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Abstract We consider numerical integrators of ODEs on homogeneous spaces
(spheres, affine spaces, hyperbolic spaces). Homogeneous spaces are equipped with
a built-in symmetry. A numerical integrator respects this symmetry if it is equivari-
ant. One obtains homogeneous space integrators by combining a Lie group integrator
with an isotropy choice. We show that equivariant isotropy choices combined with
equivariant Lie group integrators produce equivariant homogeneous space integrators.
Moreover, we show that the RKMK, Crouch–Grossman, or commutator-free methods
are equivariant. To show this, we give a novel description of Lie group integrators
in terms of stage trees and motion maps, which unifies the known Lie group integra-
tors. We then proceed to study the equivariant isotropy maps of order zero, which we
call connections, and show that they can be identified with reductive structures and
invariant principal connections.We give concrete formulas for connections in standard
homogeneous spaces of interest, such as Stiefel, Grassmannian, isospectral, and polar
decomposition manifolds. Finally, we show that the space of matrices of fixed rank
possesses no connection.
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1 Introduction

A homogeneous space is a manifold M on which a Lie group G acts transitively.
Homogeneous spaces are ubiquitous in numerical analysis and computer vision.
Examples include Stiefel manifolds and spheres in all dimensions [11, § IV.9.1],
Grassmannians and projective spaces [9], symmetric positive definite matrices used
in diffusion tensor computing [23], isospectral manifolds used in the context of Lax
pairs [3], and constant rank matrices used in low-rank approximation [11, § IV.9.3].
We study all these cases in thorough details in Sect. 5 and give further examples of
homogeneous space in Sect. 6.

The most convenient way to construct an integrator on a homogeneous space is, as
noted in [13], to combine a Lie group integrator on G along with an isotropy map.

We now illustrate how isotropy maps arise with the following example.

1.1 Example: Integration on the Sphere

When a differential equation is defined on a sphere, it is natural to use a Lie group
integrator on the three-dimensional rotation group. To do this, however, one needs an
isotropy map, as explained below.

1.1.1 Forward Euler on the Rotation Group

Consider first the differential equation R′ = ω(R) R, where R ∈ SO(3) and ω ∈
so(3), i.e., R is a 3 × 3 rotation matrix (RRᵀ = 1), and ω is a 3 × 3 skew-symmetric
matrix (ωᵀ = −ω). The Lie group version of the forward Euler method with time step
h is defined as [see (12)]

R1 = exp
(
hω(R0)

)
R0. (1)

Recall that the exponential exp(ω0)R0 is defined as the solution of the differential
equation R′ = ω0R at time 1 with initial condition R0. This is consistent with the
interpretation that one “freezes” the vector field R �→ ω(R)R at the point R0 to obtain
the vector field R �→ ω(R0)R, which is often much easier to solve.

1.1.2 Integration on a Sphere

Consider now a differential equation on the two-dimensional sphere S2:

x ′ = f (x). (2)

This means that x ∈ S2, and that f (x) is tangent to the sphere at x . We would like to
adapt the forward Euler method on rotations (1) to solve the differential equation (2).
This is done in the following way. The vector field f (x) at the point x has to be
interpreted as an infinitesimal rotation, i.e., it is rewritten as
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Fig. 1 We illustrate the concept of a connection in the case of theEuclidean displacement groupSO(2)�R2

acting on R2. a There are plenty of displacements bringing the point x0 to the point x1. The ambiguity in
the displacement choice is measured by the isotropy group SO(2), which, in this case, has dimension one.
The displacements consist of either a translation, or arcs of circle with center located on the perpendicular
bisector of x0 and x1. The discovery of Nomizu [22] is that there is one preferred choice: the translations,
marked in bold in the picture. The reason translations stand apart is that they are geodesics associated with
an invariant principal connection (see Sect. 4.3). In our framework, they are associated with an equivariant
isotropy map, which we call a connection (see Definition 4.2). b Suppose that a choice was made to use
circular motions, say, on the right, which gives the point exp(ξ) · x on the picture. As the isotropy choice is
a linear map, the isotropy choice of the opposite of this vector commands to follow exp(−ξ) · x , i.e., to turn
left. On the other hand, rotating the initial vector by a half turn would command to turn right. This choice
discrepancy illustrates the lack of equivariance. In Proposition 5.1, we show rigorously that translations are
the only equivariant choices for full affine spaces corresponding to GL(d) �Rd acting on Rd . a Motion
ambiguity, b infinitesimal motion ambiguity

f (x) = ω(x) × x, (3)

where ω(x) ∈ R3. Note that this is equivalent to considering ω as a map from the
sphere to the space so(3) of 3×3 skew-symmetricmatrices, using thewell-knownmap
v �→ v̂ := [v × ·], sometimes called the hat map [1, §9.2]. The integrator stemming
from the forward Euler method becomes

x1 = exp
(
hω̂(x0)

)
x0.

1.1.3 Ambiguity Due to Isotropy

There is, however, a typical ambiguity in choosing ω(x), as many infinitesimal rota-
tions ω(x) coincide with f (x) at the point x . In other words, the solution ω of the
equation ω × x = f is not unique, given a tangent vector f at a point x on the sphere.
The fundamental reason for this is that at any given point y on the sphere, the rotations
about y leave the point y invariant. See also Fig. 1 for an illustration in a very similar
setting.

Resolving that ambiguity amounts to choose a mapping f �→ ω, which satisfies
the consistency condition (3). We call such a mapping an isotropy map.

Some of the questions we address in this paper are:

• How to choose the isotropy map?
• Are some choices better than others?
• How to classify isotropy maps?
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1.1.4 Isotropy Forms

Let us now restrict the discussion on the particular casewhere the isotropymap f �→ ω

depends in fact only on the value of f at each point x ; we identify such isotropy maps
with aR3-valued one form on the sphere and call it an isotropy form. The vector ω(x)
is now determined only from the knowledge of the vector f (x).

It is already fairly intuitive that there is a preferred choice, namely the vector ω(x)
which is perpendicular to x and f (x). A suitable interpretation is that the solution of
the frozen differential equation y′ = y �→ ω(x) × y starting at x is then an invariant
geodesic on the sphere. This reflects a general principle, which is that the isotropymap
is actually equivariant with respect to the action of the symmetry group SO(3) (see
Fig. 1). Intuitively, it means in this case that the connection does not make a choice
to go left or right, but rather straight ahead, hence the appearance of geodesics. We
show how to identify equivariant isotropy forms with invariant principal connection
and thus to the existence of geodesics (see Sects. 4, 5).

1.1.5 Lifting of Vector Fields

One way to look at such an isotropy form is as a computational device to lift a vector
field f on the sphere to a vector field fω on the group SO(3). Let us first choose an
arbitrary point on the sphere, say the north pole N = (0, 0, 1). We will call this point
the origin and denote it by o in the rest of the paper. We now denote by SO(2) the
subgroup of rotation groupSO(3)which leaves the point N invariant. Wewill call this
subgroup the isotropy subgroup. A point x ∈ S2 on the sphere may now be identified
with the set R SO(2) of rotations, where R is one of the rotations bringing N to x ,
i.e., R(N ) = x . So this set consists of products R r of matrices R with that property
and rotations r which leave N invariant. One can check that this set is independent
of the chosen rotation R bringing N to x . The Lie group SO(3) can now be regarded
as a fibered bundle over the sphere as illustrated on Fig. 2. At a point R ∈ SO(3)
such that R(N ) = x , the isotropy form ω defines a lifted vector fω(R) := ω(x) R
which is tangent to SO(3) at R. The fact that it is a lift means that the projections of
the solutions of the equation R′ = ω(x)R on M are solutions of x ′ = f (x). It may
be desirable that the integrator has the same property: We give a precise statement in
Proposition 3.6. Note however that one does not solve the lifted differential equation,
but rather solves directly on the sphere. Finally, we will mostly focus on equivariant
isotropy form, which ensures that the described lift is invariant.

1.1.6 Skeletons

Note that the version of forward Euler on the sphere is not obtained directly from
the forward Euler integrator on SO(3). Instead, there is an abstract definition of the
forward Euler method which specializes to a concrete version forward Euler onSO(3)
on the one hand and on the sphere S2 on the other hand. To describe thismechanism,we
introduce the notion of a skeleton (see Sect. 3), which is, roughly speaking, a Lie group
integrator stripped from its isotropy map. For instance, the skeleton of the forward
Euler method is as follows (the meaning of that graph is explained in detail in Sect. 3):
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◦ •F◦

As SO(3) is a particular case of a homogeneous space, one recovers forward Euler
on SO(3) as the forward Euler skeleton applied to a canonical isotropy map, which
exists on any Lie group, called the Maurer–Cartan form (see Proposition 3.6).

