
Lie–Butcher Series, Geometry, Algebra
and Computation

Hans Z. Munthe-Kaas and Kristoffer K. Føllesdal

Abstract Lie–Butcher (LB) series are formal power series expressed in terms of
trees and forests. On the geometric side LB-series generalizes classical B-series
from Euclidean spaces to Lie groups and homogeneous manifolds. On the algebraic
side, B-series are based on pre-Lie algebras and the Butcher-Connes-Kreimer Hopf
algebra. The LB-series are instead based on post-Lie algebras and their enveloping
algebras. Over the last decade the algebraic theory of LB-series has matured. The
purpose of this paper is twofold. First, we aim at presenting the algebraic structures
underlying LB series in a concise and self contained manner. Secondly, we review a
number of algebraic operations on LB-series found in the literature, and reformulate
these as recursive formulae. This is part of an ongoing effort to create an extensive
software library for computations in LB-series and B-series in the programming
language Haskell.

Keywords B-series · Lie–Butcher series · Post-Lie algebra · Pre-Lie algebra
MSC 16T05 · 17B99 · 17D99 · 65D30

1 Introduction

Classical B-series are formal power series expressed in terms of rooted trees (con-
nected graphs without any cycle and a designated node called the root). The theory
has its origins back to the work of Arthur Cayley [5] in the 1850s, where he realized

H. Z. Munthe-Kaas (B) · K. K. Føllesdal
Department of Mathematics, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
e-mail: hans.munthe-kaas@uib.no

K. K. Føllesdal
e-mail: kristoffer.follesdal@uib.no

© Springer Nature Switzerland AG 2018
K. Ebrahimi-Fard and M. Barbero Liñán (eds.), Discrete Mechanics,
Geometric Integration and Lie–Butcher Series, Springer Proceedings
in Mathematics & Statistics 267, https://doi.org/10.1007/978-3-030-01397-4_3

71

72 H. Z. Munthe-Kaas and K. K. Føllesdal

that trees could be used to encode information about differential operators. Being
forgotten for a century, the theory was revived through the efforts of understanding
numerical integration algorithms by John Butcher in the 1960s and ’70s [2, 3]. Ernst
Hairer and GerhardWanner [14] coined the termB-series for an infinite formal series
of the form

B f (α, y, t) := y +
∑

τ∈T

t |τ |

σ (τ)
〈a, τ 〉F f (τ)(y),

where y ∈ Rn is a ‘base’ point, f : Rn → Rn is a given vector field,

T = { , , , , . . .} is the set of rooted trees, |τ | is the number of nodes in the
tree, α : T → R are the coefficients of a given series and 〈α, τ 〉 ∈ R denotes eval-
uation of α at τ . The bracket hints that we later want to consider 〈α, ·〉 as a linear
functional on the vector space spanned by T . The animalF f (τ) : Rn → Rn denotes
special vector fields, called elementary differentials, which can be expressed in terms
of partial derivatives of f . The coefficient σ (τ) ∈ N is counting the number of sym-
metries in a given tree. This symmetry factor could have been subsumed into α, but is
explicitly taken into the series due to the underlying algebraic structures, where this
factor comes naturally. The B-series t %→ B f (α, y, t) can be interpreted as a curve
starting in y. By choosing different functions α, one may encode both the analyt-
ical solution of a differential equation y′(t) = f (y(t)) and also various numerical
approximations of the solution.

During the 1980s and 1990s B-series evolved into an indispensable tool in anal-
ysis of numerical integration for differential equations evolving on Rn . In the mid-
1990s interest rose in the construction of numerical integration on Lie groups and
manifolds [15, 17], and from this a need to interpret B-series type expansions in a
differential geometric context, giving birth to Lie–Butcher series (LB-series), which
combines B-series with Lie series on manifolds. It is necessary to make some modi-
fications to the definition of the series to be interpreted geometrically on manifolds:

• We cannot add a point and a tangent vector as in y +F f (τ). Furthermore, it turns
out to be very useful to regard the series as a Taylor-type series for the mapping
f %→ B f , rather than a series development of a curve t %→ B f (a, y, t). The target
space of f %→ B f is differential operators, and we can remove explicit reference
to the base point y from the series.

• The mapping f %→ B f inputs a vector field and outputs a series which may repre-
sent either a vector field or a solution operator (flowmap). Flowmaps are expressed
as a series in higher order differential operators. We will see that trees encode first
order differential operators. Higher order differential operators are encoded by
products of trees, called forests. We want to also consider series in linear combi-
nations of forests.

• We will in the sequel see that the elementary differential map τ %→ F f (τ) is a
universal arrow in a particular type of algebras. The existence of such a uniquely
defined map expresses the fact that the vector space spanned by trees (with certain

Lie–Butcher Series, Geometry, Algebra and Computation 73

algebraic operations) is a universal object in this category of algebras. Thus the
trees encode faithfully the given algebraic structure. We will see that the algebra
comes naturally from the geometric properties of a given connection (covariant
derivation) on the manifold. For Lie groups the algebra of the natural connection is
encoded by ordered rooted trees, where the ordering of the branches is important.
The ordering is related to a non-vanishing torsion of the connection.

• The symmetry factor σ (τ) in the classical B-series is related to the fact that several
different ordered trees correspond to the same unordered tree. This factor is absent
in the Lie–Butcher series.

• The time parameter t is not essential for the algebraic properties of the series.
SinceFt f (τ) = t |τ |F f (τ), we can recover the time factor through the substitution
f %→ t f .

We arrive at the definition of an abstract Lie–Butcher series simply as

∑

ω∈OF
〈α,ω〉ω, (1)

where

OF = {I, , , , , , , , . . . , , , . . .}

denotes the set of all ordered forests of ordered trees, I is the empty forest, and
α : OF → R are the coefficients of the series. This abstract series can be mapped
down to a concrete algebra (e.g. an algebra of differential operators on a manifold)
by a universal mapping ω %→ F f (ω).

We can identify the function α : OF → R with its series (1) and say that a Lie–
Butcher series α is an element of the completion of the free vector space spanned
by the forests of ordered rooted trees. However, to make sense of this statement,
we have to attach algebraic and geometric meaning to the vector space of ordered
forests. This is precisely explained in the sequel, where we see that the fundamental
algebraic structures of this space arise because it is the universal enveloping algebra
of a free post-Lie algebra. Hence we arrive at the precise definition:

An abstract Lie–Butcher series is an element of the completion of the enveloping
algebra of the free post-Lie algebra.

We will in this paper present the basic geometric and algebraic structures behind
LB-series in a self contained manner. Furthermore, an important goal for this work
is to prepare a software package for computations on these structures. For this pur-
pose we have chosen to present all the algebraic operations by recursive formulae,
ideally suited for implementation in a functional programming language. We are in
the process of implementing this package in the Haskell programming language.
The implementation is still at a quite early stage, so a detailed presentation of the
implementation will be reported later.

74 H. Z. Munthe-Kaas and K. K. Føllesdal

2 Geometry of Lie–Butcher Series

B-series and LB-series can both be viewed as series expansions in a connection on
a fibre bundle, where B-series are derived from the canonical (flat and torsion free)
connection on Rn and LB-series from a flat connection with constant torsion on a
fibre bundle. Rather than pursuing this idea in an abstract general form, we will
provide insight through the discussion of concrete and important examples.

2.1 Parallel Transport

Let M be a manifold,F (M) the set of smooth R-valued scalar functions and X(M)

the set of real vector fields on M . For t ∈ R and f ∈ X(M) let Ψt, f : M → M
denote the solution operator such that the differential equation γ ′(t) = f (γ (t)),
γ (0) = p ∈ M has solution γ (t) = Ψt, f (p). For φ ∈ F (M) we define pullback
along the flow Ψ ∗

t, f : F (M) → F (M) as

Ψ ∗
t, f φ = φ ◦ Ψt, f .

The directional derivative f (φ) ∈ F (M) is defined as

f (φ) = d
dt

∣∣∣∣
t=0

Ψ ∗
t, f φ.

Through this, we identify X(M) with the first order derivations of F (M), and we
obtain higher order derivations by iterating, i.e. f ∗ f is the second order derivation
f ∗ f (φ) := f (f (φ)). With Iφ = φ being the 0-order identity operator, the set of
all higher order differential operators on F (M) is called the universal enveloping
algebra U (X(M)). This is an algebra with an associative product ∗. The pullback
satisfies

d
dt

Ψ ∗
t, f φ = Ψ ∗

t, f f (φ).

By iteration we find that dn

dtn
∣∣
t=0 Ψ ∗

t, f φ = f (f (· · · f (φ))) = f ∗n(φ) and hence the
Taylor expansion of the pullback is

Ψ ∗
t, f φ = φ + t f (φ)+ t2

2! f ∗ f (φ)+ · · · = exp∗(t f)(φ), (2)

where we define the exponential as

exp∗(t f) :=
∞∑

j=0

t j

j ! f
∗ j .

