; h; 1/ 2 H? " H " 1 $ HG and all z 2 T:

WH
G f
!
.h0; h; 1/ ! .&; x; s/

"
D WH

G f .&; x; s/ (62)

WH
G f .&; x; z/ D z !WH

G f .&; x; 1/: (63)
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Lemma 16 * D H? "H " 1 is a subgroup ofHG. It is not a normal subgroup, so
we cannot form the quotient group. However, as a manifold the set of right cosets is

* nHG D bH " K " T:

The Heisenberg group has a right and left invariant volume measure given by
the direct product of the invariant measures of bG, G and T. Thus we can define the
Hilbert spaces L2.HH

G/ and L2.bH " K " T/. By Fourier decomposition in the last
variable (z-transform), L2.bH"K "T/ splits into an orthogonal sum of subspaces Vk

for k 2 Z, consisting of those g 2 L2.bH " K " T/ such that

g.&; x; z/ D zkg.&; x; 1/ for all z D e2! i" :

It can be verified thatWH
G is unitary with respect to the L2 inner product. Together

with (62)–(63) this implies:

Lemma 17 The Weil–Brezin map is a unitary transform

WH
G WL2.G/! V1 $ L2.bH " K " T/:

Note that the Weil–Bezin map on bG, with respect to the reciprocal lattice H?, is

WH?
bG WL

2.G/! V1 $ L2.K " bH " T/:

The Poisson summation formula (Theorem 13) together with Lemma 15 implies
that these two maps are related via

WH
G f .&; x; z/ DWH?

bG
bf .x;#&; z ! .&; x//:

Defining the unitary map JWL2 $ L2.bH " K Ì T/! L2.K " bH " T/ as

Jf .x;#&; z ! .&; x// D f .&; x; z/; (64)

we obtain the following fundamental theorem.

Theorem 16 (Weil–Brezin Factorization) Given an LCA G and a lattice H < G.
The Fourier transform on G factorizes in a product of three unitary maps

FG D
)
WH?
bG

*!1
ıJıWH

G : (65)
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The Zak Transform

We want to explain (57) in terms of the Weil–Brezin map. Given a lattice H < G
and transversals % WK ! G andb% WbH ! bG. The Zak transform is defined as

ZH
G f .&; x/ WDWH

G f .&; x; 1/ for & 2 b%.bH/, x 2 %.K/: (66)

The Zak transform can be computed as a collection of Fourier transforms on H of f
shifted by x, for all x 2 %.K/. The definition of the Fourier transform yields:

ZH
G f .#&; x/ D FH ..Sxf /H/ .b$0.&//: (67)

We see that the Zak transform is invertible when ZH
G f .#&; x/ is computed for all

& 2 b%.bH/ and all x 2 %.K/. Written in terms of the Zak transform, the Weil–Brezin
factorization (65) becomes

ZH?
bG
bf .x; &/ D .&; x/GZH

G f .#&; x/: (68)

This is essentially the same formula as (57), where .&; x/G is the twiddle factor.
Due to the symmetries (62)–(63), theWeil–Brezin map is trivially recovered from

the Zak transform. The Zak transform is the practical way of computing the Weil–
Brezin map and its inverse. However, since the invertible Zak transform cannot be
defined canonically, independently of the transversals % and b% , the Weil–Brezin
formulation is more fundamental.

We end our discussion of the FFT at this point with the remark that the DFT on a
finite abelian group G can always be computed with a complexity of O.jGj log jGj/
floating point operations, although for some cases such as Zp, where p is a large
prime we must use other techniques than those discussed here. The underlying
principles for computing the DFT are based on group theory. The details of state of
the art FFT-software is involved, but for most applications in computational science
it is sufficient to know that excellent FFT libraries exists. The practical question is
then how the Fourier transforms on more general LCAs can be related to the finite
groups.

3.8 Lattice Rules

Lattice rules are numerical algorithms for computing in continuous groups by
sampling in regular lattices and reducing to computations on finite groups. Most
commonly the term refers to numerical integration of multivariate periodic functions
in CTn

. The solution of PDEs by lattice sampling rules is discussed in [21]. In the
present general setting, we discuss lattice rules for functions on G D Rn, in which
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case we must introduce sampling lattices both in G and in bG to obtain a finite group
where computations reduce to the FFT.

For general functions f 2 CG, the error between the Fourier transform of the true
and the sampled function follows from Theorem 14

FH. fH/.b$1.&// #FG. f /.&/ D
X

k2b$2.bK/nf0g
FG. f /.kC &/:

The game of Lattice rules is, given f with specific properties, to find a lattice H < G
such that the error is minimised. We first assume (as is commonly done in the
lattice-rule literature) that the original domain is periodic G D Tn. Lattice rules
are designed such that the nonzero points in H? neighbouring 0 are pushed as far
out as possible with respect to a given norm, depending on the properties of f . If f is
spherically symmetric,H should be chosen as a densest lattice packing (with respect
to the 2-norm) [8], e.g. hexagonal lattice in R2 and face centred cubic packing in
R3 (as the orange farmers know well). In dimensions up to 8, these are given by
certain root lattices [20]. The savings, compared to standard tensor product lattices,
are given by the factors 1.15, 1.4, 2.0, 2.8, 4.6, 8.0 and 16.0 in dimensions n D
2; 3; : : : ; 8. This is important, but not dramatic, e.g. a camera with 8.7 megapixels
arranged in a hexagonal lattice has approximately the same sampling error as a
10 megapixel camera with a standard square pixel distribution. However, these
alternative lattices have other attractive features, such as larger spatial symmetry
groups, yielding more isotropic discretizations. A hexagonal lattice picture can be
rotated more uniformly than a square lattice picture.

Dramatic savings can be obtained for functions belonging to the Korobov spaces.
This is a common assumption in much work on high dimensional approximation
theory. Korobov functions are functions whose Fourier transforms have energy
concentrated along the axis directions in bG, the so-called hyperbolic cross energy
distribution. Whereas the tensor product lattice with 2d points in each direction
contains .2d/n lattice points in Tn, the optimal lattice with respect to the Korobov
norm contains only O.2nd.log.d//n!1/ points, removing exponential dependence
on d.