One of the results of this paper is that the common skeletons, such as the afore-
mentioned forward Euler, or Runge–Kutta–Munthe-Kaas, or Crouch–Grossman, all
are equivariant (Proposition 3.3). We also prove that the combination of an equivariant
skeleton with an equivariant isotropy map (not necessarily an isotropy form) yields an
equivariant integrator (Proposition 3.2). We refer to [18,21] and [17] for discussions
on the importance of affine equivariant integrators and their relations with standard
Runge–Kutta methods and B-series.

We now come to the classification of the possible isotropy maps.

1.2 Classification of Isotropy Maps

In this paper, we identify five criteria to achieve a classification of isotropy maps:
equivariance, locality, order, flatness, and symmetry.We then recognize the prevalence
of equivariant, local, order zero isotropy maps which we call connections and study
them in detail.

Here are the classification criteria in descending order of generality:

EquivarianceThenotion of equivariance, whichwas already developed in [21] for
integrators, is described as follows. An isotropy map is a map from vector fields to
functions from the manifoldM to the Lie algebra g (see Sect. 2). As the symmetry
group G acts naturally on both those spaces, an isotropy map is equivariant if it
commutes with those actions. Enforcing equivariance already drastically limits the
choices of isotropymaps.We are not aware of the existence of any non-equivariant
isotropy map, although we present some possible candidates in Sect. 6.
LocalityLocality, also introduced in a similar guise in [21],means that the isotropy
map only depends on the value of the vector field and its derivatives at a given
point. In practice, most isotropy maps are local, but, crucially, the tautological
isotropy map (see Sect. 2.3) is not local.
Order An equivariant and local isotropy map always has an order, which is the
number of derivative of the vector field that the isotropy map depends on [27].
Isotropy maps of higher order are possible and have been considered in the liter-
ature. In particular, in [20, Example 4], the author considers using the Jacobian
in the isotropy map, so this is an isotropy map of order one. In [16], the authors
consider higher-order isotropy maps to obtain integrators on the sphere. When the
underlying manifold is an affine space, the integrators using higher-order isotropy
maps are closely related to exponential integrators (see for instance [19]). As a
detailed study of higher-order isotropy maps would take us too far afield, we refer
the reader instead to [27].
Flatness andSymmetryWemake a further classification of connections (equivari-
ant, local, order zero, isotropy maps) into flat and symmetric connections. A flat
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connection witnesses the flatness of the ambient homogeneous space, so they
occur only in special cases, such as when M is an affine space (Sect. 5.2), a prin-
cipal homogeneous space (an example of which is in Sect. 5.4.2) or a Lie group
(Sect. 5.1.1). Symmetric connections are, however, more widespread. There are
also a number of connections which are neither flat nor symmetric. We refer to
Sect. 5 and Table 1 for examples.

The following results appearing in this paper are new:

• Classification of isotropymap according to the properties of equivariance, locality,
and order (Sects. 2, 4)

• Equivalence of connections (order zero equivariant isotropymaps), reductive struc-
tures, and principal invariant connections in Sect. 4

• The formulas in Table 1, when they existed in the literature, are in fact connections
• Thehomogeneous spaceoffixed rankmatrices has no connection (Proposition 5.7).
• New, all encompassing definition of the existing Lie group methods (Sect. 3),
showing their equivariance (Proposition 3.2) and locality (Proposition 3.5).

• If the isotropy choice is equivariant, then so is the corresponding method (Propo-
sition 3.2).

1.3 Definitions and Notations

We now recall some basic definitions about homogeneous spaces that will be needed
throughout this paper. The survey paper [13] contains an introduction to manifolds,
Lie groups, and homogeneous spaces which is targeted at numerical analysts. The
reader will also find in the numerical analysis literature such as [9] and [11, § IV.9],
material on some particular examples of homogeneous spaces such as those we study
in Sect. 5. We refer further to [15,25] and [10] for more thorough expositions of
homogeneous spaces. The reader will find a summary of the concepts and definitions
of homogeneous spaces in Fig. 2.

We use the standard notations pertaining to calculus on smoothmanifolds [1]. Given
a manifold M, we denote its tangent bundle by TM. The space of sections of that
tangent bundle (the vector fields) is denoted byX(M). Given a function f : M → N ,
where M and N are two smooth manifolds, we denote its push-forward, or Jacobian,
by T f , so T f : TM → TN .

A homogeneous space is a smooth manifold M, equipped with a transitive action
of a Lie group G [10,14,15,25]. We denote this transitive action as

g · x, g ∈ G x ∈ M.

Fixing an arbitray point o ∈ M, we define the isotropy group at this point by

H := { g ∈ G | g · o = o }.

The manifold M may be identified with cosets

x ≡ gH = { g h | h ∈ H }.
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Fig. 2 An illustration of a homogeneous space. This illustration’s purpose is only to refresh knowledge on
homogeneous spaces, the reader not familiar with homogeneous spaces is directed to [13] for an in-depth
introduction to homogeneous spaces relevant to numerical analysis. The Lie group G acts transitively on
the manifold M. The identity of G is denoted by e. The tangent space of G at e is its Lie algebra g. The
origin o ∈ M is an arbitrary point of M which defines the corresponding isotropy group H. The subspace
of gwhich is tangent to H at e is the Lie algebra h of H. In some cases, as we discuss in Sect. 4.2, there
exists a decomposition g= h⊕m such that [h,m] ⊂ m, which is fundamental to construct isotropy maps.
Any point x ∈ M may be identified with the set ḡH, for some ḡ such that x = [ḡ] = ḡH. Multiplication
on the right by an element h ∈ H projects to the same point, i.e., x = [ḡ h] = [ḡ]. Multiplication on the left
by an element g ∈ G sends fibers to fibers and descends to M to the action of g to M, i.e., [g ḡ] = g · [ḡ]

We denote the projection from G to M by

[g] := gH.

For a tangent vector X at a point g ∈ G, we denote the projection by an abuse of
notation

[X ] := Tπ X,

where π denotes the projection π(g) = [g].
Note that in order to simplify the notations, we will always work as if G was a

subgroup ofGL(d) for some integer d; this is not a limitation because one can translate
these notations into abstract manifold notations. In particular, we will consider the Lie
algebra g, the tangent space at the identity of G, to be an affine subspace of Rd×d ,
the space of d × d matrices. This allows us to define operations such as the adjoint
action of g ∈ G on ξ ∈ g by matrix multiplication as ξ → g ξ g−1. Similarly, the
multiplication g ξ denotes the tangent of the left multiplication map applied to ξ ∈ g
and is thus considered as a vector at g, i.e., g ξ ∈ TgG.

Finally, will repeatedly use that the space ToM is isomorphic to g/h, which is
straightforward to check [25, §4.5].
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2 Isotropy Maps

An isotropy map, or choice of isotropy, essentially transforms a vector field f into a
set of frozen vector fields at every point onM.We thus obtain the following definition.

Definition 2.1 We call an isotropy map a linear map

� ∈ L(
X(M), C∞(M, g)

)

which satisfies the consistency condition

〈�, f 〉(x) · x = f (x) x ∈ M f ∈ X(M). (4)

The interpretation is that, given a vector field f , the corresponding value ν =
〈�, f 〉 ∈ C∞(M, g) associates with every point x ∈ M a frozen vector field Fx

based at x defined by the infinitesimal action

Fx (y) = ν(x) · y y ∈ M.

The consistency condition (4) means that the frozen vector field for f based at x ,
and evaluated at x , coincides with f at x , i.e., Fx (x) = f (x).

2.1 Equivariance

As G naturally acts on M, it also acts on M. G also acts on g by the adjoint action,
and on M by definition, so it acts on functions from M to g. It is thus natural to ask
for the equivariance of the isotropy map, which is defined as follows.