Lie–Butcher Series, Geometry, Algebra and Computation 75

This exponential is an element of U (X(M)), or more correctly, since it is an infinite
series, in the completion of this algebra. We can recover the flow Ψt, f from exp∗(t f)
by letting φ be the coordinate maps. However, some caution must be exercised,
since pullbacks compose contravariantly

(
Ψt, f ◦ Ψs,g

)∗ = Ψ ∗
s,g ◦ Ψ ∗

t, f , we have that
exp∗(sg) ∗ exp∗(t f) corresponds to the diffeomorphism Ψt, f ◦ Ψs,g .

Numerical integrators are constructed by sampling a vector field in points near a
base point. To understand this process, we need to transport vector fields. Pullback
of vector fields is, however, less canonical than of scalar functions. The differential
geometric concept of parallel transport of vectors is defined in terms of a connection.
An affine connection is aZ-bilinear mapping! : X(M) × X(M) → X(M) such that

(φ f) ! g = φ(f ! g)

f ! (φg) = f (φ)g + φ(f ! g)

for all f, g ∈ X(M) and φ ∈ F (M). Note that the standard notation for a connection
in differential geometry is is ∇ f g ≡ f ! g. Our notation is chosen to emphasise the
operation as a binary product on the set of vector fields. The triangle notation looks
nicer when we iterate, such as in (3) below. Furthermore, the triangle notation is also
standard in much of the algebraic literature on pre-Lie algebras, as well as in several
recent works on post-Lie algebras.

There is an intimate relationship between connections and the concept of parallel
transport. For a curve γ (t) ∈ M , let Γ (γ)ts denote parallel transport along γ (t),
meaning that

• Γ (γ)ts : T Mγ (s) → T Mγ (t) is a linear isomorphism of the tangent spaces.
• Γ (γ)ss = Id, the identity map.
• Γ (γ)ut ◦ Γ (γ)ts = Γ (γ)us .
• Γ depends smoothly on s, t and γ .

From Γ , let us consider the action of parallel transport pullback of vector fields, for
t ∈ R and f ∈ X(M) we denote Ψ ∗

t, f : X(M) → X(M) the operation

Ψ ∗
t, f g(p) := Γ (γ)0t g(γ (t)), for the curve γ (t) = Ψt, f (p).

Any connection can be obtained from a parallel transport as the rate of change of the
parallel transport pullback. For a given Γ we can define a corresponding connection
as

f ! g := d
dt

∣∣∣∣
t=0

Ψ ∗
t, f g.

Conversely, we can recover Γ from ! by solving a differential equation. We seek a
power series expansion of the parallel transport pullback. Just like the case of scalars,
it holds also for pullback of vector fields that

∂

∂t
Ψ ∗
t, f g = Ψ ∗

t, f f ! g,

76 H. Z. Munthe-Kaas and K. K. Føllesdal

hence we obtain the following Taylor series of the pullback

Ψ ∗
t, f g = g + t f ! g + t2

2
f ! (f ! g)+ t3

3! f ! (f ! (f ! g))+ · · · . (3)

Recall that in the case of pullback of a scalar function, we used f (g(φ)) =
(f ∗ g)(φ) to express the pull-back in terms of exp∗(t f). Whether or not we can
do similarly for vector fields depends on geometric properties of the connection.
We would like to extend ! from X(M) to U (X(M)) such that f ! (g ! h) =
(f ∗ g) ! h and hence (3) becomes Ψ ∗

t, f g = exp∗(t f) ! g. However, this requires
that f ! (g ! h) − g ! (f ! h) = ! f, g" ! h,where ! f, g" := f ∗ g − g ∗ f is the
Jacobi bracket of vector fields. The curvature tensor of the connection R : X(M) ∧
X(M) → End(X(M)) is defined as

R(f, g)h := f ! (g ! h) − g ! (f ! h) − ! f, g" ! h.

Thus, we only expect to find a suitable extension of ! to U (X(M)) if ! is flat, i.e.
when R = 0.

In addition to the curvature, the other important tensor related to a connection is
the torsion. Given !, we define an F (M)-bilinear mapping · : X(M) × X(M) →
U (X(M)) as

f · g := f ∗ g − f ! g. (4)

The skew-symmetrisation of this product called the torsion

T (f, g) := g · f − f · g ∈ X(M),

and if f · g = g · f we say that ! is torsion free.
The standard connection on Rn is flat and torsion free. In this case the algebra

{X(M),!} forms a pre-Lie algebra (defined below). This gives rise to classical
B-series. More generally, transport by left or right multiplication on a Lie group
yields a flat connection where the product · is associative, but not commutative. The
resulting algebra is called post-Lie and the series are called Lie–Butcher series. A
third important example is the Levi–Civita connection on a symmetric space, where ·
is a Jordan product, T = 0 and R is constant, non-zero. This third case is the subject
of forthcoming papers, but will not be discussed here.

2.2 The Flat Cartan Connection on a Lie Group

LetG be a Lie groupwith Lie algebra g. For V ∈ g and p ∈ G we let V p := T RpV ∈
TpG. There is a 1–1 correspondence between functions f ∈ C∞(G, g) and vector
fields ξ f ∈ X(G) given as ξ f (p) = f (p)p. Left multiplication with q ∈ G gives rise
to a parallel transport

Lie–Butcher Series, Geometry, Algebra and Computation 77

Γq : TpG → TqpG : V p %→ Vqp.

This transport is independent of the path between p and qp and hence gives rise to
a flat connection. We express the corresponding parallel transport pullback on the
space C∞(G, g) as

(Γ ∗
q f)(p) = f (qp)

which yields the flat connection

(f ! g)(q) = d
dt

∣∣∣∣
t=0

g(exp(t f (q))q).

The torsion is given as [21]

T (f, g)(p) = −[f (p), g(p)]g.

The two operations f ! g and [f, g] := −T (f, g) turn C∞(G, g) into a post-Lie
algebra, see Definition 3 below. This is the foundation of Lie–Butcher series.

We can alternatively express the connection and torsion on X(G) via a basis {E j }
for g. Let ∂ j ∈ X(G) be the right invariant vector field ∂ j (p) = E j p. For F,G ∈
X(G), where F = f i∂i , G = g j∂ j

1 and f i , g j ∈ F (G), we have

F ! G = f i∂i (g j)∂ j

F · G = f i g j∂i∂ j

T (F,G) = f i g j (∂i∂ j − ∂ j∂i).

We return to ! defined on C∞(G, g). Let U (g) be the span of the basis
{E j1E j2 · · · E jk }, where E j1E j2 · · · E jk ∈ U (g) corresponds to the right invariant k-th
order differential operator ∂ jk · · · ∂ j2∂ j1 ∈ U (X(G)). On U (g) we have two different
associative products, the composition of differential operators f ∗ g and the ‘con-
catenation product’ f · g = f ∗ g − f ! g which is computed as the concatenation
of the basis, f i Ei · g j E j = f i g j Ei E j . The general relationship between these two
products and ! extended to U (g) is given in (28)–(31) below. In particular we have

f ! (g ! h) = (f ∗ g) ! h,

which yields the exponential form of the parallel transport

Ψ ∗
t, f g = exp∗(t f) ! g,

where exp∗(t f) is giving us the exact flow of f .

1Einstein summation convention.

78 H. Z. Munthe-Kaas and K. K. Føllesdal

We can also form the exponential with respect to the other product,

exp·(t f) = I + t f + t2

2
f · f + t3

3! f · f · f + · · · .

What is the geometric meaning of this? We say that a vector field g is parallel
along f if the parallel transport pullback of g along the flow of f is constant, and
we say that g is absolutely parallel if it is constant under any parallel transport.
Infinitesimally we have that g is parallel along f if f ! g = 0 and g is absolutely
parallel if f ! g = 0 for all f . In C∞(G, g) the absolutely parallel functions are
constants g(p) = V , which correspond to right invariant vector fields ξg ∈ X(G)

given as ξg(p) = V p. The flow of parallel vector fields are the geodesics of the
connection. If g is absolutely parallel, we have g ∗ g = g · g + g ! g = g · g, and
more generally gn∗ = gn·, hence exp∗(g) = exp·(g). If f (p) = g(p) at a point p ∈
G, then they define the same tangent at the point.Hence f n·(p) = gn·(p) for all n, and
we conclude that exp·(f)(p) = exp·(g)(p) = exp∗(g)(p). Thus, the concatenation
exponential exp·(f) of a general vector field f produces the flow which in a given
point follows the geodesic tangent to f at the given point.

On a Lie group, we have for two arbitrary vector fields represented by general
functions f, g ∈ C∞(G, g) that

(exp·(t f) ! g)(p) = g (exp(t f (p))p) . (5)

2.3 Numerical Integration

Lie–Butcher series and its cousins are general mathematical tools with applications
in numerics, stochastics and renormalisation. The problem of numerical integra-
tion on manifolds is a particular application which has been an important source of
inspiration. We discuss a simple illustrative example.

Example 1 (Lie–trapezoidal method) Consider the classical trapezoidal method. For
a differential equation y′(t) = f (y(t)), y(0) = y0 on Rn a step from t = 0 to t = h
is given as

K = h
2
(f (y0)+ f (y1))

y1 = y0 + K .