The group theoretical understanding of lattice rules makes software implemen-
tation very clean and straightforward. In [21], numerical experiments are reported
on lattice rules for FFT-based spectral methods for PDEs. Note that whereas the
choice of transversal b% WbH ! bG is irrelevant for lattice integration rules, it is
essential for pseudospectral derivation. The Laplacian r2f is computed on bG as
bf .&/ 7! cj&j2bf .&/, whereas the corresponding computation on bH must be done as
FH. fH/.+/ 7! cjb%.+/j2FH. fH/.+/ for + 2 bH, and we must choose the Voronoi
transversal to minimise aliasing errors.
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3.8.1 Computational Fourier Analysis on Rd

A topic which in our opinion has not been fully addressed in the Lattice-rule
literature is the computation of Fourier transforms on the non-compact continuous
groups Rd. The problem here is that there are no homomorphisms of a finite
abelian group into Rd, since any lattice in Rd must be non-compact. In order to
move the computation to a finite group Zn, n D .n1; ! ! ! ; nk/, we must use two
homomorphisms

Zn Td d;
$s $p

R
(69)

where $s is a sampling lattice and $p defines periodisation of a function with respect
to the periodisation lattice ker.$p/ < Rd. A function f 2 S.Rn/ can be mapped
down to a finite fn 2 S.Zn/ as

fn D
!
$s
$ı$p$

"
. f /: (70)

SincecZn D Zn, bTd D Zd andcRd D Rd, the dual of (69) is

Zn
d Rd:

b$s
Z

b$p (71)

The relationship between the discrete and the continuous Fourier transform follows
from Theorem 14 (applied twice)

bfn D
)
b$s$ıb$p

$*
.bf /: (72)

Note that sampling in the primary domain becomes periodisation in the Fourier
domain and vice versa. The reconstruction ofbf from bfn can be done as a 2-stage
process involving band limited approximation in the Voronoi domain of the dual
sampling lattice ker.b$s/ < Zd and a space limited approximation in the Voronoi
domain of the periodisation lattice ker.$p/ < Rd, using the Shannon–Nyquist
reconstruction formula twice. In this process no function (except f D 0) is perfectly
reconstructed, since f D 0 is the only function which is both band limited and with
compact support.

We want to understand the mappings involved in this two-stage sampling process
in more detail. We have two lattices, the periodisation lattice ker.$p/ < Rn and
sampling lattice $s.Zn/ < Td. Considering the sampling lattice lifted to Rd as
the subgroup $!1p .$s.Zn// < Rd, we realise that the periodisation lattice is a sub-
lattice of the sampling lattice in Rd. The two lattices are described by two matrices
S 2 Rd"d and A 2 Zd"d with non-vanishing determinants. These define a sampling
lattice SWZd ,! Rd and a periodisation sub lattice defined by SAWZd ,! Rd.
Consider the following commutative diagram where all rows and all columns are
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exact and where n D .n1; : : : ; nk/ such that nijniC1 for i D 1; : : : ; k # 1. The second
row describes the sampling lattice and the second column the periodisation lattice
in Rn.

0 0

0 Zd Zd 0

0 Zd Rd Td 0

0 Zn Td Td 0

0 0 0

A

S

Given A and S as above, there is a unique (up to isomorphisms) way of
completing this diagram such that all rows and columns are exact. We will explicitly
compute all the arrows. Let the Smith normal form of A be

A D UNV;

where U 2 Zd"d and V 2 Zd"d are unimodular and N 2 Zd"d is diagonal, where
the diagonal ni D Ni;i contains positive integers such that nijniC1 for all i. Since
A has nonzero determinant, none of the ni are zero, but the first ones could be 1.
Let k denote the number of ni such that ni > 1, and let n be the vector containing
these last k diagonal elements, defining the FAG Zn. Let Uk 2 Zk"d denote the last
k rows of U!1 and let Vk 2 Zd"k denote the last k columns of V!1. Finally, let
Nk D diag.n/ 2 Zk"k and N!1k 2 Rk"k. Then the diagram is completed as follows.

0 0

0 Zd Zd 0

0 Zd Rd Td 0

0 Zn Td Td 0

0 0 0

A SA

S

Uk

S!1

.SA/!1

VkN!1
k A
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It is straightforward to check that the first two rows and last two columns are short
and exact sequences. The first column is a short exact sequence because UkA mod
n D 0 and Uk has maximal rank. It is straightforward to check the commutativity of
the NW, NE and SE squares. The SW square commutes because A!1 # VkN!1k Uk is
an integer matrix. The last row is exact by the 9-lemma of homological algebra [17].

This defines the periodisation lattice SAWZd ,! Rd with quotient mapping
.SA/!1WRd ! Td. A function f 2 S.Rd/ can be approximated by a function
fn 2 S.Zn/ as

fn D .Uk/$S$f D .VkN!1k /$.SA/!1$ f :

We say that VkN!1k is a rank k lattice rule. Dualising the above sampling-
periodisation diagram yields:

0 0

0 Td Td 0

0 Td Rd Zd 0

0 n Zd Zd 0

0 0 0

AT

ST

.SA/T

S!T

Z

UT
k N

!1
k

VT
k

.SA/!T

AT

If we flip the diagram around the SW-NE diagonal, we see that this is nearly
identical to the original sampling-periodisation diagram. But here the sampling
lattice is given by cSA D .SA/!T WZd ! Rd, while the periodisation lattice is given
bybS D S!T WZd ! Rd. Thus, the reciprocal of the primal sampling lattice is the
dual periodisation lattice and the reciprocal of the primal periodisation lattice is the
dual sampling lattice.

Complete symmetry between primal and dual spaces is obtained by letting the
primal sampling lattice be obtained by down-scaling the reciprocal of the primal
periodisation lattice in Rd. Specifically, given a non-singular matrix L 2 Rd"d and
an integer m, we let the primal sampling lattice be S D 1

mL and A D mL!1L!T . The
primal periodisation lattice is SA D L!T . The dual sampling lattice is .SA/!T D
L D mS and the dual periodisation lattice S!T D mSA.