Definition 2.2 An isotropy map is equivariant if

〈�, g · f 〉 = g · 〈�, f 〉

where the action of g ∈ G on a vector field f is given by [14, §2.4]

(g · f )(x) := Tg f (g−1 · x), x ∈ M, (5)

the action on ν ∈ C∞(M, g) is

(g · ν)(x) := g · ν(g−1 · x), x ∈ M, (6)

and the action on ξ ∈ g is the adjoint action [14, §2.6]

g · ξ = g ξ g−1. (7)
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Putting all the bits of the definitions together, equivariance of the isotropy map �

is written as

〈�, g · f 〉(x) = g 〈�, f 〉(g−1 · x) g−1, x ∈ M, g ∈ G.

2.2 Locality

The locality of an isotropy map is the idea that the value of 〈�, f 〉 at x may only
depend on f in an infinitely small neighborhood of x . Local isotropy maps are studied
in [27]. To obtain a rigorous, tractable definition, we have to first introduce the support
of a section. See also [21] and [17] for similar definitions.

Recall that the support supp(ν) of a section ν of a vector bundle is the closure of
the set where the section is nonzero. For an isotropy choice ν ∈ C∞(M, g), this gives

supp(ν) := { x ∈ M | ν(x) 
= 0 },

and for a vector field f ∈ X(M),

supp( f ) := { x ∈ M | f (x) 
= 0 }.

Definition 2.3 An isotropy map � ∈ L(
X(M), C∞(M, g)

)
is local if it is support

non-increasing, i.e.,

supp
(〈�, f 〉) ⊂ supp( f ) f ∈ X(M).

2.3 Fundamental Example: The Tautological Isotropy Map

A fundamental example, on anymanifoldM, is given by the action of thewhole group
of diffeomorphisms G = Diff(M). The action is transitive. Note that the Lie algebra
g is now g = X(M), where X(M) is the space of vector fields on M.

We define the tautological isotropy map1 by

〈�, f 〉(x) := f, ∀x ∈ M, f ∈ X(M). (8)

The tautological isotropy map is an equivariant but non-local isotropy map.
Indeed, 〈�, f 〉 is a constant function from M to g = X(M). The support of a

constant function is either M, or, if the constant is zero, the empty set. This shows
that � is not local, as the support of a nonzero vector field need not be the whole
manifold M. The simple intuition behind the non-locality of the tautological isotropy
map � is that the value at a point x is the whole vector field f defined everywhere,
as opposed to some quantity calculated at x .

1 With the notation (21) that isotropy choice is simply 〈�, f 〉 = f hence the name of tautological isotropy
map.
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Fig. 3 A summary of the relation between the constitutive elements of a method on a homogeneous space

The reason this isotropy map is fundamental is that, as we shall see in Sect. 3.4, it
is the isotropy map which, assuming zero order of the underlying skeleton, gives the
exact solution.

3 Runge–Kutta Methods on Homogeneous Spaces

We put the known Lie group and homogeneous space methods in a unified framework.
This allows us to show in Proposition 3.2 that if isotropy map is equivariant, then so
is the corresponding integrator.

3.1 Skeletons

We define a Runge–Kutta skeleton for a given Lie group G from the following ingre-
dients. The relation between those ingredients is summarized on Fig. 3.

Stage Tree 	 Tree (i.e., a connected, undirected graph with no cycles), in which
two vertices are singled out: the initial vertex, denoted “◦” and the final vertex
denoted “•”.
Motions 
i, j Maps


i, j : gn → G

defined for any two adjacent vertices i , j in the graph, and the compatibility


i, j = 
−1
j,i .

One defines a skeleton

� : C∞(M, g) → Diff(M)

using the stages Xi ∈ M, and the frozen vector fields Fi ∈ g as intermediate variables.
From a skeleton and an isotropy map, we obtain an integrator on any homogeneous

manifold M for which G is the symmetry group. Indeed, given an isotropy choice
ν ∈ C∞(M, g), the map
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�(ν) ∈ Diff(M)

is defined by

x1 = �(ν)(x0)

as follows.

Runge–Kutta Method

X◦ = x0
Xi = 
i, j (F) · X j ∀ edge i, j

Fi = ν(Xi ) ∀ vertex i

x1 = X•

In the sequel, we will always assume that ν is scaled (with a time step), so that the
equations (1) implicitly defining x1 have exactly one solution.

Let us consider the simplest possible case, a stage tree containing only the initial
vertex ◦ and final vertex •:

◦ •

The corresponding equations for an isotropy choice ν = 〈�, f 〉 corresponding to
an isotropy map � are

X• = 
•,◦(F◦, F•) · X◦,
F◦ = 〈�, f 〉(X◦),
F• = 〈�, f 〉(X•),

and the integrator maps the initial condition X◦ to the point X•.
Possible values for 
•,◦(F◦, F•) are exp(F◦), which gives the forward Euler

method, exp(F•), which gives the backward Euler method, or exp
(
(F◦+F•)/2

)
which

gives the trapezoidal rule.

3.2 Transition Functions

Note that most often, the motions 
i, j are defined by


i, j := 
 ◦ θi, j

with
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Motion map 



 : g → G,

which is usually either the exponential map, or an approximation of it, or the
Cayley map when G is quadratic; it should have the property that


(−ξ) = 
(ξ)−1,

which holds both for the exponential and Cayley map.
Transition functions θi, j For any edge i, j , the transition function

θi, j : gn → g,

with compatibility

θi, j (F) = −θ j,i (F). (11)

We will give the full expression of θi, j on the stage tree as

j i
θi,j

For example, the forward Euler method is given by

x1 = exp
(〈�, f 〉(x0)) · x0 (12)

so it corresponds to the transition function

θ•,◦ = F◦

and it is equivalent to the tree

◦ •F◦

Note that (11) means that the orientation is arbitrary, so with a different orientation,
we obtain exactly the same method, as θ◦,• = −θ•,◦:

◦ •−F◦

We shade the vertices whose value is not used in any of the transition functions. In
the case above, the value F• is never needed, so the vertex • is shaded.

With these notations, the backward Euler method is given by the transition function
θ•,◦ = F•, so we write
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◦ •F•

For the trapezoidal rule, the transition function is θ•,◦ = (F◦ + F•)/2, so it is
written as:

◦ •(F◦ + F•)/2

A slightly more involved example is the implicit midpoint rule, which requires an
extra stage which has the arbitrary label “
.” The stage tree has thus three vertices, ◦,
•, and 
. The rules for that method are to use one half of the frozen vector field at 


and use it to go from ◦ to 
, as well as from 
 to •. The transition functions are thus

θ
,◦ = F
/2

θ•,
 = F
/2

so we write

�◦ •F�/2 F�/2

Note again that the values F◦ and F• are not used, so we shade the corresponding
vertices ◦ and •. We also emphasize the (unique) path between the initial and final
vertices.

For the sake of completeness, we also give the corresponding equations, which are

X
 = exp(F
/2) · X◦
X• = exp(F
/2) · X


and

F
 = 〈�, f 〉(X
)

According to our convention, the integrator maps X◦ to X•. Note that X◦, X•, and X


are points in M, and that F
 ∈ g.

3.3 Examples

Wegive examples of skeletons for some standardmethods such as the standardRunge–
Kutta methods, RKMK, Crouch–Grossmann, and commutator free.
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3.3.1 Detailed Example

We start with a detailed example, the fourth-order commutator-free method [8]. It is
defined by the following transition functions.

θ1,◦ = 1

2
F◦

θ2,◦ = 1

2
F1

θ3,1 = −1

2
F◦ + F2

θ4′,◦ = 1

12
(3F◦ + 2(F1 + F2) − F3)

θ•,4′ = 1

12
(−F◦ + 2(F1 + F2) + 3F3)

It means that we have the vertices ◦, 1, 2, 3, 4′, and •. Each equation gives an edge,
so there is an edge between ◦ and 1, between ◦ and 2, etc. The stage tree thus takes
the following form

3 1 ◦ 4′ •

2

F◦/2F2 − F◦/2

F1/2

θ4′,◦ θ•,4′

As mentioned earlier, we also indicate the intermediate vertices, i.e., the vertices
for which the component in the F vector is not computed. For instance in the current
example, the values F4′ and F• are never needed. Note that the vertex numbering is in
general arbitrary, but in this case it indicates the order of the equation for which the
method is explicit.