Consider a curve y(t) ∈ G evolving on a Lie group such that y′(t) = f (y(t))y(t),
where f ∈ C∞(G, g) and y(0) = y0. In the Lie-trapezoidal integrator a step from
y0 to y1 ≈ y(h) is given as

Lie–Butcher Series, Geometry, Algebra and Computation 79

K = h
2
(f (y0)+ f (y1))

y1 = expg(K)y0,

where expg : g → G is the classical Lie group exponential. We can write the method
as a mapping Φtrap : X(M) → Diff(G) from vector fields to diffeomorphisms on
G, given in terms of parallel transport on X(M) as

K = 1
2
(f + exp·(K) ! f) (6)

Φtrap(f) := exp·(K). (7)

To simplify, we have removed the timestep h, but this can be recovered by the
substitution f %→ h f . Note that we present this as a process in U (X(M)), without a
reference to a given base point y0. Themethod computes a diffeomorphismΦtrap(f),
which can be evaluated on a given base point y0. This absence of an explicit base point
facilitates an interpretation of the method as a process in the enveloping algebra of a
free post-Lie algebra, an abstract model of U (X(M)) to be discussed in the sequel.

A basic problem of numerical integration is to understand in what sense a numer-
ical method Φ(t f) approximates the exact flow exp∗(t f). The order of the approxi-
mation is computed by comparing the LB-series expansion of Φ(t f) and exp∗(t f),
and comparing to which order in t the two series agree.

The backward error of the method is defined as a modified vector field f̃h such
that the exact flow of f̃h interpolates the numerical solution at integer times.2 The
combinatorial definition of the backward error is

exp∗(f̃h) = Φ(h f).

The backward error is an important tool which yields important structural infor-
mation of the numerical flow operator f %→ Φ(h f). The backward error analysis is
fundamental in the study of geometric properties of numerical integration algorithms
[8, 13].

Yet another problem is the numerical technique of processing a vector field, i.e.
we seek a modified vector field f̃h such that Φ(f̃h) = exp∗(f). An important tool
in the analysis of this technique is the characterization of a substitution law. What
happens to the series expansion of Φ(h f) if f is replaced by a modified vector field
f̃h expressed in terms of a series expansion involving f ?
The purpose of this essay is not to pursue a detailed discussion of numerical

analysis of integration schemes. Instead wewant to introduce the algebraic structures
needed to formalize the structure of the series expansions. In particular we will
present recursive formulas for the basic algebraic operations suitable for computer
implementations.

2Technical issues about divergence of the backward error vector field is discussed in [1].

80 H. Z. Munthe-Kaas and K. K. Føllesdal

We finally remark that numerical integrators are typically defined as families of
mappings, given in terms of unspecified coefficients. For example the Runge–Kutta
family of integrators can be defined in terms of real coefficients {ai, j }si, j=1 and {b j }sj=1
as

Ki = exp·(
s∑

j=1

ai, j K j) ! f, for i = 1, . . . , s

ΦRK(f) = exp·(
s∑

j=1

b j K j).

In a computer package for computing with LB-series we want the possibility of
computing series expansions of such parametrized families without specifying the
coefficients. This is accomplished by defining the algebraic structures not over the
concrete field of real numbers R, but instead allowing this to be replaced by an
abstract commutativ ring with unit, such as e.g. the ring of all real polynomials in
the indeterminates {ai, j }si, j=1 and {b j }sj=1.

3 Algebraic Structures of Lie–Butcher Theory

We give a concise summary of the basic algebraic structures behind Lie–Butcher
series.

3.1 Algebras

All vector spaces we consider are over a field3 k of characteristic 0, e.g. k ∈ {R,C}.
Definition 1 (Algebra) An algebra {A , ∗} is a vector space A with a k-bilinear
operation ∗ : A × A → A .A is called unital if it has a unit I such that x ∗ I = I ∗ x
for all x ∈ A . The (minus-)associator of the product is defined as

a∗(x, y, z) := x ∗ (y ∗ z) − (x ∗ y) ∗ z.

If the associator is 0, the algebra is called associative.

3In the computer implementationswe are relaxing this to allowkmore generally to be a commutative
ring, such as e.g. polynomials in a set of indeterminates. In this latter case the k-vector space should
instead be called a free k-module. We will not pursue this detail in this exposition.

Lie–Butcher Series, Geometry, Algebra and Computation 81

Definition 2 (Lie algebra) A Lie-algebra is an algebra {g, [·, ·]} such that

[x, y] = −[y, x]
[[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

The bracket [·, ·] is called the commutator or Lie bracket. An associative algebra
{A , ∗} give rise to a Lie algebra Lie(A), where [x, y] = x ∗ y − y ∗ x .

A connection on a fibre bundle which is flat and with constant torsion satisfies the
algebraic conditions of a post-Lie algebra [21]. This algebraic structure first appeared
in a purely operadic setting in [27].

Definition 3 (Post-Lie algebra) A post-Lie algebra {P, [·, ·],!} is a Lie algebra
{P, [·, ·]} together with a bilinear operation ! : P × P → P such that

x ! [y, z] = [x ! y, z] + [x, y ! z] (8)

[x, y] ! z = a!(x, y, z) − a!(y, x, z). (9)

A post-Lie algebra defines a relationship between two Lie algebras [21].

Lemma 1 For a post-Lie algebra P the bi-linear operation

!x, y" = x ! y − y ! x + [x, y] (10)

defines another Lie bracket.

Thus, we have two Lie algebras g = {P, [·, ·]} and g = {P, !·, ·"} related by !.

Definition 4 (Pre-Lie algebra) A pre-Lie algebra {L ,!} is a post-Lie algebra
where [·, ·] ≡ 0, in other words an algebra such that

a!(x, y, z) = a!(y, x, z).

Pre- and post-Lie algebras appear naturally in differential geometry where post-
Lie algebras are intimately linked with the differential geometry of Lie groups and
pre-Lie algebras with Abelian Lie groups (Euclidean spaces).

3.2 Morphisms and Free Objects

All algebras of a given type form a category, which can be thought of as a directed
graph where each node (object) represents an algebra of the given type and the
arrows (edges) represent morphisms. Any composition of morphisms is again a

82 H. Z. Munthe-Kaas and K. K. Føllesdal

morphism.Morphisms aremappings preserving the given algebraic structure. E.g. an
algebramorphismφ : A → A ′ is a k-linearmap satisfyingφ(x ∗ y) = φ(x) ∗ φ(y).
A post-Lie morphism is, similarly, a linear mapping φ : P → P ′ satisfying both
φ([x, y]) = [φ(x),φ(y)] and φ(x ! y) = φ(x) ! φ(y).

In a given category a free object over a set C can informally be thought of as a
generic algebraic structure. The only equations that hold between elements of the
free object are those that follow from the defining axioms of the algebraic structure.
Furthermore the free object is not larger than strictly necessary to be generic. Each
of the elements of C correspond to generators of the free object. In software a free
object can be thought of as a symbolic computing engine; formulas, identities and
algebraic simplifications derived within the free object can be applied to any other
object in the category. Thus, a detailed understanding of the free objects is crucial
for the computer implementation of a given algebraic structure.

Definition 5 (Free object over a set C) In a given category we define4 the free object
over a set C as an object Free(C) together with a map inj : C ↪→ Free(C), called
the canonical injection, such that for any object B in the category and any mapping
φ : C → B there exists a unique morphism ! : Free(C) → B such that the diagram
commutes

C Free(C)

B

inj

φ
! . (11)

We will often consider C ⊂ Free(C) without mentioning the map inj.

Note 1 In category theory a free functor is intimately related to a monad, a concept
which is central in the programming language Haskell. In Haskell the function “inj”
is called “return” and the application of ! on x ∈ Free(C) is written x >== φ.

A free object can be implemented in different ways, but different implementations
are always algebraically isomorphic.

Example 2 Free k-vector space k(C): ConsiderC = {1, 2, 3, . . .} and let inj(j) = ej
represent a basis for k(C). Then k(C) consists of all finiteR-linear combinations of the
basis vectors. Equivalently, we can consider k(C) as the set of all functions C → k
with finite support. The uniquemorphism property states that a linearmap is uniquely
specified from its values on a set of basis vectors in its domain.

Example 3 Free (associative and unital) algebra k〈C〉: Think of C as an alphabet
(collection of letters) C = {a, b, c, . . .}. Let C∗ denote all words over the alphabet,
including the empty word I,

4This definition is not strictly categorical, since the mappings inj and φ are not morphisms inside a
category, but mappings from a set to an object of another category. A proper categorical definition
of a free object, found in any book on category theory, is based on a forgetful functor mapping the
given category into the category of sets. The free functor is the left adjoint of the forgetful functor.

Lie–Butcher Series, Geometry, Algebra and Computation 83

C∗ = {I, a, b, c, . . . , aa, ab, ac, . . . ba, bb, bc, . . .}.

Then k〈C〉 = {k(C∗), ·}, is the vector space containing finite linear combinations of
empty and non-empty words, equipped with a product · which on words is concate-
nation. Example aba · cus = abacus, I · abba = abba · I = abba. This extends by
linearity to k(C

∗) and yields an associative unital algebra. This is also called the
non-commutative polynomial ring over C .