3.8.2 Eigenfunctions of the Continuous and Discrete Fourier Transforms

We end this section with a brief remark showing a beautiful and perhaps unexpected
property of discretising Rn in a completely symmetric fashion as discussed above.
To understand the analytic properties of the discrete and continuous Fourier
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transforms, it is of importance to know the eigenfunctions of the Fourier operator.
The eigenvectors of discrete Fourier transforms is a topic of interest both in pure
and applied mathematics [5]. Both on Rn and on Zn, the Fourier transform is a
linear operator from a space to itself, so we can talk about eigenfunctions + with
the property that b+ D , ! + for some , 2 C. The Fourier transform satisfies
F4 D I, hence we have that , 2 f1; i;#1;#ig. Since there are only four invariant
subspaces, the eigenfunctions are not uniquely defined. However, forFR a particular
complete set of eigenfunctions is known, The most famous eigenfunction is an
appropriate scaling of the Gaussian exp.#x2=%2/, which is the ground state of the
quantum harmonic oscillator. The set of all the eigenstates of the quantum harmonic
oscillator form a complete set of eigenfunctions of FR. These are of the form of a
Hermite polynomial times a Gaussian. Similarly, we can take the eigenstates of the
d-dimensional quantum harmonic oscillator as a basis for the eigen spaces of the
d-dimensional Fourier transform Fd

R.

Theorem 17 If we have a complete symmetry between the primal and dual
sampling and periodisation lattices on Rd, then the discretisation of eigenfunction
+ of the continuous Fourier transform FRd

+n D .Uk$ıS$/+

is an eigenfunction of the discrete Fourier transform FZn .

Proof In the symmetric situation we have that the primal and dual discretisations
are the same

+n D .Uk$ıS$/+
FZn Œ+n' D .Uk$ıS$/FRd Œ+';

hence

FZn Œ+n' D .Uk$ıS$/FRd Œ+' D , ! .Uk$ıS$/+ D , ! +n:

It might be an interesting research topic to investigate computational reconstruc-
tion algorithms which aims at being accurate for down sampled eigenstates of the
quantum harmonic oscillator.

3.9 Boundaries, Mirrors and Kaleidoscopes

The Fourier theory is a perfect tool for computing with shift invariant linear
operators. This is, however, a very ideal world. Practical computational problems
usually involve operators with coefficients varying over space and problems with
boundaries. What can we do with such problems? A crucial technique is precondi-
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tioning, where real-life computational problems are approximated by problems in
the ideal world. E.g. operators with variable coefficients can be approximated by
operators where the coefficients are averaged over the domain. This is discussed
in Sect. 3.11. For boundaries, it is worth knowing that certain special boundaries
can be treated exactly within Fourier theory. The classification of such domains is
of importance to computational science. One technique, which we will not pursue
here, is based on separation of variables for PDEs. This has lead to fast solvers for
Poisson problems on domains such as rectangles and circles.

We will instead discuss boundary problems which can be solved by Fourier
techniques using mirrors on the boundaries of the domain, leading to fast compu-
tational techniques for certain triangles (2D) and simplexes in higher dimensions.
These techniques also relates to beautiful topics in pure mathematics, such as the
classification of reflection groups (kaleidoscopes), and the classification of semi-
simple Lie groups.

We provide the basic idea with a well-known example derived in an unusual
manner.

Example 34 Find eigenvectors and eigenvalues of the discrete 1-D Laplacian with
Dirichlet conditions, the .n # 1/ " .n# 1/ matrix

A D

0

BBBBB@

2 #1
#1 2 #1

: : :
: : :

#1 2 #1
#1 2

1

CCCCCA
:

Apart from the boundaries, this is a convolution onCZ with a 2 CZ given as a.0/ D
2, a.1/ D #1, a.#1/ D #1. Now we fix the boundaries by setting up mirrors on the
edges j D 0 and j D n. Since we have Dirichlet conditions, we set up two mirrors
which act on a function by flipping it around a boundary point and changing the
sign, i.e. we have two reflections acting on f 2 CZ as

F1 f . j/ D #f .#j/
F2 f . j/ D #f .2n # j/:

Note that the convolution operator a commutes with the reflections,
Fi.a ) f / D a ) .Fi f / for every f 2 CZ. We seek a subspace of CZ of functions

invariant under the action of Fi, the linear subspace V $ CZ such that for all fs 2 V
we have F1 f D F2 f D f . Note that F2ıF1 D S2n, the shift operator S2n f . j/ D
f . j# 2n/. Hence we see that V $ CZ=2nZ D CŒZ2n', and furthermore

V D f f 2 CŒZ2n' W F1 f D f g:

The other symmetry F2 f D f follows because of 2n-periodicity.
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Let˘ D 1
2
.I C F1/WCŒZ2n'! V be the projection onto the symmetric subspace.

V contains all 2n periodic functions of the form

.: : : ;#f2;#f1; 0; f1; f2; : : : ; fn!1; 0;#fn!1; : : :/:

Let ˝ D f1; 2; : : : ; n # 1g be the fundamental domain of the symmetric subspace,
i.e. any f 2 V can be reconstructed from its restriction f j˝ . Note that A acts on the
fundamental domain just like the convolution with a on V ,

.˛ ) f /j˝ D A ! f j˝ for all f 2 V:

Since the convolution a) commutes with Fi, it also commutes with the projection
˘ and hence for any eigenvector ˛ ) + D ,+ we have

˛ ) .˘+/ D ˘.˛ ) +/ D ,˘+;

so ˘+ is also an eigenvector with the same eigenvalue. Hence

A ! ˘+j˝ D .˛ )˘+/j˝ D , ˘+j˝ ;

so ˘+j˝ is an eigenvector of A. On CŒZ2n' the eigenvectors of the convolution a)
are the characters (k D exp.!ijk=n/, which yields the eigenvector for A:

.˘(k/. j/ D
1

2
.e! ijk=n C e!! ijk=n/ D cos.!jk=n/:

The corresponding eigenvalue is ,k Dba.k/ D 2 # 2 cos.!k=n/.
The trick in this example works for the following reasons:

• The matrix A acts like a convolution a) inside of the domain˝ .
• On the boundary of ˝ , the boundary conditions can be satisfied by reflection

operators, which commute with the convolution.
• A acts on the domain˝ as the convolution a) acts on the symmetrized extended

functions in V .
• The reflections generate translations, so that we can obtain the eigenfunctions of

A from the eigenfunctions on the larger periodic domain.