For completeness, we give the complete set of equation for the final method. Recall
that each edge gives rise to an equation following the rule (9). First, one has to choose
an isotropy map ν, which can for instance be defined as in (26) from one of the
connections in Table 1. In order to obtain a point x1 from an initial condition x0, we
have to solve the following equations, with ν = 〈�, f 〉.

x0 = X◦ F◦ = ν(X◦)
X1 = exp

(
F◦/2

) · X◦ F1 = ν(X1)

X2 = exp
(
F1/2

) · X◦ F2 = ν(X2)

X3 = exp
(
F2 − F◦/2

) · X1 F3 = ν(X3)
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X4′ = exp
(1
4
F3 + 1

6
(F1 + F2) − 1

12
F◦

)
· X◦

X• = exp
(1
4
F◦ + 1

6
(F1 + F2) − 1

12
F3

)
· X4′

x1 = X•

3.3.2 Runge–Kutta Methods in Rd

A regular Runge–Kutta method on Rd with Butcher tableau A, b [11, § II.1.1] has the
following skeleton

• The motion map is 
 = exp
• The transition functions are

θi,◦ :=
s∑

j=1

ai, j Fj 1 ≤ i ≤ s

θ•,◦ :=
s∑

j=1

b j Fj

3.3.3 RKMK3

A third-order RKMK method can be encoded as follows:

θ1,◦ = 1

2
F◦

θ2,◦ = −F0 + 2F1

θ•,◦ = 1

6
(F0 + 4F1 + F2) + 1

36
[4F1 + F2, F◦]

The corresponding stage tree is thus:

◦2 •

1

θ•,◦

F◦/2

−F◦ + 2F1
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3.3.4 RKMK4

A fourth-order RKMK method can be encoded as follows:

θ1,◦ = 1

2
F◦

θ2,◦ = 1

2
F1 − 1

8
[F◦, F1]

θ3,◦ = F2

θ•,◦ = 1

6

(
F◦ + 2(F1 + F2) + F3

) − 1

12
[F0, F3]

We give the corresponding stage tree for completeness:

◦2 •

1

3

θ•,◦

F◦/2

F1
2 − [F◦,F1]

8

F2

3.3.5 CG3

The third-order Crouch–Grossman method [11, §,IV.8.1] is given by the following
transition functions:

θ1,◦ =3

4
F◦

θ2,2′ = 17

208
F1 θ2′,◦ = 119

216
F◦

θ•,3′ =24

17
F2 θ3′,3′′ = −2

3
F1 θ3′′,◦ = 13

51
F◦

3.3.6 Symmetric Gauss of Order Four

The symmetric Gauss method [28] can also be encoded in this way.
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◦ •

+

−

(F+ + F−)/4 (F+ + F−)/4

−√
3/6F+

√
3/6F−

The auxiliary variables F+ and F− are determined implicitly by the equation

F+ = F+ +
√
3

4
[F−, F+]

F− = F− −
√
3

4
[F+, F−]

3.4 Order Zero and Exact Solution

For a given ξ ∈ g, we define the constant isotropy choice ν ∈ C∞(M, g) as

ν : x �→ ξ, x ∈ M.

We use the abuse of notation

ν = ξ (21)

in this case.

Definition 3.1 We say that a skeleton � has order zero if it gives the exact solution
for constant isotropy choices, i.e., using the notation (21),

�(ξ) = exp(ξ) ξ ∈ g.

All the skeletons in Sect. 3.3 have order zero, so one obtains the exact solution
with the motion map exp, and using the tautological isotropy map (8) in any of those
skeletons.
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3.5 Equivariance of Skeletons

The following result shows that in practice it suffices to check the equivariance of the
motion map 
 and the transition functions θi, j to obtain an equivariant skeleton and
thus an equivariant method when used with an equivariant isotropy map.

Proposition 3.2 We have the following “trickling down” results on equivariance:

(i) if 
 and θi, j are equivariant, then so are 
i, j = 
 ◦ θi, j
(ii) if 
i, j are equivariant, then so is the skeleton �

(iii) if the skeleton � and the isotropy map � are equivariant, then so is the method
� = � ◦ � .

Proof We give a proof of (ii), the other two statements being clear. We simply show
that if x1 = �(ν)(x0) is a solution with the stages Xi and frozen vector fields Fi , then
we have g · x1 = �(g · ν)(g · x0).

g · Xi = g · (
i, j (F) · X j )

= g · (
i, j (F) g−1 g · X j )

= 
i, j (g · F) · g · X j

Note that in all practical examples, the motion maps are of the form
i, j = 
 ◦θi, j .
The motion map 
 is the exponential or Cayley map, both of which are equivariant.
The transition functions θi, j areLie algebramorphisms, as they are linear combinations
of commutators.

This gives the following result:

Proposition 3.3 All the RKMK, Crouch–Grossman and commutator-free skeletons
are equivariant.

3.6 Locality

We show the relation between locality of the skeleton and of the isotropy map. First,
we give a practical way of checking that a skeleton is local.

Definition 3.4 We say that the motion map 
 is local if


(0) = Id

We say that the motion maps 
i, j are local if


i, j (0) = Id

We say that the transition functions θi, j are local if

θi, j (0) = 0
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Proposition 3.5 We have the following “trickle-down” result on locality.

(i) if the motion map 
 and the transition functions θi, j are local, then so are the
movement maps 
i, j = 
 ◦ θi, j

(ii) if the motion maps 
i, j are local, then so is the correspondent skeleton �.
(iii) if the skeleton � and the isotropy map � are local, then so is the method � =

� ◦ � .

Proof The only non-trivial statement is the last one. Suppose that f (x) = 0 in a
neighborhood of the initial condition x0. By definition of locality, we then have
〈�, f 〉(x0) = 0. It is then easy to check that taking all the stages Xi equal to x0
provides a solution, and in particular, we obtain x1 = x0, which finishes the proof. ��

As we already noticed in Sect. 2.3, the tautological isotropy map is not local. We
saw however in Sect. 3.4 that the corresponding “method” is the exact solution. As the
exact solution is a local method, the locality of the isotropy map � is not necessary.

3.7 Relation Between Lie Group Integrators and Homogeneous Space
Integrators

An isotropy map � allows us to lift a vector field f ∈ X(M) to a lifted vector field
in f ∈ X(M) in two ways:

f +
� (g) := 〈�, f 〉([g]) g f −

� (g) := −g 〈�, f 〉([g]). (23)

One can use the lifting property of the isotropy map to obtain an integrator in the
group G instead. We now show that this integrator descends to the integrator of the
same type on M.

Proposition 3.6 Assume an equivariant skeleton � is defined over a group G. Then,
the integrator �(ω±)( f ±

� ) (where ω± is one of the Maurer–Cartan forms defined in
Sect. 5.1.1) descends to the integrator �(�)( f ) on the homogeneous manifold M,
i.e., the following diagram commutes:

G G

M M

Σ(ω±)(f±
�)

Σ(�)(f)

Proof On the edge i, j , we obtain the equationGi = 
i, j (F)G j , so, as [Gi ] = Gi H,
we have [Gi ] = 
i, j (F) · [G j ]. Notice now that by definition of the lifted vector field
f ±
� , we have 〈�±, f ±

� 〉g = 〈�, f 〉[g], so Fi = 〈ω±, f ±
� 〉Gi = 〈ω, f 〉[Gi ], and we

conclude that [G•] is the image of [G◦] by �(�)( f ). ��
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Fig. 4 There is an affine
bijection between the affine
space of connections, of
invariant connections and of
reductive structures. All these
spaces are isomorphic to the
affine space LH(g/h← g) of
H-invariant linear sections from
g/h to g

4 Zero-Order Equivariant Isotropy Maps: Connections and Reductivity

We study the isotropy maps that are one forms, i.e., that only depend on the value of
the vector field at a given point x ∈ M and not on its derivatives. These forms can
thus be regarded as “zero-order” isotropy maps. The main results of this section are
summed up in Fig. 4.

4.1 Connections

We define connections as equivariant g-valued one forms fulfilling a consistency con-
dition.

Definition 4.1 We define an isotropy form as a g-valued one form

ω ∈ �1(M, g)

satisfying the consistency condition

〈ω, f 〉x · x = f (x). (24)

It is immediate that the set of isotropy forms has an affine structure, i.e., if ω1 and
ω2 are isotropy forms, then so is θω1 + (1 − θ)ω2 for any real θ .