Example 4 Free Lie algebra Lie(C): Again, think of C = {a, b, c, d, . . .} as an
alphabet. Lie(C) ⊂ k〈C〉 is the linear sub space generated by C under the Lie
bracket [w1,w2] = w1 · w2 − w2 · w1 induced from the product in k〈C〉, thus c ∈
C ⇒ c ∈ Lie(C) and x, y ∈ Lie(C) ⇒ x · y − y · x ∈ Lie(C). A basis for Lie(C)

is given by the set of Lyndon words [26]. E.g. for C = {a, b} the first Lyndon words
a, b, ab, aab, abb (up to length 3) represent the commutators

{a, b, [a, b], [a, [a, b]], [[a, b], b], . . .}.

Computations in a free Lie algebra are important inmany applications [20]. Relations
such as [[a, b], c] + [[b, c], a] = [[a, c], b] can be computed in Lie(C) and applied
(evaluated) on concrete data in any Lie algebra g via the Lie algebra morphism
Fφ : Lie(C) → g, whenever an association of the letters with data in the concrete
Lie algebra is provided through a map φ : C → g.

Example 5 Free pre-Lie algebra preLie(C): Consider C = { , , . . .} as a set of
coloured nodes. In many applicationsC = { }, just a single color, and in that case we
omit mentioningC . A coloured rooted tree is a finite connected directed graph where
each node (from C) has exactly one outgoing edge, except the ‘root’ node which has
no edge out. We illustrate a tree with the root on the bottom and the direction of the
edges being down towards the root. Let TC denote the set of all coloured rooted trees,
e.g.

T ≡ T{ } = { , , , , , , , , . . .}
T{ , } = { , , , , , , , , , , , , . . .}

The trees are just graphs without considering an ordering of the branches, so

= and = . Let TC = k(TC). The free pre-Lie algebra over C is [6,
9] preLie(C) = {TC ,!}, where ! : TC × TC denotes the grafting product. For
τ1, τ2 ∈ TC , the product τ1 ! τ2 is the sum of all possible attachments of the root
of τ1 to one of the nodes of τ2 as shown in this example:

! = + 2

84 H. Z. Munthe-Kaas and K. K. Føllesdal

The grafting extends by linearity to all of TC .

Example 6 Free magma Magma(C) ∼= OTC : The algebraic definition of a magma
is a set C = { , , . . .} with a binary operation × without any algebraic relations
imposed. The free magma overC consists of all possible ways to parenthesize binary
operations on C , such as (× (×)) × (×). There are many isomorphic ways
to represent the free magma. For our purpose it is convenient to represent the free
magma as ordered (planar5) trees with coloured nodes. We let C denote a set of
coloured nodes and let OTC be the set of all ordered rooted trees with nodes chosen
from C . On the trees we interpret × as the Butcher product [3]: τ1 × τ2 = τ is a tree
where the root of the tree τ2 is attached to the right part of the root of the tree τ1, e.g.:

× = = (× (×)) × (×).

If C = { } has only one element, we write OT := OT{ }. The first few elements of
OT are:

OT =

, , , , , , , , , . . .

.

Example 7 The free post-Lie algebra, postLie(C), is given as

postLie(C) = {Lie(Magma(C)),!}, (12)

where the product! is defined on k(Magma(C)) as a derivation of themagmatic product

τ ! c = c × τ for c ∈ C , (13)

τ ! (τ1 × τ2) = (τ ! τ1) × τ2 + τ1 × (τ ! τ2), (14)

and it is extended by linearity and Eqs. (8)–(9) to all of Lie(Magma(C)).
Under the identification Magma(C) ∼= OTC , the product ! : k(OTC) × k(OTC) →

k(OTC) is given by left grafting. For τ1, τ2 ∈ OTC , the product τ1 ! τ2 is the sum of
all possible attachments of the root of τ1 to the left side of each node of τ2 as shown
in this example:

! = + + .

A Lyndon basis for postLie(C) is given in [19].

5Trees with different orderings of the branches are considered different, as embedded in the plane.

Lie–Butcher Series, Geometry, Algebra and Computation 85

3.3 Enveloping Algebras

Lie algebras, pre- and post-Lie algebras are associated with algebras of first order
differential operators (vector fields). Differential operators of higher order are
obtained by compositions of these.Algebraically this is described through enveloping
algebras.

3.3.1 Lie Enveloping Algebras

Recall that Lie(·) is a functor sending an associative algebra A to a Lie algebra
Lie(A), where [x, y] = x · y − y · x , and it sends associative algebra homomor-
phisms to Lie algebra homomorphisms. The universal enveloping algebra of a Lie
algebra is defined via a functor U from Lie algebras to associative algebras being
the left adjoint of Lie. This means the following:

Definition 6 (Lie universal enveloping algebra U (g)) The universal enveloping
algebra of a Lie algebra g is a unital associative algebra {U (g), ·, I} together with
a Lie algebra morphism inj : g → Lie(U (g)) such that for any associative algebra
A and any Lie algebra morphism φ : g → Lie(A) there exists a unique associative
algebra morphism ! : U (g) → A such that φ = Lie(!) ◦ inj.

g Lie(U (g)) U (g)

Lie(A) A

inj

φ Lie(!) ! (15)

The Poincaré–Birkhoff–Witt Theorem states that for any Lie algebra gwith a basis
{e j }, with some total ordering e j < ek , one gets a basis forU (g) by taking the set of
all canonicalmonomials defined as the non-decreasing products of the basis elements
{e j }

PBWbasis(U (g)) = {e j1 · e j2 · · · e jr : e j1 ≤ e j2 ≤ · · · ≤ e jr , r ∈ N},

where we have identified g ⊂ U (g) using inj. From this it follows that U (g) is a
filtered algebra, splitting in a direct sum

U (g) = ⊕∞
j=0Uj (g),

where Uj (g) is the span of the canonical monomials of length j , U0 = span(I) and
U1(g) ∼= g. Furthermore,U (g) is connected, meaning thatU0 ∼= k, and it is generated
by U1, meaning that U (g) has no proper subalgebra containing U1.

86 H. Z. Munthe-Kaas and K. K. Føllesdal

3.3.2 Hopf Algebras

Recall that a bi-algebra is a unital associative algebra {B, ·, I} together with a co-
associative co-algebra structure6 {H,∆, ε}, where ∆ : B → B ⊗ B is the coproduct
and ε : B → k is the co-unit. The product and coproduct must satisfy the compati-
bility condition

∆(x · y) = ∆(x) · ∆(y), (16)

where the product on the right is componentwise in the tensor product.

Definition 7 (Hopf algebra) A Hopf algebra {H, ·, I,∆, ε, S} is a bi-algebra with
an antipode S : H → H such that the diagram below commutes.

H ⊗ H H ⊗ H

H k H

H ⊗ H H ⊗ H

S⊗id

·
ε

∆

∆

I

id⊗S

·
(17)

Example 8 The concatenation de-shuffle Hopf algebra U (g): The enveloping
algebraU (g) has the structure of aHopf algebra, where the coproduct∆66 : U (g) →
U (g) ⊗U (g) is defined as

∆66 (I) = I ⊗ I (18)

∆66 (x) = I ⊗ x + x ⊗ I, for all x ∈ g (19)

∆66 (x · y) = ∆66 (x) · ∆66 (y), for all x, y ∈ U (g). (20)

We call this the de-shuffle coproduct, since it is the dual of the shuffle product. The
co-unit is defined as

ε(I) = 1 (21)

ε(x) = 0, x ∈ Uj (g), j > 0, (22)

and the antipode S : U (g) → U (g) as

S(x1 · x2 · · · x j) = (−1) j x j · · · x2 · x1 for all x1, . . . , x j ∈ g. (23)

This turnsU (g) into a filtered, connected, co-commutative Hopf algebra. Connected
means that U0 ∼= k and co-commutative that ∆66 satisfies the diagrams of a com-

6An associative algebra can be defined by commutative diagrams. The co-algebra structure is
obtained by reversing all arrows.

Lie–Butcher Series, Geometry, Algebra and Computation 87

mutative product, with the arrows reversed. The dual of a commutative product is
co-commutative.

The primitive elements of a Hopf algebra H , defined as

Prim(H) = {x ∈ H : ∆(x) = x ⊗ I+ I ⊗ x}

form a Lie algebra with [x, y] = x · y − y · x . The Cartier–Milnor–Moore theorem
(CMM) states that if H is a connected, filtered, co-commutative Hopf algebra, then
U (Prim(H)) is isomorphic to H as a Hopf algebra. A consequence of CMM is that
the enveloping algebra of a free Lie algebra over a set C is given as

U (Lie(C)) = k〈C〉, (24)

the non-commutative polynomials in C . Thus, a basis for U (Lie(C)) is given by
non-commutative monomials (the empty and non-empty words in C∗).