By similar techniques, we can find eigenvectors for a number of different tri-
diagonal matrices with combinations of Dirichlet or Neumann conditions at lattice
points or between lattice points. More generally, we can ask: On which domains in
Rd can we define boundary conditions by similar mirror techniques and employ
symmetric versions of Fourier expansions as a computational tool? To answer
this question, we ask first what are the polytopes in Rd with the property that if
we reflect the domain at its boundaries, we eventually generate finite translations
in all d directions? When these domains are understood, we can by reflection
techniques find the eigenfunctions of the Laplacian r2 on these domains, with
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α1

α2

λ2

λ1

A1× A1 root system

α1

λ2

λ1

α2

A2 root system

Fig. 1 Reducible root system A1 " A1 and irreducible system A2

various combinations of Dirichlet and Neumann conditions, and finally we can seek
lattices which are invariant under the boundary reflections to obtain discretisations
which can be computed by FFT techniques.

We will not go into the detail of this topic in these lectures. The interested reader
is referred to [7]. We summarise the main results. In R2 the only domains with the
property that reflections about the boundaries generate (finite) translations in both
directions are:

• Any rectangle (Fig. 1, left).
• The equilateral triangle. Reflections of the triangle produces six rotated and

reflected triangles inside a hexagon, and continued reflections produce a tiling
of R2 where this hexagon is shifted in two different directions (Fig. 1, right).

• The 45ı–45ı–90ı triangle. Reflections of the triangle produces eight
rotated/reflected triangles inside a square, and continued reflections produce
a tiling of R2 where this square is shifted in two different directions (Fig. 2, left).

• The 30ı–60ı–90ı triangle. Reflections of the triangle produces 12 rotated and
reflected triangles inside a hexagon, and continued reflections produce a tiling of
R2 where this hexagon is shifted in two different directions (Fig. 2, right).

The classification of such ‘kaleidoscopic mirror systems’, called ‘root systems’,
in all dimensions was completed in the 1890s by Wilhelm Killing and Elie Cartan.
They needed this to classify all semisimple Lie groups. There are some domains
which decompose in orthogonal directions, such as a rectangle, which decomposes
in two mirrors in the horizontal direction and two mirrors in the vertical direction,
and there are some irreducible domains which cannot be decomposed into orthog-
onal directions, such as the three triangles in R2 listed above. The fundamental
domains for the irreducible cases are always special simplexes (triangles and their
higher dimensional analogues). The fundamental domains for the reducible cases
are cartesian products of irreducible domains, such as a rectangle in 2D, which is
the cartesian product of two orthogonal lines (1-D simplexes) and an equilateral
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B2 root system

λ1
λ2

α1

α2

G2 root system

α2

α1

λ2

λ1

Fig. 2 The irreducible root systems B2 and G2

prism in 3D, which is the cartesian product of an equilateral triangle with a line. We
summarise the theory:

• There are four infinite families of irreducible root systems, An; n > 0, Bn; n >
1, Cn; n > 2 and Dn; n > 3. Here n is the dimension of the space. A2 is the
equilateral triangle and B2 is the 45ı–45ı–90ı triangle.

• There are five exceptional root systems which only exist in particular dimensions,
E6, E7, E8, F4 and G2, where G2 is the 30ı–60ı–90ı triangle.

• For each root system there corresponds two particularly nice families of lattices
which are preserved under the reflection symmetries. These are called the roots
lattice and the weights lattice and are straightforward to compute.

We refer the readers to [13, 25] for a discussion of these topics. We also mention
that for each root system there corresponds a system of multivariate Chebyshev
polynomials which has a number of remarkable approximation properties.

3.10 Cyclic Reduction

The topic of this section is discussed in more detail in [19]. Cyclic reduction is
a classical computational technique which has been employed in the design of fast
Poisson solvers [28], among other things. As a simple example consider the solution
of a linear system on Z6 with coefficient matrix A is given as the convolution with a
where a.0/ D 2, a.1/ D a.#1/ D #1 and the rest is 0. Let us pre-multiply A with
B being convolution with b where b.0/ D 2, b.1/ D b.#1/ D 1 and the rest is 0.
After re-arranging the nodes in even-odd order 0; 2; 4; 1; 3; 5, we have the following
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matrix presentation of this ‘odd-even’ cyclic reduction step:

BA D

0

BBBBBBB@

2 1 1

2 1 1

2 1 1

1 1 2

1 1 2

1 1 2

1

CCCCCCCA

0

BBBBBBB@

2 #1 #1
2 #1 #1

2 #1 #1
#1 #1 2

#1 #1 2

#1 #1 2

1

CCCCCCCA

D

0

BBBBBBB@

2 #1 #1
#1 2 #1
#1 #1 2

2 #1 #1
#1 2 #1
#1 #1 2

1

CCCCCCCA

:

So, we have decoupled odd and even nodes, and can continue with a problem of half
the size. As a convolution of ‘stencils’, the reduction is

Œ1; 2; 1' ) Œ#1; 2;#1' D Œ#1; 0; 2; 0;#1':

Remarks:

• If n D 2k we can apply the procedure recursively for solving Ax D b.
• For solving Ax D b it is only necessary to do the reduction to the even points,

and back substitute the solution afterwards.
• The procedure also works on those domains with boundaries, that can be

represented in terms of symmetric functions as in Sect. 3.9. This includes 1D
problems on an interval (Dirichlet or Neumann boundaries), rectangles in 2D,
7-point Laplacian stencil on a hexagonal lattice on an equilateral triangle with
Dirichlet or Neumann boundaries, etc.

• In 2D and higher dimensions, classical (1-way) cyclic reduction schemes are
unstable, and special caution must be exercised.

Our question is now how this can be generalised to the reduction of a convolu-
tional operator a 2 CŒG' to b ) a with support on an arbitrary subgroup H < G?
The answer is a nice exercise applying the duality theory of the Fourier transform.

Theorem 18 Given a convolutional operator a 2 CŒG' a subgroup H < G. Let
(k. j/ D .k; j/G and let b 2 CŒG' be given as the repeated convolution

b D )
k2H?
k¤0

.(ka/ (73)
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then supp.b) a/ $ H, thus the operator - D b) a is reduced to H. The eigenvalues
of - are

b-.&/ D
Y

k2H?
ba.& C k/: (74)

Proof We have

- D b ) a D )
k2H?

.(ka/:

The shift formulad(ka D Skba yields

b- D
Y

k2H?
Skba;

which proves (74). Since -.& C k/ D -.&/ for all k 2 H?, it follows that supp.-/ $
H, because function is supported on a lattice H if and only if its Fourier transform
is periodic with respect to H?, cf. Theorem 14.

Note that for k 2 H?, the characters (k takes constant values on the cosets of H,
hence the cyclic reduction is obtained by changing the values of a on the cosets of
H according to (k.