Definition 4.2 We say that an isotropy form ω is a connection if it is equivariant:

〈ω,Tg f 〉g·x = g · 〈ω, f 〉x g ∈ G, x ∈ M, (25)

where the action of g on g is the adjoint action (7).
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Note that our definition differs from that of an invariant principal connection, and
the relation between the two notions is detailed in Sect. 4.3.

Connections are, in a sense, the simplest possible local equivariant isotropy maps,
because they are of order zero, i.e., they depend only on the value of a vector field at a
point and not on its higher-order derivatives. More general local, equivariant isotropy
maps are considered in [27].

Proposition 4.3 Given an isotropy form ω ∈ �1(M, g), define the isotropy map �

by 〈�, f 〉 := ı f ω, that is,

〈�, f 〉(x) := 〈ω, f 〉x . (26)

The map � is then a local isotropy map. The isotropy map � is equivariant if and
only the isotropy form ω is equivariant, that is, if ω is a connection.

Proof If f is zero in a neighborhood of x ∈ M, then, in particular, f (x) = 0, so
〈�, f 〉(x) = 〈ω, f 〉x = 0, which proves the locality property.

We note, using the definitions (26), (5), (25), and (6), that

〈�, g · f 〉(x) = 〈ω, g · f 〉x = 〈ω,Tg f 〉g−1x = g · 〈ω, f 〉g−1x = (
g · 〈�, f 〉)(x),

which shows that � is equivariant if and only if ω is. ��
Note that a connection defines at the origin a linear map

ωo ∈ L(g/h, g) (27)

where we use the canonical identification

g/h ≡ ToM.

The map ωo is H-equivariant, so

ωo ∈ LH(g/h, g),

where, in general,

LH(V,W ) := { ϕ ∈ L(V,W ) | ϕ(h · v) = h · ϕ(v) h ∈ H }

denotes the H-equivariant linear maps from a vector space V to a vector space W ,
both equipped with a linear H-action.

Now, the infinitesimal action of g on ToM ≡ g/h is just the projection ξ → ξ +h.
We obtain that the consistency condition (24) becomes

〈ωo, f 〉 + h = f, f ∈ g/h,
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so we interpret ωo as a linear section of the projection g → g/h. We denote the
corresponding affine space

L(g/h ← g) := {ω ∈ L(g/h, g) | 〈ω, f 〉 + h = f ∀ f ∈ g/h}.

The affine space of H-invariant sections is denoted by

LH(g/h ← g) := L(g/h ← g) ∩ LH(g/h, g).

Proposition 4.4 The map from the affine space of connections to

LH(g/h ← g)

defined by ω �→ ωo where ωo is defined in (27), is an affine bijection.

The proof is elementary and is a simplified version of the extension principle pre-
sented in detail in [21, §4.2].

Proof Pick an element ν ∈ LH(g/h ← g). It defines a connection defined at the point
x = g · o by 〈ω, f 〉g·o = g · 〈ν,Tg−1 f 〉. One checks that the H-equivariance of ν

ensures that this map is well defined, i.e., does not depend on which element g ∈ G is
chosen such that x = g · o. ��

4.2 Reductive Decompositions

Weproceed to show the relationwith the existing concept of reductive decompositions.

Definition 4.5 A reductive decomposition [22] is a decomposition

g = h ⊕ m

such that

H · m ⊂ m. (28)

Note that if H is simply connected, the condition (28) is equivalent to

[h,m] ⊂ m.

We identify a complementary subspace to h as a section of the projection g → g/h,
that is, a linear map

μ : g/h → g

such that

μ(x) + h = x x ∈ g/h
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We have the following relation between equivariance and reductivity:

Lemma 4.6 The section μ is reductive if and only if it is H-equivariant, that is,

h · μ(x) = μ(h · x)

Proof As μ is reductive, we have that

h · μ(x) = μ(x ′)

for some x ′ ∈ g/h. But since μ is a section, we have

x ′ = μ(x ′) + h = h · μ(x) + h = h · (μ(x) + h) = h · x

which proves the claim. ��
We thus obtain that reductive structures are equivalent to connections.

Proposition 4.7 The set of reductive structures is in affine bijection with

LH(g/h ← g)

A consequence of Proposition 4.4 and Proposition 4.7 is the following result.

Proposition 4.8 The affine space of connections and the set of reductive structures
are in affine bijection with the affine spaceLH(g/h ← g). The underlying linear space
is

LH(g/h, h).

4.3 Invariant Principal Connections and Horizontal Lifts

Recall that a homogeneous space is a particular instance of a principal H-bundle
[25,26]. In that context, a principal connection is a h-valued one-form θ which is
H-equivariant in the sense that

〈θ, X h〉g h = h−1 〈θ, X〉g h, h ∈ H.

To be a principal connection, θ must also satisfy the consistency condition

〈θ, g ξ 〉g = ξ, ξ ∈ h. (29)

Finally, such a principal connection θ is invariant if

〈θ, ḡ X〉ḡ g = 〈θ, X〉g, ḡ, g ∈ G.
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Proposition 4.9 Consider a connection ω as defined in Definition 4.2. The g-valued
one-form θ defined by

〈θ, X〉g := g−1 X − g−1 〈ω, [X ]〉[g] g, g ∈ G, X ∈ TgG.

takes values in h and is an invariant principal connection.

Note that in terms of the Maurer–Cartan form ω− defined in (32), θ is defined as
〈θ, X〉 := −〈ω−, X〉g − g−1 〈ω, [X ]〉[g] g.
Proof Let us show that θ is indeed h-valued. Define ξ := X g−1, and ζ := 〈ω, [X ]〉[g].
Notice that

〈θ, X〉 = g−1 (ξ − ζ ) g. (30)

The projected vector [X ] is [X ] = ξ · [g]. Now, the consistency condition (24)
reads ζ · [g] = [X ] = ξ · [g], so, by multiplying on the left by g−1 (which corresponds
to pushing the vector forward to the identity), we obtain g−1 (ξ − ζ ) gH = 0, which
shows that

g−1 (ξ − ζ ) g ∈ h,

which, along with (30), implies 〈θ, X〉 ∈ h.
Now, choosing X = g ξ for ξ ∈ h, we obtain [X ] = 0, so 〈θ, X〉 = g−1 X = ξ ,

and the consistency condition (29) is thus fulfilled.
We obtain the H-equivariance by noticing that [X h] = [X ], so

〈θ, X h〉g h = h−1 g−1 X h − h−1 g−1 〈ω, [X ]〉[g] g h = h−1 〈θ, X〉g h.

Finally, we obtain the invariance of θ by using that [ḡ X ] = Tḡ [X ] and the equivari-
ance of ω:

〈θ, ḡ X〉ḡ g = g−1 ḡ−1 ḡ X − g−1 ḡ−1 〈ω,Tḡ [X ]〉ḡ[g] ḡ g
= g−1 X − g−1 〈ω, [X ]〉g g
= 〈θ, X〉g.

��
In general, a connection on a principal H-bundle allows to lift vector fields from

the base to the manifold. In our case, it means that one can lift vector fields on M to
vector fields on G.

The verification of the following proposition is straightforward.

Proposition 4.10 Consider a vector field f ∈ X(M). Consider the lifted vector field
f +
ω defined in (23), i.e., by f +

ω (g) := 〈ω, f 〉[g] g. f +
� is then the horizontal lift of f

with respect to the invariant principal connection θ defined in Proposition 4.9.
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4.4 Flatness and Symmetry

Since a connection defined inDefinition 4.2 can also be regarded as a principal connec-
tion (Sect. 4.3), it has a curvature. It also has a torsion, as it is also an affine connection
[22]. We will not need the exact formulas for the torsion and curvature2 and focus on
whether the connection is flat (zero curvature), or symmetric (torsion free).

Definition 4.11 We say that a connection (and its corresponding reductive structure
m) is symmetric (or torsion free) if

[m,m] ⊂ h.

We say that the connection is flat (or has zero curvature) ifm is a Lie subalgebra, that
is,

[m,m] ⊂ m.

The connection is thus flat and symmetric if and only if m is a trivial Lie algebra,
i.e., [m,m] = 0.

In the presence of a symmetric connection, the homogeneous space is called a
symmetric space. In particular, Cartan performed a classification of the symmetric
spaces with compact isotropy group [5]. We refer to the monograph [12] for further
details.

4.5 Existence of Connections

We first give a general theorem of existence of reductive structure (and thus of con-
nections) [15, §X.2].