3.3.3 Post-Lie Enveloping Algebras

Enveloping algebras of pre- and post-Lie algebras are discussed by several authors
[12, 21–23]. In our opinion the algebraic structure of the enveloping algebras are eas-
iest to motivate by discussing the post-Lie case, and obtaining the pre-Lie enveloping
algebra as a special case. For Lie algebras the enveloping algebras are associative
algebras. The corresponding algebraic structure of a post-Lie enveloping algebra is
called a D-algebra (D for derivation) [21, 22]:

Definition 8 (D-algebra) Let A be a unital associative algebra with a bilinear opera-
tion ! : A ⊗ A → A. Write Der(A) for the set of all u ∈ A such that v %→ u ! v is a
derivation: Der(A) = {u ∈ A : u ! (vw) = (u ! v)w + v(u ! w) for all v,w ∈ A}.
We call A a D-algebra if for any u ∈ Der(A) and any v,w ∈ A we have

I ! v = v (25)

v ! u ∈ Der(A) (26)

(uv) ! w = a!(u, v,w) ≡ u ! (v ! w) − (u ! v) ! w. (27)

In [21] it is shown:

Proposition 1 For any D-algebra A the set of derivations forms a post-Lie algebra

postLie(A) := {Der(A), [·, ·],!},

where [x, y] = xy − yx.

Thus, postLie(·) is a functor from the category of D-algebras to the category of post-
Lie algebras. There is a functor U (·) from post-Lie algebras to D-algebras, which is

88 H. Z. Munthe-Kaas and K. K. Føllesdal

the left adjoint of postLie(·). We can define post-Lie enveloping algebras similarly
to Definition 6. A direct construction of the post-Lie enveloping algebra is obtained
by extending ! to the Lie enveloping algebra of the post-Lie algebra [21]:

Definition 9 (Post-Lie enveloping algebraU(P)) Let {P, [·, ·],!} be post-Lie, let
{UL , ·} = U ({P, [·, ·]}) be the Lie enveloping algebra and identify P ⊂ UL . The
post-Lie enveloping algebraU (P) = {UL , ·,!} is defined by extending ! fromP
to UL according to

I ! v = v (28)

v ! I = 0 (29)

u ! (vw) = (u ! v)w + v(u ! w) (30)

(uv) ! w = a!(u, v,w) := u ! (v ! w) − (u ! v) ! w (31)

for all u ∈ P and v,w ∈ UL . This construction yields U (·) : postLie → D-algebra
as a left adjoint functor of postLie(·).

Amore detailed understanding ofU (P) is obtained by considering its Hopf alge-
bra structures. A Lie enveloping algebra is naturally also a Hopf algebra with the
de-shuffle coproduct∆66 . With this coproductU (P) becomes a graded, connected,
co-commutative Hopf algebra where Der(U (P)) = Prim(U (P)) = P . Further-
more, the coproduct is compatible with ! in the following sense [12]:

A ! I = ε(A)

ε(A ! B) = ε(A)ε(B)

∆66 (A ! B) =
∑

∆66 (A),∆66 (B)

(A(1) ! B(1)) ⊗ (A(2) ! B(2))

for all A, B ∈ U (P). Here and in the sequel we employ Sweedler’s notation for
coproducts,

∆(A) =:
∑

∆(A)

A(1) ⊗ A(2).

7Sometimes we need a repeated use of a coproduct. Let ∆ω = ∑
ω(1) ⊗ ω(2). We

continue by using ∆ to split either ω(1) or ω(2). Since the coproduct is co-associative
this yields the same result ∆2ω = ∑

ω(1) ⊗ ω(2) ⊗ ω(3), and n applications are
denoted

∆n(A) =:
∑

∆n(A)

A(1) ⊗ A(2) ⊗ · · · ⊗ A(n+1).

Just as a post-Lie algebra always has two Lie algebras g and g, the post-Lie
enveloping algebraU (P) has two associative products x, y %→ xy from the envelop-
ing algebra U (g) and x, y %→ x ∗ y from U (g). Both of these products define Hopf

7Splitting with regard to the coproduct ∆.

Lie–Butcher Series, Geometry, Algebra and Computation 89

algebras with the same unit I, co-unit ε and de-shuffle coproduct ∆66 , but with
different antipodes.

Proposition 2 [12] On U (P) the product

A ∗ B :=
∑

∆66 (A)

A(1)(A(2) ! B) (32)

is associative. Furthermore {U (P), ∗,∆66 } ∼= U (g) are isomorphic as Hopf alge-
bras.

The following result is crucial for handling the non-commutativity and non-
associativity of !:

Proposition 3 [12, 22] For all A, B,C ∈ U (P) we have

A ! (B ! C) = (A ∗ B) ! C. (33)

The free enveloping post-Lie algebra.

Finally we introduce the enveloping algebra of the free post-Lie algebra
U (postLie(C)). Due to CMM, we know that it is constructed from the Hopf algebra

U (postLie(C)) = U (Lie(OTC)) = k〈OTC 〉,

i.e. finite linear combinations of words of ordered trees, henceforth called (ordered)
forests OFC . If C contains only one element, we call the forests OF:

OF = {I, , , , , , , , . . .}

The Hopf algebra has concatenation of forests as product and coproduct ∆66
being de-shuffle of forests. Upon this we define ! as left grafting on ordered trees,
extended to forests by (28)–(31), where I is the empty forest, u is an ordered tree and
v,w are ordered forests. The left grafting of a forest on another is combinatorially
the sum of all possible left attachments of the roots of trees in the left forest to the
nodes of the right forest, maintaining order when attaching to the same node, as in
this example

! = + + + + + + + +

Four Hopf algebras on ordered forests.

On k〈OFC 〉 we have two associative products ∗ and the concatenation product,
denoted ·. Both these form Hopf algebras with the de-shuffle coproduct ∆66 and
antipodes S· and S∗, where

90 H. Z. Munthe-Kaas and K. K. Føllesdal

S·(τ1 · τ2 · · · τk) = (−1)kτk · · · τ2 · τ1, for τ1 · τ2 · · · τk ∈ OTC

and S∗ given in (71). With their duals, we have the following four Hopf algebras:

H· = {k〈OFC 〉,∆66 , ·, S·}
H∗ = {k〈OFC 〉,∆66 , ∗, S∗}
H ′

· = {k〈OFC 〉,∆·, 66 , S·}
H ′

∗ = {k〈OFC 〉,∆∗, 66 , S∗}.

The four share the same unit I : k → H : 1 %→ I and the same co-unit ε : H →
k, where ε(I) = 1 and ε(ω) = 0 for all ω ∈ OFC\{I}. All four Hopf algebras are
connected and graded with |ω| counting the number of nodes in a forest. H· and
H ′

· are also connected and graded with the word length as a grading, although this
grading is of less importance for our applications.

3.3.4 Lie–Butcher Series

The vector space k〈OTC 〉 consists of finite linear combinations of forests. In order
to be able to symbolically represent flow maps and backward error analysis, we
do, however, need to extend the space to infinite sums. For a (non-commutative)
polynomial ring k〈C〉, we denote k〈〈C〉〉 the set of infinite (formal) power series. Let
〈·, ·〉 : k〈C〉 × k〈C〉 → k denote the inner product where the monomials (words in
C∗) form an orthonormal basis. This extends to a dual pairing

〈·, ·〉 : k〈〈C〉〉 × k〈C〉 → k, (34)

which identifies k〈〈C〉〉 = k〈C〉∗ as the linar dual space. Any α ∈ k〈〈C〉〉 is uniquely
determined by its evaluation on the finite polynomials, and we may write α as a
formal infinite sum

α =
∑

w∈C∗
〈α,w〉w.

Any k-linearmap f : k〈〈C〉〉 → k〈〈C〉〉 can be computed from its dual f ∗ : k〈C〉 →
k〈C〉 as 〈 f (α),w〉 = 〈α, f ∗(w)〉for all w ∈ C∗.

Definition 10 (Lie–Butcher series LB(C)) The Lie–Butcher series over a set C is
defined as the completion

LB(C) := U (postLie(C))∗.

This is the vector space k〈〈OTC 〉〉 (infinite linear combinations of ordered forests).
All the operations we consider on this space are defined by their duals acting upon
k〈OTC 〉, see Sect. 4.1.

The space LB(C) has two important subsets, the primitive elements and the group
like elements.

Lie–Butcher Series, Geometry, Algebra and Computation 91

Definition 11 (Primitive elements gLB) The primitive elements of LB(C), denoted
gLB are given as

gLB = {α ∈ LB(C) : ∆66 (α) = α ⊗ I+ I ⊗ α}, (35)

where ∆66 is the graded completion of the de-shuffle coproduct. This forms a post-
Lie algebra which is the graded completion of the free post-Lie algebra postLie(C).

Definition 12 (The Lie–Butcher group GLB) The group like elements of LB(C),
denoted GLB are given as

GLB = {α ∈ LB(C) : ∆66 (α) = α ⊗ α}, (36)

where ∆66 is the graded completion of the de-shuffle coproduct.

The Lie–Butcher group is a group both with respect to the concatenation product
and the product ∗ in (32). There are also two exponential maps with respect to the
two associative products sending primitive elements to group-like elements

exp, exp∗ : gLB → GLB.

Both these are 1–1 mappings with inverses given by the corresponding logarithms

log, log∗ : GLB → gLB.

4 Computing with Lie–Butcher Series

In this section, we will list important operations on Lie–Butcher series. A focus will
be given on recursive formulations which are suited for computer implementations.