Example 35 Consider the standard 5-point Laplacian stencil on the square lattice
Z2n ˚ Z2n. Let H D Zn ˚ Zm and K D G=H D Z2 ˚ Z2. The characters on K take
the following values on the cosets of H:

+
1 #1
#1 1

,
;

+
1 #1
1 #1

,
;

+
1 1

#1 #1

,
;

+
1 1

1 1

,
;

thus the (2-way) cyclic reduction to H is

2

4
1

1 4 1

1

3

5 )

2

4
1

#1 4 #1
1

3

5 )

2

4
#1

1 4 1

#1

3

5 )

2

4
#1

#1 4 #1
#1

3

5

D

2

66666666666664

1

0 0 0

#2 0 #32 0 #2
0 0 0 0 0 0 0

1 0 #32 0 132 0 #32 0 1
0 0 0 0 0 0 0

#2 0 #32 0 #2
0 0 0

1

3

77777777777775

:
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The generalised cyclic reduction algorithm presented here is of importance to
boundary problems of the form discussed in Sect. 3.9, on triangle and simplexes.
Furthermore it turns out to have some other advantages compared to the classical
cyclic reduction, which is based on consecutive odd-even deductions in the same
direction (1-way cyclic reduction). Whereas the classical reduction is known to be
unstable for Poisson problems, the condition number of the reduced operator grows
exponentially in the number of reduction steps, on the other hand, with the two way
(multi-) we have discussed here, the condition number of the reduced operator is
decreasing.

Example 36 We consider the 5-point Laplacian stencil on a 32 " 32 square lattice
with Dirichlet boundary conditions. A 1-way reduction to 1/16 of the original size
increases the condition number of the reduced operator from 415 to 3 !1011. A 2-way
reduction decreases the condition number to 20.9. The explanation comes from (74).
The 2-way reduction is sampling the eigenvalues of the Laplacian in a much more
uniform manner than the 1-way reduction. In the 1-way case small eigenvalues are
multiplied by small, and large by large, so the condition number explodes.

3.11 Preconditioning with Convolutional Operators

So far we have discussed algorithms for special matrices; convolution operators
on periodic domains and convolution operators on special domains with boundary
conditions satisfied by reflection symmetries. In this section we will briefly discuss
some applications of group theory to more general matrices.

3.11.1 Matrix Multiplication by Diagonals

Our first topic is the technique of matrix multiplication by diagonals. This is a
computational technique which has been popular for matrix-matrix and matrix-
vector multiplication with sparse structured matrices, such as matrices arising from
5-point or 7-point stencils on rectangular grids, but where (unlike our previous
discussions) the coefficients vary over space. The matrices are stored as diagonals
together with an off-set indicating the position of the diagonal. We revisit this
technique and describe it in the language of groups and want to show that book
keeping in matrices stored by diagonals is simplified by the notation of finite abelian
groups.

Let G be a finite abelian group and f 2 CŒG'. Let D. f / denote the diagonal
matrix corresponding to f , i.e. the matrix such that .D. f /g/. j/ D f . j/g. j/ for all
g 2 CŒG', and as before, for ` 2 G, we let S` is the shift matrix .S`g/. j/ D g. j# `/
for g 2 CŒG'. We want to develop matrix algebra expressed in terms of sums of
products of shift matrices and diagonal matrices, S`D. f /. We ask the reader to verify
the following result as an exercise:
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Lemma 18 Shift matrices and diagonals can be swapped according to the rule

S`D. f / D D.S`f /S`: (75)

Lemma 19 (Matrix Representation by Shifted Diagonals) Any matrix A 2
End.CŒG'/ can be written as a sum of products of shift matrices with diagonal
matrices,

A D
X

`2G
S`D.a`/; (76)

where and a` 2 CŒG' for all ` 2 G.

Proof Let ı be the delta-function, which is 1 in 0 and 0 elsewhere. Let ıj D Sjı. For
a matrix A, and i; j 2 G let Ai;j D .Aıj/.i/ be its entries by classical index notation.
For A defined in (76) we compute, using Lemma 19 that

.Aıj/.i/ D fi!j. j/:

(The reader should check this for a simple example such as G D Z4). From this we
see that we can represent any matrix A 2 End.CŒG'/ by putting Ai;j into fi!j. j/, thus
any A can be written in this form. ut

The following is very easily verified (check an example with G D Zn):

Lemma 20 (Matrix–VectorMultiplication by Diagonals) Let A 2 End.CŒG'/ be
represented as in (76), then for x 2 CŒG' we have

Ax D
X

`2G
S`.a` * x/;

where *WCŒG' "CŒG'! CŒG' denotes point wise product of vectors.

Theorem 19 (Matrix–Matrix Multiplication by Diagonals) Let A;B;C 2
End.CŒG'/ be represented as in (76) and let C D AB. Then

cr D
X

`2G
.S!`ar!`/ * b`:

Proof We compute, setting r D kC `:

AB D
X

k

SkD.ak/
X

`

S`D.b`/ D
X

k;`

SkS`S!`D.ak/S`D.b`/

D
X

k;`

SkC`D..S!`ak/ * b`/ D
X

r

SrD

 
X

`

.S!`ar!`/ * b`
!
: ut
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Multiplication by diagonals is especially attractive for matrices such as 5-point
stencils etc, where the number of diagonals is small. In this case we, of course, have
to compute only those cr for which r D jC k, where j and k are non-zero diagonals
in A and B.

3.11.2 Preconditioning

We end this section with a brief result about matrix approximation using con-
volutional operators. The goal of preconditioning a linear system Ax D b is to
find an approximation C % A such that Cx D b can be easily solved. If C is a
convolutional operator, we know that this can be easily solved by Fourier analysis
or cyclic reduction (or a combination of these). What is the ‘best’ approximation of
a general matrix by a convolution? This does depend on the norm we use to measure
closeness. The Frobenius norm gives a particularly simple answer.