Proposition 4.12 If the isotropy group H is either compact or connected and semi-
simple, there exists a reductive structure.

In practice, the results of Proposition 4.12 or Proposition 4.4 are of limited use,
because it is preferable to have an explicit expression for the connection. The following
result, which proof is left to the reader, is used repeatedly to obtain tractable formulas
in the examples of Sect. 5 and to calculate the flatness or symmetry of the connection.

Proposition 4.13 Suppose that a linear form ω ∈ �1(M, g) is G-equivariant and
consistent at the origin, i.e., 〈ω, f 〉o ·o = f (o). Then, it is a connection corresponding
to the reductive decomposition

m = ω(ToM).

2 The interested reader is referred to [22], or [15, §X.2].
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5 Connection Examples

We study connections in homogeneous spaces of interest in numerical analysis. The
situation varies a lot. Some homogeneous spaces have no connection at all (Proposi-
tion5.7), somehaveonlyone (Proposition5.3), somehave infinitelymany (Sect. 5.1.2).
There is also a practical aspect, as the connection is not always available in closed
form. We refer to Table 1 for a summary of the study of the examples in this section.

5.1 Lie Group as Homogeneous Spaces

A Lie group can be regarded as a homogeneous space in at least three ways, which
we now describe.

5.1.1 Left and Right Actions

The Lie group acts transitively on itself by left multiplication:

g · g′ := g g′ g, g′ ∈ G.

The isotropy group in that case is trivial, so the only reductive structure ism = g. The
corresponding flat connection is the Maurer–Cartan form [4]. It is defined by

〈ω+, δg〉g := δg g−1. (31)

Note that this connection is symmetric if and only if G is commutative.
Of course, there is also the corresponding right multiplication action

g · g′ := g′ g−1,

for which the flat connection is

〈ω−, δg〉g := −g−1 δg. (32)

5.1.2 Cartan–Schouten Action

There is another way in whichG can be a homogeneous manifold [6], [15, §X.2]. The
symmetry group is now G × G, acting on the manifold M = G by

(g1, g2) · g := g1 g g
−1
2 . (33)

We choose the origin at the group identity. The isotropy group is then

H = { (g, g) | g ∈ G } ≡ G,
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with corresponding Lie algebra

h = { (ξ, ξ) | ξ ∈ g }.

Define (with a slight abuse of the notation (31)) the g × g-valued one-form

〈ω+, δg〉 := (δg g−1, 0).

The infinitesimal action of (ξ, ζ ) ∈ g × g on g ∈ G is given by ξ g − g ζ , so we
obtain consistency at the origin. For equivariance, we check that

〈ω+, g1 δg g−1
2 〉g1 g g−1

2
= (g1 δg g−1

2 (g1 g g
−1
2 )−1, 0)

= (g1 δg g−1 g−1
1 , 0)

= (g1, g2) · (δg g−1, 0).

This shows, using Proposition 4.13, that ω+ is a connection and that m+ := (g, 0) is
a reductive structure. The connection ω+ is flat, because m+ is isomorphic to the Lie
algebra g. It is thus symmetric if and only if G is commutative.

There is also a corresponding connection

〈ω−, δg〉 := (0,−g−1 δg)

associated with the reductive structure m− = (0, g).
As the set of connections is an affine space, the mean value

ω0 = (ω+ + ω−)/2

of those two connections is also a connection. It also happens to be a symmetric
connection. Indeed, the associated subspace is m0 = ω0(ToG) = { (ξ,−ξ) | ξ ∈ g },
and it is easy to check that [m0,m0] ⊂ h, showing that the connection is symmetric.
The connection ω0 is thus flat if and only if G is commutative.

We have seen that, in this case, there are at least two reductive structures (so the
dimension of the reductive structure space is at least two), but there may be more [2].

5.2 Affine Spaces

We define an affine space as the manifold M ≡ Rd and the group G = H � Rd ,
where H is a subgroup of GL(d). We represent an element of G by

g =
[
h a
0 1

]
, h ∈ H, a ∈ Rd ,
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acting on an element

[
x
1

]

by matrix multiplication. The action is thus

g · x = h x + a.

We choose the origin at zero, i.e., o = 0, and the isotropy group is then H.
On an affine space, there is always an “obvious” connection given by translations.

Proposition 5.1 In any affine space H � Rd , there is a connection given by

〈ω, δx〉x =
[
0 δx
0 0

]
. (34)

We now study under which conditions the connection (34) is the only possible one.

Lemma 5.2 Consider the semidirect product G = H � Rd , where H ⊂ GL(d). For
any linear map

α : Rd → h

such that

[A, α(x)] = α(A x), A ∈ h, x ∈ Rd , (35)

the subspace

m =
{[

α(x) x
0 0

] ∣∣
∣ x ∈ Rd

}
(36)

is a reductive structure. Conversely, for any reductive structure, there is a linear map
α fulfilling (35), such that m is defined by (36).

Proof An element of h can be written as

ξ =
[
A 0
0 0

]
, A ∈ h.

Suppose that m is a reductive structure. It is parameterized by x ∈ Rd as

ζ =
[
α(x) x
0 0

]
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for some linear function α. We compute the commutator

[ξ, ζ ] =
[[A, α(x)] A x

0 0

]
.

As m is reductive, we obtain [A, α(x)] = α(A x). It is straightforward to check the
opposite statement. ��

We now obtain the following uniqueness result if the isotropy group contains scal-
ings. Note how the presence of scalings in the isotropy group also simplified the study
of H-invariant spaces in [21, §6].

Proposition 5.3 If the isotropy group contains scalings, then the only reductive struc-
ture is m = Rd . The only connection is then given by (34).

Proof If gl(1) ⊂ h, it means that Id ∈ h. By using (35) with A = Id, we obtain that
α(x) = 0, so m = Rd .

5.3 Stiefel Manifolds and Spheres

For integers k ≤ n, the Stiefel manifold is the set of n×k matrices Q with orthogonal
columns, i.e.,

Qᵀ Q = 1. (37)

An element R ∈ SO(n) acts on Q by

R · Q := R Q.

This action is transitive. If we define the origin to be the matrix (in block notation)

Q0 :=
[
0
1

]

, then the isotropy group consists of the matrices

H =
[
R 0
0 1

]
, R ∈ SO(n − k).

So, as is customary, we identifyH ≡ SO(n− k). The Lie algebra g is so(n), the space
of skew-symmetric matrices.

A candidate for a reductive decomposition is the space m consisting of matrices of
the form

[
0 W

−Wᵀ �

]
, W ∈ R(n−k)×k, � ∈ so(k). (38)
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Proposition 5.4 The space m is a reductive structure. The associated connection
defined at a vector δQ on a point Q is

〈ω, δQ〉Q = δQ Qᵀ − Q δQᵀ − Q δQᵀ Q Qᵀ. (39)

The connection is symmetric if and only if k = 1, i.e., if the Stiefel manifold is a sphere,
in which case the connection simplifies into

〈ω, δQ〉Q = δQ Qᵀ − Q δQᵀ.

Proof By differentiating (37), we obtain that a tangent vector δQ at Q satisfies

δQᵀ Q + Qᵀ δQ = 0. (40)

This shows that ω takes its value in g = so(n).
Recalling the action of SO(n) on the manifold by left multiplication, the lifted

action on tangent vectors is also by left multiplication (as the action is linear). Now,
for any matrix R ∈ SO(n), we have

〈ω, R · δQ〉R·Q = R 〈ω, δQ〉Q Rᵀ = R · 〈ω, δQ〉Q,

which shows the equivariance of ω.
At the origin Q0, the infinitesimal action of

ξ =
[


 W
Wᵀ �

]
∈ g

is

ξ · Q0 =
[
W
�

]
.

The connection sends that vector to

[
0 W
Wᵀ �

]
,

from which consistency follows.
Finally, the imagem = ω(ToM) consists ofmatrices of the form (38).We conclude

using Proposition 4.13.
Finally, computing an extra diagonal term of the commutator between two elements

of m shows that it is zero if and only if the lower right term is zero, i.e., � = 0. This
happens only if k = 1. Finally, in this case, the orthogonality condition (40) becomes
δQᵀ Q = 0, which accounts for the simplification in the connection formula. ��
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Note that the expression (39) is also obtained in [7], although the authors do not
mention the equivariance of that connection.