4.1 Operations on Infinite Series Computed by Dualisation

Lie–Butcher series are infinite series, and in principle the only computation we
consider on an infinite series is the evaluation of the dual pairing (34). All operations
on infinite Lie–Butcher series, α ∈ LB(C), are computed by dualisation, throwing
the operation over to the finite right hand part of the dual pairing. By recursions, the
dual computation on the right hand side is moving towards terms with a lower grade,
and finally terminates. Somemodern programming languages, such asHaskell, allow
for lazy evaluation, meaning that terms are not computed before they are needed to
produce a result. This way it is possible to implement proper infinite series.

92 H. Z. Munthe-Kaas and K. K. Føllesdal

Example 9 The computation of the de-shuffle coproduct of infinite series can be
computed as

〈∆66 (α),ω1 ⊗ ω2〉 = 〈α,ω1 66ω2〉, (37)

where the pairing on the left is defined componentwise in the tensor product,

〈α1 ⊗ α2,ω1 ⊗ ω2〉 = 〈α1,ω1〉 · 〈α2,ω2〉

and shuffle product ω 66 ω̃ of two words in an alphabet is the sum over all permu-
tations of ωω̃ which are not changing the internal order of the letters coming from
each part, e.g.

ab 66 cd = abcd + acbd + cabd + acdb + cadb + cdab.

A recursive formula for the shuffle product is given below.

Any linear operation whose dual sends polynomials in k〈OTC 〉 to polynomials (or
tensor products of these) is well defined on infinite LB-series by such dualisation.

Linear algebraic operations.

+: LB(C) × LB(C) → LB(C) (addition)

· : k×LB(C) → LB(C) (scalar multiplication).

These are computed as 〈α + β,w〉 = 〈α,w〉 + 〈β,w〉 and 〈c · α,w〉 = c · 〈α,w〉.
Note that gLB ⊂ LB(C) is a linear subspace closed under these operations, GLB ⊂
LB(C) is not a linear subspace.

4.2 Operations on Forests Computed by Recursions
in a Magma

Similar to the case of trees, Sect. 3.2, many recursion formulas for forests are suitably
formulated in terms of magmatic products on forests. Let B− : OTC → OFC denote
the removal of the root, sending a tree to the forest containing the branches of the
root, and for every c ∈ C define B+

c : OFC → OTC as the addition of a root of colour
c to a forest, producing a tree, example

B−() = , B+
()

= .

Definition 13 (Magmatic products on OFC) For every c ∈ C , define a product
×c : OFC × OFC → OFC as

ω1 ×c ω2 := ω1B+
c (ω2). (38)

Lie–Butcher Series, Geometry, Algebra and Computation 93

In the special case whereC = { } contains just one element, then B+ : OF → OT
is 1–1, sending the above product on forests to the Butcher product on trees;
B+(ω1 × ω2) = B+(ω1) × B+(ω2). Thus, in this case {OF,× } ∼= {OT,×} ∼=
Magma({ }).

For a general C we have that any ω ∈ OFC\I has a unique decomposition

ω = ωL ×c ωR, c ∈ C, ωL ,ωR ∈ OFC . (39)

The set of forests OFC is freely generated from I by these products, e.g.

= (I × ((I × I) × I)) × (I × I).

Thus, there is a 1–1 correspondence betweenOFC and binary trees where the internal
nodes are colouredwithC .Wemay take the binary tree representation as thedefinition
of OFC and express any computation in terms of this.

Definition 14 (Magmatic definition ofOFC) Given a set C , the ordered forests OFC

are defined recursively as

I ∈ OFC (40)

ω = ωL ×C ωR ∈ OFC for evey ωL ,ωR ∈ OFC and c ∈ C . (41)

OFC has the following operations:

isEmpty : OFC → bool, defined by isEmpty(I) = ‘true’, otherwise ‘false’.
Left : OFC → OFC , defined by Left(ωL ×c ωR) = ωL .
Right : OFC → OFC , defined by Right(ωL ×c ωR) = ωR .
Root : OFC → C , defined by Root(ωL ×c ωR) = c.

Left(I), Right(I) and Root(I) are undefined.

Any operation on forests can be expressed in terms of these.We can define ordered
trees as the subset OTC ⊂ OFC

OTC := {τ ∈ OFC : Left(τ) = I} ,

and in particular the nodes C ⊂ OFC are identified as C ∼= {I ×c I}. From this we
define B− : OTC → OFC and B+

c : OFC → OTC as

B−(τ) = Right(τ) (42)

B+
c (ω) = I ×c ω. (43)

The Butcher product of two trees τ, τ ′ ∈ OTC , where c = Root(τ), c′ = Root(τ ′) is

τ × τ ′ := B+
c (B

−(τ) ×c′ B−(τ ′)).

94 H. Z. Munthe-Kaas and K. K. Føllesdal

4.3 Combinatorial Functions on Ordered Forests

The order of ω ∈ OFC , denoted |ω| ∈ N, counts the number of nodes in the forest.
It is computed by the recursion

|I| = 0 (44)

|ωL × ωR| = |ωL | + |ωR| + 1. (45)

This counts the number of nodes in ω.
The ordered forest factorial, denoted ω¡ ∈ N is defined by the recursion

I¡ = 1 (46)

ω¡ = (ωL × ωR)¡ = |ω| · ωL ¡ · ωR¡. (47)

We will see that the ordered factorial is important for characterising the flow map
(exact solution) of a differential equation. This is a generalisation of the more well-
known tree factorial function for un-ordered trees, which is denoted τ ! and defined
by the recursion

! = 1

τ ! = |τ | · τ1! · τ2! · · · τp!

for τ = B+(τ1τ2 · · · τp).
The relationship between the classical (unordered) and the ordered tree factorial

functions is
σ (τ)

∑

τ ′∼τ

1
τ ′¡

= 1
τ ! ,

where the sum runs over all ordered trees that are equivalent under permutation of
the branches and σ (τ) is the symmetry factor of the tree. This identity can be derived
from the relationship between classical B-series and LB-series discussed in Sect. 4.1
of [22], by comparing the exact flow maps exp∗() in the two cases. We omit details.

Example 10

1/ ¡+ 1/ ¡ = 1
12

+ 1
24

= 1
8
= 1/ !

and

2

1/ ¡+ 1/ ¡+ 1/ ¡

 = 2
(

1
40

+ 1
60

+ 1
120

)
= 1

10
= 1/ !.

Lie–Butcher Series, Geometry, Algebra and Computation 95

Table 1 Ordered forest factorial for all forest up to and including order 5

96 H. Z. Munthe-Kaas and K. K. Føllesdal

For the tall tree τ = I × (I × (I × (· · · × (I × I)))) we have τ ¡ = τ ! = |τ |!.
Table 1 on p. 25 contains the ordered forest factorial for all ordered forests up to and
including order 5.

4.4 Concatenation and De-concatenation

Concatenation and de-concatenation

· : k〈OTC 〉 ⊗ k〈OTC 〉 → k〈OTC 〉
∆· : k〈OTC 〉 → k〈OTC 〉 ⊗ k〈OTC 〉

form a pair of dual operations, just like 66 and∆66 in (37). Onmonomialsω ∈ OFC

these are given by

ω · ω′ = ωω′

∆·(ω) =
∑

ω1 ,ω2∈OFC
ω1·ω2=ω

ω1 ⊗ ω2,

thus for ω = τ1τ2 · · · τk , τ1, . . . , τk ∈ OTC we have

∆·(ω) = ω ⊗ I+ I ⊗ ω +
k∑

j=1

τ1 · · · τ j ⊗ τ j+1 · · · τk .

Recursive formulas, where ω̃ ∈ OFC , ω = ωL ×c ωR are

ω̃ · I = ω̃ (48)

ω̃ · ω = (ω̃ · ωL) ×c ωR (49)

and

∆·(I) = I ⊗ I (50)

∆·(ω) = ∆·(ωL) · (I ⊗ (I ×c ωR))+ ω ⊗ I. (51)

See Table 28 on p. 27 for deconcatenation of all ordered forests up to and including
order 4.

8Note that the number under the terms are the coefficients to the terms.

Lie–Butcher Series, Geometry, Algebra and Computation 97

Table 2 Deconcatenation and deshuffle for ordered forest up to and including order 4. Note that
the numbers under the terms are the coefficients to the terms

98 H. Z. Munthe-Kaas and K. K. Føllesdal

Fig. 1 See Table 2 on p. 27 for more examples on deshuffle

The concatenation antipode S·, defined in (23), is computed by the recursion

S·(I) = I (52)

S·(ωL ×c ωR) = −B+
c (ωR) · S·(ωL). (53)

S· reverse the order of the trees in the forest and negate if there is a odd number of
trees in the the forest. See Table 2 on p. 27.

4.5 Shuffle and De-shuffle

The duality of ∆66 and 66 is given in (37). A recursive formula for ω 66 ω̃ where
ω, ω̃ ∈ OFC is obtained from the decomposition ω = ωL ×c ωR , ω̃ = ω̃L ×c̃ ω̃R as

I66 ω = ω 66 I = ω (54)

ω 66 ω̃ = (ωL 66 ω̃) ×c ωR + (ω 66 ω̃L) ×c̃ ω̃R, (55)

while (18)–(20) yields the recursion

∆66 (I) = I ⊗ I (56)

∆66 (ω) = ∆66 (ωL) · ((I ×c ωR) ⊗ I+ I ⊗ (I ×c ωR))) . (57)

The shuffle product 66 of two forests is the summation over all permutations of the
trees in the forests while preserving the ordering of the trees in each of the initial
forests (Fig. 1).