Definition 46 (Frobenius Norm) For A;B 2 End.G/, we define the Frobenius
inner product

.A;B/F WD trace .AhB/;

where Ah denotes the complex conjugate and transpose of A. The Frobenius norm is

jjA;BjjF D .A;B/
1
2
F :

Lemma 21 The shift matrices Sj are orthogonal in the Frobenius inner-product

.Sj; Sk/F D
%
jGj if j D k
0 else

:

Proof Shj Sk D Sk!j, which has diagonal entries all 1 if k=j and all 0 else. ut
Theorem 20 Let A D P

j Sjaj 2 End.CŒG'/ be represented by its diagonals aj 2
CŒG'. The best Frobenius norm approximation to A by a convolutional operator is
given as

C D
X

j2G
cjSj;

where

cj D
1

jGj
X

k2G
aj.k/ 2 C:
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Proof The shift matrices fSjgj2G form an orthogonal basis (with coefficients in C)
for the convolutional operators as a subspace of End.CŒG'/. Hence, we find the best
approximation of A 2 End.CŒG'/ in the subspace of convolutional operators by
projecting A orthogonally onto the subspace in Frobenius inner product:

C D
X

j2G

.Sj;A/F

.Sj; Sj/F
Sj:

The result follows by noting that .Sj;A/F D
P

k aj.k/. ut
A lot more could have been said about preconditioning with convolutional

operators, but time and space is limited so we leave this interesting topic at this
point.

4 Domain Symmetries and Non-commutative Groups

The topic of this chapter is applications of Fourier analysis on non-commutative
groups in linear algebra. In particular we will as an example discuss the computation
of matrix exponentials for physical problems being symmetric with respect to
a discrete non-commutative group acting upon the domain. Assuming that the
domain is discretized with a symmetry respecting discretization, we will show
that by a change of basis derived from the irreducible representations of the
group, the operator is block diagonalized. This simplifies the computation of
matrix exponentials, eigenvalue problems and the solution of linear equations. The
basic mathematics behind this Chapter is representation theory of finite groups
[15, 16, 26]. Applications of this theory in scientific computing is discussed by a
number of authors, see e.g. [2, 4, 6, 9, 12]. Our exposition, based on the group
algebra is explained in detail in [1], which is intended to be a self contained
introduction to the subject.

4.1 G-Equivariant Matrices

A group is a set G with a binary operation g; h 7! gh, inverse g 7! g!1 and identity
element e, such that g.ht/ D .gh/t, eg D ge D g and gg!1 D g!1g D e for all
g; h; t 2 G. We let jGj denote the number of elements in the group. Let I denote the
set of indices used to enumerate the nodes in the discretization of a computational
domain. We say that a group G acts on a set I (from the right) if there exists a
product .i; g/ 7! ig W I " G ! I such that

ie D i for all i 2 I; (77)

i.gh/ D .ig/h for all g; h 2 G and i 2 I: (78)
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The map i 7! ig is a permutation of the set I, with the inverse permutation being
i 7! ig!1. An action partitions I into disjoint orbits

Oi D f j 2 I W j D ig for some g 2 Gg; i 2 I:

We let S $ I denote a selection of orbit representatives, i.e. one element from each
orbit. The action is called transitive if I consists of just a single orbit, jSj D 1. For
any i 2 I we let the isotropy subgroup at i, Gi be defined as

Gi D fg 2 G W ig D ig:

The action is free if Gi D feg for every i 2 I, i.e., there are no fixed points under the
action of G.

Definition 47 A matrix A 2 CI"I , is G-equivariant if

Ai;j D Aig;jg for all i; j 2 I and all g 2 G: (79)

The definition is motivated by the result that if L is a linear differential operator
commuting with a group of domain symmetries G, and if we can find a set of
discretization nodes I such that every g 2 G acts on I as a permutation i 7! ig,
then L can be discretized as a G-equivariant matrix A, see [4, 6].

4.2 The Group Algebra

We will establish that G equivariant matrices are associated with (scalar or block)
convolutional operators in the group algebra.

Definition 48 The group algebra CG is the complex vectorspace CG where each
g 2 G corresponds to a basis vector g 2 CG. A vector a 2 CG can be written as

a D
X

g2G
a.g/g where a.g/ 2 C:

The convolution product) W CG " CG ! CG is induced from the product in G as
follows. For basis vectors g;h, we set g)h ' gh, and in general if a DPg2G a.g/g
and b DPh2G b.h/h, then

a ) b D

0

@
X

g2G
a.g/g

1

A )
 
X

h2G
b.h/h

!
D
X

g;h2G
a.g/b.h/.gh/ D

X

g2G
.a ) b/.g/g;
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where

.a ) b/.g/ D
X

h2G
a.gh!1/b.h/ D

X

h2G
a.h/b.h!1g/: (80)

Consider a G-equivariant A 2 Cn"n in the case where G acts freely and
transitively on I. In this case there is only one orbit of size jGj and hence I may
be identified with G. Corresponding to A there is a unique A 2 CG, given as
A DPg2G A.g/g, where A is the first column of A, i.e.,

A.gh!1/ D Agh!1;e D Ag;h: (81)

Similarly, any vector x 2 Cn corresponds uniquely to x DPg2G x.g/g 2 CG, where
x.g/ D xg for all g 2 G. Consider the matrix vector product:

.Ax/g D
X

h2G
Ag;hxh D

X

h2G
A.gh!1/x.h/ D .A ) x/.g/:

If A and B are two equivariant matrices, then AB is the equivariant matrix where the
first column is given as

.AB/g;e D
X

h2G
Ag;hBh;e D

X

h2G
A.gh!1/B.h/ D .A ) B/.g/:

We have shown that if G acts freely and transitively, then the algebra of G-
equivariant matrices acting on Cn is isomorphic to the group algebraCG acting on
itself by convolutions from the left.