We also notice that if Q′ is orthogonal to both Q and δQ, then the vector field at
Q′ is zero, that is,

〈ω, δQ〉Q · Q′ = 0.

This is especially intuitive on spheres, where it means that the (generalized) axis of
rotation is orthogonal to the plane spanned by Q and δQ.

5.4 Isospectral Flows, Lax Pairs, Grassmannians, and Projective Spaces

An isospectral manifold is the space of symmetric matrices with a prescribed spectrum
[3]. As we shall see, they contain as special cases Grassmannians (and thus projective
spaces), as well as principal homogeneous spaces for the rotation group, in which case
they are often expressed in the form of a Lax pair.

In order to define the isospectral manifold, we first define a partition of an integer d,
representing eigenvalue multiplicities. We define a partition to be a function κ : N →
N, which is non-increasing, and eventually zero. The size of the partition is

(|κ|) =
∞∑

i=0

κi

which is a finite integer.
We define the isospectral manifold M associated with a partition κ and a sequence

of (necessarily distinct) real eigenvalues λi as

M :=
{
P ∈ R|κ|×|κ|

∣∣∣P = Pᵀ; P has eigenvalue λi with multiplicity κi

}
.

The length of the partition indicates the number of distinct eigenvalues. It is defined
as the number of nonzero elements in κ , i.e., #{ i ∈ N | κi 
= 0 }.

Examples of partitions are κ = (1) of length and size one, κ = (3, 2) of size five
and length two. The partitions associated with a Grassmannian have length two, such
as (m, n), with two arbitrary positive integersm and n such thatm ≥ n. The projective
space case corresponds to the special case n = 1.

To a given partition κ , we associate a block matrix representation where the block
i, j has size κi × κ j . Note that the size of the partition gives the size of the matrices,
whereas the length of the partition is the number of blocks.

In what follows, we exclude the trivial case of κ having length one, in which case
the manifold M reduces to one point.

The group SO(|κ|) acts on P by adjunction

R · P = R P Rᵀ. (41)
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We can define the origin� to be the diagonalmatrixwith eigenvaluesλi withmultiplic-
ity κi . As symmetric matrices are diagonalizable with orthogonal matrices, we obtain
that any matrix in P ∈ M can be written as P = R � Rᵀ for some R ∈ SO(|κ|).
This shows that SO(|κ|) acts transitively on M. The isotropy subgroup H is then the
set of block matrices of the form

⎡

⎢
⎣

R1
R2

. . .

⎤

⎥
⎦ (42)

such that Ri ∈ O(κi ), and such that the determinant is one.We thus denote the isotropy
group by

H = SO(κ) := S
(∏

i∈N
O(κi )

)
.

Note that, since the isotropy group does not depend on the eigenvalues, but only on
their multiplicity, this shows that all the isospectral manifolds with the same partition
(but possibly different eigenvalues) are isomorphic.

A good candidate for the reductive structure m is the subspace of so(|κ|) which is
zero on the block diagonal:

⎡

⎢
⎣

0
0

. . .

⎤

⎥
⎦ ∈ so(|κ|).

Proposition 5.5 The space m is a reductive structure. It further induces

(i) a flat connection if and only if κ = (1, 1, . . . , 1), in which case it is a principal
homogeneous space for SO(d).

(ii) a symmetric connection if and only if κ = (k, d − k), in which case M is
isomorphic to a Grassmannian. The corresponding connection is given explicitly
by

〈ω, δP〉P := 1

(�λ)2
(δP P − P δP), (43)

where �λ is the difference between the two eigenvalues at hand.

Proof We denote a generic element of h ∈ H which is in the form (42). A typical
element of m can be written, using the same block conventions,

m =
⎡

⎢
⎣

0 m12 · · ·
m21 0 · · ·
...

⎤

⎥
⎦

with mi j + mᵀ
j i = 0.
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1. First, a calculation shows that a product of an element h ∈ h and an elementm ∈ m
is such that h m ∈ m, and m h ∈ m, so, in particular, the commutator [h,m] ∈ m,
which shows that m is a reductive structure.

2. The first extra diagonal term, of index (2, 1) in the product m m̄ of two elements
m, m̄ ∈ m, is

m11︸︷︷︸
=0

m̄12 + m12 m̄22︸︷︷︸
=0

+m13 m̄32 + · · ·

This shows that if the length of the partition κ is two, then the product is zero at
the extra diagonal, and in particular, the commutator is as well, so the connection
is symmetric. If the length is greater than two, the commutator contains at least
the term

m13 m̄32 − m̄13m32,

so it is always possible to choose, for instance, the blocks m13 and m̄32, such that
this term does not vanishes. This shows that the connection is not symmetric.

3. An element in the block diagonal of the commutator [m, m̄] can be written as

∑

k

−mik m̄
ᵀ
ik + m̄ik m

ᵀ
ik

If all the blocks have size one, then this vanishes, showing that if all the eigenvalues
have multiplicity one, the connection is flat. Note that, in that case, the isotropy
group is trivial, which shows that M is a principal homogeneous space for G =
SO(|κ|). If a block of index k has size greater than one, then one can choose mik

and m̄ik so that −mik m̄
ᵀ
ik + m̄ik m

ᵀ
ik 
= 0.

4. The equivariance property of (43) is straightforward to check. It now suffices to
check consistency at the origin. Recall that we are considering the case

� =
[
λ1 0
0 λ2

]

with the same block matrix conventions as before, i.e., with respect to the partition
(k, d − k). From (41), we obtain that the infinitesimal action of ξ ∈ so(d) at a
point P is given by

ξ · P = ξ P − P ξ. (44)

A direct calculation shows that the commutator of a matrix A with block entries
ai j and � has block coefficients [A,�]i j = ai j (λ j − λi ). Now, an element of m
takes the form

m =
[

0 m12

−mᵀ
12 0

]
,
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so [m,�] is a symmetric block matrix

δ� =
[

0 m12(λ2 − λ1)

mᵀ
12(λ2 − λ1) 0

]
.

Applying the commutator [δ�,�] gives the matrix with element mi j (λ2 − λ1)
2.

We thus obtain [δ�,�] = (λ2 − λ1)
2m, which finishes the proof.

��

5.4.1 The Symmetric Case: Grassmannians

Note that Grassmann manifolds are generally defined as the set of orthogonal projec-
tors on subspaces of dimension k [11, § IV.9.2]. It means that the eigenvalues of the
corresponding isospectral manifold are zero and one, so (43) simplifies into

〈ω, δP〉P = δP P − P δP .

From an element Q ∈ Rn×k in a Stiefel manifold (see Sect. 5.3), one obtains an
element P in its corresponding Grassmann manifold by

P = Q Qᵀ.

Grassmanmanifolds can thus be regarded as the basemanifold of a Stiefel manifold
considered as a principal bundle. This might be exploited by constructing descending
integrators on the Stiefel manifold, instead of the Grassmann manifolds, as we discuss
in the conclusion.

5.4.2 The Flat Case: Integrable Lax Pairs

The differential equation on an isospectral manifold is often given directly by the
infinitesimal action of so(d), in which case it is called a Lax pair. Indeed, from (44),
we have

P ′ = ξ(P) · P = ξ(P) P − P ξ(P).

A particularly interesting case of Lax Pair system is the integrable case, when all
the eigenvalues are distinct, as for instance, the Toda lattice [11, §X.1.5]. As we saw
in Proposition 5.5, this corresponds to the flat case. The isospectral manifold is then
a principal homogeneous space, so there is no ambiguity in the isotropy, and the only
possibility is thus

〈ω, δP〉 = ξ(P),

so the Lax pair already gives the solution of the connection problem. This is essentially
the method considered in [3], and we see now that this method is equivariant. We refer

123



934 Found Comput Math (2016) 16:899–939

to that aforementioned paper and to [11, §X.1.5] for further insights into Lax pairs
and integrable systems.

5.5 Polar Decompositions

There is a homogeneous manifold naturally associated with the polar decomposition
of an invertible matrix in an orthogonal and a positive definite matrix [10, §3.2]. The
group is

G = GL(d)

and the manifold M is the set of symmetric positive definite matrices:

M =
{
P ∈ Rd×d

∣∣
∣ P = Pᵀ xᵀ P x > 0 ∀x ∈ Rd\0

}
.

The action of A ∈ GL(d) on P ∈ M is given by

A · P := A P Aᵀ.