4.6 Grafting, Pruning, GL Product and GL Coproduct

These are four closely related operations. Grafting is defined in (13)–(14) for trees
and (28)–(31) for forests (here u is a tree). Grafting can also be expressed directly
through the magmatic definition of OFC . First we need to decompose ω ∈ OFC\I as
a concatenation of a tree on the left with a forest on the right, ω = τ ′ · ω′. We define

Lie–Butcher Series, Geometry, Algebra and Computation 99

Fig. 2 See Table 3 on p. 30 and Table 4 on p. 31 for more examples

Fig. 3 See also Table 4 on p. 31

the decomposition τ ′ = LeftTree(ω), ω′ = RightForest(ω) through the following
recursions, where τ ∈ OTC and ω = ωL ×c ωR :

LeftTree(τ) = τ (58)

LeftTree(ω) = LeftTree(ωL) (59)

RightForest(τ) = I (60)

RightForest(ω) = RightForest(ωL) ×c ωR . (61)

The general recursion for grafting of forests becomes

I ! ω = ω (62)

τ ! I = 0 (63)

τ ! (ωL ×c ωR) = (τ ! ωL) ×c ωR + ωL ×c (τ · ωR + τ ! ωR) (64)

(τ · ω) ! ω̃ = τ ! (ω ! ω̃) − (τ ! ω) ! ω̃, (65)

for all τ ∈ OTC , ω, ω̃,ωL ,ωR ∈ OFC , c ∈ C . See Table 3 on p. 30 for examples.
The associative product ∗ defined in (32) is, in the context of polynomials of

ordered trees k〈OTC 〉, called the (ordered) Grossman–Larsson product [22], GL
product for short. On k〈OTC 〉 (and even on LB(C)), we can compute ∗ from grafting
as

ω1 ∗ ω2 = B−(ω1 ! B+(ω2)).

The colour of the added root is irrelevant, since this root is later removed by B−. See
Table 3 on p. 30 for examples (Figs. 2 and 3).

The dual of ∗, the GL coproduct ∆∗ : k〈OFC 〉 → k〈OFC 〉 ⊗ k〈OFC 〉 has several
different characterisations, in terms of left admissible cuts of trees and by recur-
sion [22]. For ω = ωL ×c ωR the recursion is

∆∗(I) = I ⊗ I (66)

∆∗(ω) = ω ⊗ I+ ∆∗(ωL)66 ×c ∆∗(ωR), (67)

100 H. Z. Munthe-Kaas and K. K. Føllesdal

Table 3 Grafting and Grossman-Larsson product for all combinations of non-empty trees with
total order up to and including order 4. Note that the numbers under the terms are the coefficients
to the terms

Lie–Butcher Series, Geometry, Algebra and Computation 101

Table 4 Pruning and dual Grossman-Larsson coproduct for all forests up to and including order
4. Note that the numbers under the terms are the coefficients to the terms

102 H. Z. Munthe-Kaas and K. K. Føllesdal

where 66×c : k〈OTC 〉 ⊗ k〈OTC 〉 ⊗ k〈OTC 〉 ⊗ k〈OTC 〉 → k〈OTC 〉 ⊗ k〈OTC 〉
denotes

(α ⊗ α̃)66 ×c (ω ⊗ ω̃) := (α 66ω) ⊗ (̃α ×c ω̃).

The grafting operation ! : k〈OTC 〉 × k〈OTC 〉 → k〈OTC 〉 has a right sided dual
we call pruning, ∆! : k〈OTC 〉 → k〈OTC 〉 × k〈OTC 〉, dual in the usual sense

〈α ! β,ω〉 = 〈α ⊗ β,∆!(ω)〉.

The pruning is characterised by admissible cuts in [16], or it can be computed by the
following recursion involving both itself and the GL coproduct,

∆!(I) = I ⊗ I (68)

∆!(ωL ×c ωR) = ∆!(ωL)66 ×c ∆∗(ωR). (69)

The Lie–Butcher group and the antipode S∗.
The product in the Lie-Butcher group GLB is the GL product α,β %→ α ∗ β. The
inverse is given by the antipode (with respect to ∗-product), an endomorphism S∗ ∈
End(k〈OTC 〉) such that

〈α∗−1,ω〉 = 〈α, S∗(ω)〉. (70)

A recursive formula for S∗ is found in [22]. In our magmatic representation of forests
we have

S∗(ωL ×c ωR) = −66 ((S∗ ⊗ I)(∆∗(ωL)66 ×c ∆∗(ωR))) . (71)

Table 5 on p. 33 contain the the result of applying S∗ to all ordered forests up to
and including order 4.

4.7 Substitution, Co-substitution, Scaling and Derivation

A LB-series is an infinite series of forests built from nodes. The substitution law [4,
7, 16, 25] expresses the operation of replacing each node with an entire LB series.
Since a node represents a primitive element, it is necessary to require that the LB-
series in the substitution must be an element of gLB. The universal property of the
free enveloping algebra U (postLie(C)) implies that for any mapping a : C → P
from C into a post-Lie algebra P , there exists a unique D-algebra morphism
! : U (postLie(C)) → U (P) such that the diagram commutes

Lie–Butcher Series, Geometry, Algebra and Computation 103

Table 5 Concatenation and Grossman-Larsson antipode map for all forests up to and including
order 4. Note that the numbers under the terms are the coefficients to the terms

104 H. Z. Munthe-Kaas and K. K. Føllesdal

C U (postLie(C))

P U (P)

inj

a !
inj

(72)

In particular this holds if P = postLie(C), and it also holds if U (postLie(C)) is
replaced with its graded completion LB(C). From this we obtain the algebraic defi-
nition of substitution:

Definition 15 (Substitution) Given a mapping a : C → gLB there exists a unique
D-algebra automorphism a0 : LB(C) → LB(C) such that the diagram commutes

C LB(C)

gLB LB(C).

inj

a a0

inj

(73)

This morphism is called substitution.

The automorphism property implies that it enjoys many identities such as

a 0 I = I (74)

a 0 (ωω′) = (a 0 ω)(a 0 ω′) (75)

a 0 (ω ! ω′) = (a 0 ω) ! (a 0 ω′) (76)

a 0 (ω ∗ ω′) = (a 0 ω) ∗ (a 0 ω′) (77)

(a 0 ⊗a0)(∆66 (ω)) = ∆66 (a 0 ω). (78)

For more details, see [16].
As explained earlier, computations with LB-series are done by considering the

series together with a pairing on the space of finite series and computations are
performed by deriving how the given operation is expressed as an operation on finite
series, via the dual. Thus, to compute substitution of infinite series, we need to
characterise the dual map, called co-substitution.

Definition 16 (Co-substitution) Given a substitution a0 : LB(C) → LB(C), the co-
substitution aT

0 is a k-linear map aT
0 : k〈OTC 〉 → k〈OTC 〉 such that

〈a 0 β, x〉 = 〈β, aT
0 (x)〉

for all β ∈ LB(C) and x ∈ k〈OTC 〉.

A recursive formula for the co-substitution is derived in [16] in the case where
C = { }. A general formula for arbitrary finite C is given here, the proof of this
formula is similar to the proof in [16] but we omit it. The general formula for aT

0 (ω)

is based on decomposing ω with the de-concatenation coproduct ∆· and thereafter

Lie–Butcher Series, Geometry, Algebra and Computation 105

decomposing the second component with the pruning coproduct ∆!. To clarify the
notation, the decomposition is as follows

(I ⊗ ∆!) ◦ ∆·(ω) =
∑

∆.(ω)

∑

∆!(ω(2))

ω(1) ⊗ ω(2)(1) ⊗ ω(2)(2).

With this decomposition, a recursion for aT
0 is given as aT

0 (I) = I and forω ∈ OFC\I

aT
0 (ω) =

∑

c∈C

∑

∆.(ω)

∑

∆!(ω(2))

(
aT

0 (ω(1)) ×c aT
0 (ω(2)(1))

)
〈a(c),ω(2)(2)〉. (79)

The recursion is written more compactly as

aT
0 =

∑

c∈C
µ· ◦ (µ×c ⊗ I) ◦ (aT

0 ⊗ aT
0 ⊗ a(c)) ◦ (I ⊗ ∆!) ◦ ∆· ,

where µ·(ω ⊗ ω′) := ω · ω′, µ×c(ω ⊗ ω′) := ω ×c ω′ and a(c) : k〈OTC 〉 → k
denotes ω %→ 〈a(c),ω〉.

See Table 6 on p. 36 where cosubstitution is calculated for all forests up to and
including order 4, assuming a is a infinitesimal character.

Since a0 is compatible with∆66 in the sense of (78), it follows that aT
0 is a shuffle

homomorphism (a character) satisfying

aT
0 (ω 66 ω′) = aT

0 (ω)66 aT
0 (ω

′).

Definition 17 (Scaling) For t ∈ k define the map t (c) = tc : C → gLB. The corre-
sponding substitution α %→ t 0 α is called scaling by t . For a fixed alpha t %→ t 0 α

defines a curve in LB(C)

Note that t 0 ω = t |ω|ω and hence 〈t 0 α,ω〉 = t |ω|〈α,ω〉 for all ω ∈ OFC .