In the case where A is G-equivariant w.r.t. a free, but not transitive, action of G
on I, we need a block version of the above theory. Let Cm"`G ' Cm"`˝CG denote
the space of vectors consisting of jGj matrix blocks, each block of size m " `, thus
A 2 Cm"`G can be written as

A D
X

g2G
A.g/˝ g where A.g/ 2 Cm"`: (82)

The convolution product (80) generalizes to a block convolution ) W Cm"`G "
C`"kG ! Cm"kG given as

A ) B D

0

@
X

g2G
A.g/˝ g

1

A )
 
X

h2G
B.h/˝ h

!
D
X

g2G
.A ) B/.g/˝ g;
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where

.A ) B/.g/ D
X

h2G
A.gh!1/B.h/ D

X

h2G
A.h/B.h!1g/; (83)

and A.h/B.h!1g/ denotes a matrix product.
If the action of G on I is free, but not transitive, then I split in m orbits, each

of size jGj. We let S denote a selection of one representative from each orbit. We
will establish an isomorphism between the algebra of G-equivariant matrices acting
on Cn and the block-convolution algebra Cm"mG acting on CmG. We define the
mappings ) W Cn ! CmG, . W Cn"n ! Cm"mG as:

).y/i.g/ D yi.g/ D yig 8i 2 S; g 2 G; (84)

..A/i;j.g/ D Ai;j.g/ D Aig;j 8i; j 2 S g 2 G: (85)

In [1] we show:

Proposition 1 Let G act freely on I. Then ) is invertible and . is invertible on the
subspace ofG-equivariant matrices. Furthermore, ifA;B 2 Cn"n are G-equivariant,
and y 2 Cn, then

).Ay/ D ..A/ ) ).y/; (86)

..AB/ D ..A/ ) ..B/: (87)

To complete the connection between G-equivariance and block convolutions, we
need to address the general case where the action is not free, hence some of the
orbits in I have reduced size. One way to treat this case is to duplicate the nodes
with non-trivial isotropy subgroups, thus a point j 2 I is considered to be jGjj
identical points, and the action is extended to a free action on this extended space.
Equivariant matrices on the original space is extended by duplicating the matrix
entries, and scaled according to the size of the isotropy. We define

).x/i.g/ D xi.g/ D xig 8i 2 S; g 2 G; (88)

..A/i;j.g/ D Ai;j.g/ D
1

jGjj
Aig;j 8i; j 2 S g 2 G: (89)

With these definitions it can be shown that (86)–(87) still hold. It should be noted
that ) and . are no longer invertible, and the extended block convolutional operator
..A/ becomes singular. This poses no problems for the computation of exponentials
since this is a forward computation. Thus we just exponentiate the block convolu-
tional operator and restrict the result back to the original space. However, for inverse
computations such as solving linear systems, the characterization of the image of )
and . as a subspaces ofCmG andCm"mG is an important issue for finding the correct
solution [1, 3].
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4.3 The Generalized Fourier Transform (GFT)

So far we have argued that a differential operator with spatial symmetries becomes a
G-equivariantmatrix under discretization, which again can be represented as a block
convolutional operator. In this section we will show how convolutional operators are
block diagonalized by a Fourier transform on G. This is the central part of Frobenius’
theory of group representations from 1897–1899. We recommend the monographs
[10, 15, 16, 26] as introductions to representation theory with applications.

Definition 49 A d-dimensional group representation is a map R W G ! Cd"d such
that

R.gh/ D R.g/R.h/ for all g; h 2 G: (90)

Generalizing the definition of Fourier coefficients we define for any A 2 Cm"kG
and any d-dimensional representation R a matrix OA.R/ 2 Cm"k ˝ Cd"d as:

OA.R/ D
X

g2G
A.g/˝ R.g/: (91)

Proposition 2 (The Convolution Theorem) For any A 2 Cm"kG, B 2 Ck"`G and
any representation R we have

.1A ) B/.R/ D OA.R/ OB.R/: (92)

Proof The statement follows from

OA.R/ OB.R/ D

0

@
X

g2G
A.g/˝ R.g/

1

A
 
X

h2G
B.h/˝ R.h/

!

D
X

g;h2G
A.g/B.h/˝ R.g/R.h/ D

X

g;h2G
A.g/B.h/˝ R.gh/

D
X

g;h2G
A.gh!1/B.h/˝ R.g/ D .1A ) B/.R/:

Let dR denote the dimension of the representation. For use in practical compu-
tations, it is important that A ) B can be recovered by knowing .1A ) B/.R/ for a
suitable selection of representations, and furthermore that their dimensions dR are
as small as possible. Note that if R is a representation and X 2 CdR"dR is non-
singular, then also QR.g/ D XR.g/X!1 is a representation. We say that R and QR are
equivalent representations. If there exists a similarity transform QR.g/ D XR.g/X!1

such that QR.g/ has a block diagonal structure, independent of g 2 G, then R is called
reducible, otherwise it is irreducible.
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Theorem 21 (Frobenius) For any finite group G there exists a complete list R of
non-equivalent irreducible representations such that

X

R2R
d2R D jGj:

Defining the GFT for a 2 GAlgebra as

Oa.R/ D
X

g2G
a.g/R.g/ for every R 2 R; (93)

we may recover a by the inverse GFT (IGFT):

a.g/ D 1

jGj
X

R2R
dRtrace .R.g!1/Oa.R//: (94)

For the block transform of A 2 Cm"kG given in (91), the GFT and the IGFT are
given componentwise as

OAi;j.R/ D
X

g2G
Ai;j.g/R.g/ 2 CdR"dR ; (95)

Ai;j.g/ D
1

jGj
X

R2R
dRtrace .R.g!1/ OAi;j.R//: (96)

Complete lists of irreducible representations for a selection of common groups are
found in [16].

4.4 Applications to the Matrix Exponential

We have seen that via the GFT, any G-equivariant matrix is block diagonalized.
Corresponding to an irreducible representation R, we obtain a matrix block OA.R/
of size mdR " mdR, where m is the number of orbits in I and dR the size of the
representation. Let Wdirect denote the computational work, in terms of floating point
operations, for computing the matrix exponential on the original data A, and let
Wfspace be the cost of doing the same algorithm on the corresponding block diagonal
GFT transformed data OA. Thus Wdirect D c.mjGj/3 D cm3

!P
R2R d2R

"3
, Wfspace D

cm3
P

R2R d3R and the ratio becomes

O.n3/ W Wdirect=Wfspace D
 
X

R2R
d2R

!3
=
X

R2R
d3R:
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Table 1 Gain in computational complexity for matrix exponential via GFT

Domain G jGj fdRgR2R Wdirect=Wfspace

Triangle D3 6 f1; 1; 2g 21.6
Tetrahedron S4 24 f1; 1; 2; 3; 3g 216
Cube S4 " C2 48 f1; 1; 1; 1; 2; 2; 3; 3; 3; 3g 864
Icosahedron A5 " C2 120 f1; 1; 3; 3; 3; 3; 4; 4; 5; 5g 3541

Fig. 3 Equilateral triangle with a symmetry preserving set of 10 nodes (a) Generator of symmetry
group D3 (b) Discretisation respecting symmetries

Table 1 lists this factor for the symmetries of the triangle, the tetrahedron, the
3D cube and the maximally symmetric discretization of a 3D sphere (icosahedral
symmetry with reflections).