It is a transitive action as any positive definite matrix P can be written as P = A Aᵀ
for some matrix A ∈ GL(d). We choose the origin

P0 := 1,

which gives the isotropy group

H = O(d).

We have the following connection.

Proposition 5.6 The space of symmetric matrices m := { ξ ∈ gl(d) | ξ = ξᵀ } is
a symmetric reductive structure. The corresponding symmetric connection is defined
implicitly by the equations

P 〈ω, δP〉P + 〈ω, δP〉P P = δP

ξ = ξᵀ. (45a)

Proof The commutator of an antisymmetric matrix and a symmetric matrix is a sym-
metric matrix, so [h,m] ⊂ m. Moreover, we have g = h ⊕ m, so m is a reductive
structure. The commutator of two symmetric matrices is an skew-symmetric matrix,
i.e., [m,m] ⊂ h, and the connection is thus symmetric. As the infinitesimal action of
ξ ∈ g on P ∈ M is defined by ξ · P = ξ P + P ξᵀ, and as ξᵀ = ξ for ξ ∈ m, we
obtain that (45a) has a unique solution in m. ��
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5.6 Matrices of Fixed Rank

The space of matrices of fixed rank is considered in [11, § IV.9.3] and plays a funda-
mental role in low-rank approximations and model reduction.We show how this space
has a natural structure of homogeneous space, and that it lacks reductive structures
and thus connections.

For integers m, n, and k, we define the manifold M of m × n matrices of rank k.
An element (A, B) ∈ GL(m) × GL(n) acts on such a matrix M by

(A, B) · M = A M B−1, (46)

and the action is transitive on M.
Let us choose the origin at the m × n matrix M0 of rank k defined by

M0 :=
[
0 0
0 1

]
,

where 1 denotes here the identity matrix of size k. We assume the relevant block
decomposition for the matrices A, B, and M in the remaining of this section.

A calculation shows that the isotropy group consists of pairs of matrices of the form

([
A1 0
A2 C

]
,

[
B1 0
B2 C

])
∈ GL(m) × GL(n).

Proposition 5.7 The homogeneous space of m×n matrices of rank k has a connection
if and only if m = n = k, in which case it is the Cartan–Schouten manifold (see
Sect. 5.1.2) for GL(k).

Proof First, we notice that if m = n = k, then the rank k matrices are simply the
invertible matrices of size k, and the action (46) is the Cartan–Schouten action (33).

We now assume that there exists a reductive structure and proceed to show that it
implies m = n = k.

A reductive structure m ⊂ g is parameterized by matrices α, β, γ , and linear maps
a1, a2, b1, b2 and c, all depending linearly on α, β, γ , such that an element m ∈ m
takes the form

m =
([

a1 α

a2 c − γ

]
,

[
b1 β

b2 c + γ

])
.

We denote the infinitesimal adjoint action of an element ξ ∈ h by

ξ · m := [ξ,m] = ξ m − m ξ.

1. Choose

ξ =
([

1 0
0 0

]
,

[
1 0
0 0

])
∈ h.
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We obtain that

ξ · m =
([

0 α

−a2 0

]
,

[
0 β

−b2 0

])
,

so we obtain

a2(α, β, 0) = −a2(α, β, γ ).

By choosing γ = 0, we first obtain a2(α, β, 0) = 0, and thus also a2(α, β, γ ) = 0
for all values of the parameters α, β, γ .

2. Choose now an arbitrary element

m =
([

a1 α

0 c̃

]
, 


)
∈ m,

where 
 denotes here and in the sequel an arbitrary element. Choose an element

ξ =
([

0 0
A 0

]
, 


)
∈ h.

We obtain

ξ · m =
([ −α A 0

A a1 − c̃ A A α

]
, 


)
,

so we obtain the condition

A a1 − c̃ A = 0.

Now, the element ξ · m also belongs to m, so the condition ξ · (ξ · m) ∈ m gives

A (−α A) − A α A = 0.

3. We choose in particular A = αᵀ, and we get

αᵀ α αᵀ = 0. (47)

4. Now, the parameterα is arbitrary, so ifm > k, we can choose it such that eitherα αᵀ
or αᵀ α is the identity matrix, but (47) then gives α = 0, which is a contradiction.
We conclude that m = k. A similar reasoning for β would give n = k. ��
The following example of a non-reductive space, mentioned in [15, §X.2],

G = SL(2,R), H =
{[

1 λ

0 1

] ∣∣∣ λ ∈ R
}
,
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corresponds to 2 × 1 matrices which are nonzero (i.e., which have rank one), so it is
the case m = 2, n = 1, and k = 1 in Proposition 5.7.

6 Conclusion and Open Problems

The main message of this paper is that equivariant isotropy map allows to construct
equivariant homogeneous space integrators from Lie group integrators (skeletons).
Moreover, when that equivariant isotropy map is of order zero, then it is equivalent to
a reductive structure or an invariant principal connection, both of which are standard
tools in differential geometry [15, §X.2].

We examine the consequences of using a connection with a skeleton.
The first consequence is that some homogeneous spaces currently lack (equivari-

ant) integrators. A fundamental of such example, as we showed in Sect. 5.6, is the
homogeneous space of matrices of fixed rank.

Another consequence is that, as the connection takes its values in m, one only
need compute exponentials of elements of m. For instance in the affine case, only
translations are needed. Note that in general, the computation of exponentials is still
themost difficult part in the implementation, andwe refer to [13, §8] for some possible
solutions.

In a similar vein, note that if the motion map is the exponential, one need to know
one exponential on each H-orbit since

exp(h · ξ) = h · exp(ξ) h ∈ H ξ ∈ m.

For instance, on a sphere, all the “great circles” are in a sense, the same, as there is
only one H-orbit.

Let us mention some open questions to be investigated in future work.

• It is not clear yet whether the isotropy map has to be equivariant for the integrator
to be. Isotropy map equivariance is necessary in some specific cases, but we do
not expect that result to extend to general cases. Nevertheless, using equivariant
isotropy maps is still the simplest way to obtain equivariant homogeneous space
integrators, and we are not aware of any concrete example of an equivariant inte-
grator constructed with a non-equivariant isotropy map.

• Homogeneous spaces lacking a connection such as the space of matrix of fixed rank
considered in Sect. 5.6 might have higher-order connections. Such connections
are still local (and thus, computationally tractable), but depend on higher-order
derivatives of the vector field [27]. We do not know whether such a higher-order
equivariant connection exists for the space of fixed rank matrices.

• As noted in [9], the representation of points on the Grassmannians as n×n matrices
may be unwieldy, so there might be strategies to lift the equation on the Stiefel
manifold and integrate there instead. This is the strategy proposed in [11, § IV.9.2],
but we do not know whether this gives equivariant integrators.

• The retraction methods exposed in [7] on Stiefel manifolds are not of the same
type as those in this paper. We believe that connections may be used to conceive
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retraction methods of the same type on other homogeneous spaces. We do not know
under which conditions retraction methods are equivariant.

• We showed how some homogeneous spaces have a symmetric connection. In partic-
ular, in the Cartan–Schouten case, one could use the symmetric connection. When
used along with skeletons, only the geodesics of the connection matter, so all the
connections studied in Sect. 5.1.2 will give the same methods, but there might be a
way to exploit the symmetric connection.

• In Proposition 5.3, we show that the connection is unique, under some assumptions.
We do not know of any such results for the other homogeneous spaces of interest,
in particular, those presented in Sect. 5.

• Finally, we mention other homogeneous spaces which are used in physics, such
as the Galilean and Poincaré groups, and hyperbolic spaces such as the Poincaré
half-space SL(d)/SO(d), the de Sitter space, or the Lagrangian Grassmannian
U(d)/O(d) [24], the flag manifolds [14, §2.5], not to mention the complex and
quaternionic variants in the Stiefel and Grassmann manifolds. Note that, even if
there may be theoretical results of existence of connection, in particular when the
isotropy group is compact, as we saw in Proposition 4.12, it does not mean that there
is an actual, practically computable connection formula. Such examples are given
by the isospectral manifolds Sect. 5.4 and the symmetric positive definite matrices
Sect. 5.5, for which the connection exists, but may be difficult to compute.

Implementation

An implementation using the stage tree structure described in Sect. 3 is available at
https://github.com/olivierverdier/homogint.
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