The cost of computing the GFT is not taken into account in this estimate. There
exists fast GFT algorithms of complexity O

!
jGj log`.jGj/

"
for a number of groups,

but even if we use a slow transform of complexity O
!
jG2j

"
, the total cost of the

GFT becomes justO
!
m2jGj2

"
, which is much less thanWfspace.

4.4.1 Example: Equilateral Triangle

The smallest noncommutative group isD3, the symmetries of an equilateral triangle.
There are six linear transformations that map the triangle onto itself, three pure
rotations and three rotations combined with reflections. In Fig. 3a we indicate the
two generators ˛ (rotation 120ı clockwise) and ˇ (right-left reflection). These
satisfy the algebraic relations ˛3 D ˇ2 D e, ˇ˛ˇ D ˛!1, where e denotes the
identity transform. The whole group is D3 D

˚
e; ˛; ˛2; ˇ; ˛ˇ; ˛2ˇ

-
.

Given an elliptic operator L on the triangle such that L.uı˛/ D L.u/ı˛ and
L.uıˇ/ D L.u/ıˇ for any u satisfying the appropriate boundary conditions on the
triangle, let the domain be discretized with a symmetry respecting discretization, see
Fig. 3b. In this example we consider a finite difference discretization represented
by the nodes I D f1; 2; : : : ; 10g, such that both ˛ and ˇ map nodes to nodes. In
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Table 2 A complete list of
irreducible representations
for D3

˛ ˇ

-0 1 1
-1 1 !1

-2

 
!1=2 !

p
3=2p

3=2 !1=2

!  
1 0

0 !1

!

finite element discretizations one would use basis functions mapped to other basis
functions by the symmetries. We define the action of D3 on I as

.1; 2; 3; 4; 5; 6; 7; 8; 9; 10/˛ D .5; 6; 1; 2; 3; 4; 9; 7; 8; 10/;

.1; 2; 3; 4; 5; 6; 7; 8; 9; 10/ˇ D .2; 1; 6; 5; 4; 3; 7; 9; 8; 10/;

and extend to all of D3 using (78). As orbit representatives, we may pick
S D f1; 7; 10g. The action of the symmetry group is free on the orbit O1 D
f1; 2; 3; 4; 5; 6g, while the points in the orbitO7 D f7; 8; 9g have isotropy subgroups
of size 2, and finally O10 D f10g has isotropy of size 6.

The operatorL is discretized as a matrix A 2 C10"10 satisfying the equivariances
Aig;jg D Ai;j for g 2 f˛; ˇg and i; j 2 S. Thus we have e.g. A1;6 D A3;2 D A5;4 D
A4;5 D A2;3 D A6;1.

D3 has three irreducible representations given in Table 2 [extended to the whole
group using (90)]. To compute exp.A/, we find A D ..A/ 2 C3"3G from (89)
and find OA D GFT.A/ from (95). The transformed matrix OA has three blocks,
OA.-0/; OA.-1/ 2 Cm"m and OA.-2/ 2 Cm"m˝C2"2 ' C2m"2m, where m D 3 is the
number of orbits. We exponentiate each of these blocks, and find the components of
exp.A/ using the Inverse GFT (96).

We should remark that in Lie group integrators, it is usually more impor-
tant to compute y D exp.A/ ! x for some vector x. In this case, we compute
Oy.-i/ D exp. OA.-i// ! Ox.-i/, and recover y by Inverse GFT. Note that Ox.-2/; Oy.-2/ 2
Cm˝C2"2 ' C2m"2.

4.4.2 Example: Icosahedral Symmetry

As a second example illustrating the general theory, we solve the simple heat
equation

ut D r2u

on the surface of a unit sphere.
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The sphere is divided into 20 equilateral triangles, and each triangle subdivided in
a finite difference mesh respecting all the 120 symmetries of the full icosahedral
symmetry group (including reflections). To understand this group, it is useful to
realize that five tetrahedra can be simultaneously embedded in the icosahedron, so
that the 20 triangles correspond to the in total 20 corners of these five tetrahedra.
From this one sees that the icosahedral rotation group is isomorphic to A5, the
group of all 60 even permutations of the five tetrahedra. The 3-D reflection matrix
#I obviously commutes with any 3-D rotation, and hence we realize that the
full icosahedral group is isomorphic to the direct product C2 " A5, where C2 D
f1;#1g. The irreducible representations of A5, listed in Lomont have dimensions
f1; 3; 3; 4; 5g, and the representations of the full icosahedral group are found by
taking tensor products of these with the two 1-dimensional representations of C2.
The fact that the full icosahedral group is a direct product is also utilized in faster
computation of the GFT. This is, however, not of major importance, since the cost
of the GFT in any case is much less than the cost of the matrix exponential.

The figures below show the solution of the heat equation at times 0, 2, 5, 10, 25
and 100. The initial condition consists of two located heat sources in the northern
hemisphere.

5 Concluding Remarks

We have in these lectures presented the basic concepts of group theory in a
setting aimed at understanding computational algorithms. Some applications within
computational mathematics have been discussed in detail, others in a more sketchy
manner and many topics have been omitted altogether. Among the omissions, we
would in particular point to the theory of multivariate Chebyshev approximations,
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a beautiful application of group theory which originate from the study of kalei-
doscopic reflection groups (Coxeter groups), and which has connections to many
areas of mathematics, the representation theory of Lie groups in particular. The
multivariate Chebyshev polynomials share the excellent approximation properties
of the classical univariate case, and the multivariate polynomials are defined on
domains that are related to simplexes in higher dimensions.

We have discussed Fourier analysis on abelian groups and on finite non-abelian
groups. The next steps along this line is the Fourier analysis on compact Lie groups,
where the fundamental Peter–Weyl theorem states that the countably infinite list
of non-equivalent irreducible representations gives a complete orthogonal basis for
L2.G/. Certain non-compact groups (the unimodular groups) such as the Euclidean
group of rigid motions in Rn can be derived from the compact case and is of
significant interest in image and signal processing.

Finally, we would like to mention the topic of time integration of differential
equations evolving on manifolds. The so-called Lie group integrators advance the
solution by computing the action of a Lie group on the domain. This topic has
been developed in substantial detail over the last two decades and has lead to many
theoretical insights and practical computational algorithms [14].
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