Definition 18 (Derivation) The derivative of a LB-series α, denoted Dα is defined
as

〈Dα,ω〉 = |ω|〈α,ω〉.

Note that if k = R we have Dα = d
dt

∣∣
t=1 (t 0 α).

4.8 Exponentials and Logarithms

We have three types of exponential type mappings exp·, exp∗, evol : gLB → GLB.
These are all 1–1 mappings with an inverse being a kind of logarithm. In the inter-
pretation of vector fields on Lie groups, exp· defines the geodesics of the connection
and exp∗ computes the exact flow of a vector field. The third of these, evol, computes

106 H. Z. Munthe-Kaas and K. K. Føllesdal

Table 6 Cosubstitution for an infinitesimal character α for all forest up to and including order 4

Lie–Butcher Series, Geometry, Algebra and Computation 107

a curve in a Lie group from its development in the Lie algebra i.e. solves an equation
of Lie type y′(t) = y(t)γ (t) where γ (t) = y−1(t)y′(t) is the development of y(t)
(left logarithmic derivative). We will have a closer look at these three maps and their
inverses.

Definition 19 (Concatenation exponential) The concatenation exponential
exp· : gLB → GLB is defined as

exp·(α) = I+ α + 1
2
αα + 1

6
ααα + · · · =

∞∑

j=0

1
j !α

· j . (80)

In the algebra U (postLie(C)), with the grading given by PBW, U0 = k I, U1 =
postLie(C) and U1 is generated from U1 by 1-fold shuffle products. Since
〈exp·(α), x 66 y〉 = 〈exp·(α), x〉〈exp·(α), y〉 we have the following result.

Lemma 2 Forα ∈ gLB, the concatenation exponential exp·(α) is the unique element
of GLB such that 〈exp·(α), x〉 = 〈α, x〉 for all x ∈ postLie(C).

The GL-exponential is similarly defined from the GL product ∗:

Definition 20 (GL-exponential) The GL-exponential exp∗ : gLB → GLB is defined
as

exp∗(α) = I+ α + 1
2
α ∗ α + 1

6
α ∗ α ∗ α + · · · =

∞∑

j=0

1
j !α

∗ j . (81)

Recursive formulas for the coefficients of exp∗() are found in [18, 24]. Here we
derive a remarkably simple recursion formula based on the magmatic decomposition
of OF, to our knowledge not found elsewhere:

Lemma 3 For ω = ωL × ωR we have

〈exp∗(), I〉 = 1 (82)

〈exp∗(),ω〉 = 1
|ω| · 〈exp

∗(),ωL〉 · 〈exp∗(),ωR〉, (83)

or equivalently

〈exp∗(),ω〉 = 1
ω¡

, (84)

where ω¡ denotes the ordered forest exponential.

Proof The derivation D exp∗() satisfies 〈D exp∗(),ω〉 = |ω|〈exp∗(),ω〉. On the
other hand, since the t-scaling of the exponential is t 0 exp∗() = exp∗(t) we find

D exp∗() = d
dt

∣∣∣∣
t=1

exp∗(t) = exp∗(t) ∗
∣∣
t=1 = exp∗() ∗ = exp∗()(exp∗() !),

108 H. Z. Munthe-Kaas and K. K. Føllesdal

where we in the rightmost equality use (32) and ∆66 (exp∗()) = exp∗() ⊗ exp∗(),
since exp∗() ∈ GLB. Since ωL × ωR = ωL(ωR !) we find

〈exp∗(),ω〉 = 1
|ω| · 〈D exp∗(),ω〉 = 1

|ω| · 〈exp
∗()(exp∗() !),ωL(ωR !)〉

= 1
|ω| · 〈exp

∗(),ωL〉 · 〈exp∗(),ωR〉.

"

The exponential is thus given as

exp∗() =
∑

ω∈OF

ω

ω¡
, (85)

which justifies the naming of ¡ as a factorial function.
The computation of exp∗(α) for an arbitrary α ∈ gLB can be done by the substi-

tution: If a() = α then

〈exp∗ α,ω〉 = 〈exp∗ a(),ω〉 = 〈exp∗(a 0),ω〉

= 〈a 0 exp∗(),ω〉 = 〈exp∗(), at0(ω)〉 =
1

at0(ω)¡
,

where the forest exponential ¡ is extended to polynomials by linearity.

Backward error.
Whereas exp∗ : gLB → GLB computes the exact flow operator, the inverse log∗ :
GLB → gLB inputs a flow map, and computes the vector field generating this flow.
In numerical analysis this is called the backward error analysis operator and is an
important tool for analysing numerical integrators. The GL-logarithm log∗ is defined
for α ∈ GLB as

log∗ α =
∞∑

n=1

(−1)n−1

n
(α − δ)∗n,

where δ ∈ GLB is the identity in the Lie–Butcher group, given as 〈δ, I〉 = 1 and
〈δ,ω〉 = 0 for ω ∈ OFC\{I}. The GL-logarithm can be computed via its dual oper-
ation, the eulerian idempotent e ∈ End(k〈OFC 〉) such that

〈log∗(α),ω〉 = 〈α, e(ω)〉.

To compute e, we introduce the augmented GL-coproduct defined as

∆∗(ω) := ∆∗(ω) − ω ⊗ I − I ⊗ ω.

Lie–Butcher Series, Geometry, Algebra and Computation 109

The recursion for ∆∗(ω) (66)–(67) yields the following recursion for ∆∗(ω):

∆∗(I) = −I ⊗ I (86)

∆∗(ωL ×c ωR) = (∆∗(ωL)+ ωL ⊗ I)66 ×c (∆∗(ωR)+ ωR ⊗ I). (87)

The eulerian idempotent is computed as

e(ω) =
∑

n≥1

(−1)n−1

n
66 n∆

n−1
∗ (ω),

where 66 n is the shuffle of n arguments and ∆
n
∗ is the n-fold repeated application of

the augmented GL coproduct. See Table 7 on p. 40 for calculations of the eulerian
idempotent for all forests up to and including order 4.

Since α is a character, we obtain the following formula for the backward error

〈log∗(α),ω〉 =
∑

n≥1

(−1)n−1

n

∑

∆
n−1
∗ (ω)

〈α,ω(1)〉 · 〈α,ω(2)〉 · · · 〈α,ω(n)〉. (88)

The development.
For a curve y(t) on a Lie group G, the development is a curve γ (t) ∈ g such that
y′(t) = γ (t)y(t), thus γ (t) = y′(t)y(t)−1 is given by the logarithmic derivative.
There is a corresponding9 combinatorial operation on GLB, given by a linear map
L : k〈OTC 〉 → k〈OTC 〉 called the Dynkin operator, such that

〈α·−1 · Dα,ω〉 = 〈α, L(ω)〉 for every α ∈ GLB. (89)

Lemma 4 The Dynkin operator L is computed as a convolution of endomorphisms,
L , S·, D ∈ End(H ′

·),
L = S. ∗ D := 66 (S· ⊗ D)∆·,

where H ′
· is the Hopf algebra on k〈OTC 〉 with shuffle 66 as product,

de-concatenation∆· coproduct and antipode S·, andwith grading |ω| counting nodes
in the forest. Explicitly we have

L(ω) =
∑

∆·(ω)

S·(ω(1))66 ω(2)|ω(2)|. (90)

9Since the action of differentiation operators composes contravariantly, the order of right and left
is swapped in the mapping from LB-series to differential equations on manifolds.

110 H. Z. Munthe-Kaas and K. K. Føllesdal

Table 7 Dynkin map L and Eulerian idempotent e for all forest up to and including order 4. Note
that the numbers under the terms are the coefficients to the terms

Lie–Butcher Series, Geometry, Algebra and Computation 111

Proof

〈α·−1 · Dα,ω〉 = 〈α·−1 ⊗ Dα,∆·ω〉 =
∑

∆·(ω)

〈α, S·(ω(1))〉〈α, D(ω(2))〉

= 〈α, S·(ω(1))66 Dω(2)〉 = 〈α, (S· ∗ D)(ω)〉.

"

Table 7 on p. 40 contain the Dynkin map applied to all ordered forests up to and
including order 4.

The inverse of the Dynkin map, denoted evol : gLB → GLB, yields a formal LB-
series solution to equations of Lie type, y′(t) = γ (t)y(t), for y(t) ∈ G, where γ (t) ∈
g is given by a LB-series. In [10] it is proven that

evol(α) = I+
∑

n≥1

∑

n1+···+nk=n
n j>0

αn1 ∗ αn2 ∗ · · · ∗ αnk

n1(n1 + n2) · · · (n1 + n2 + · · · + nk)
,

where α = ∑
k≥1 αk and |αk | = k and ∗ is the convolution inH ′

· . For ω ∈ OFC\{I}
this yields

〈evol(α),ω〉 =
∑

n≥1

∑

∆n−1· (ω)

〈α,ω(1)〉 · 〈α,ω(2)〉 · · · 〈α,ω(n)〉
|ω(1)| ·

(
|ω(1)| + |ω(2)|

)
· · ·

(
|ω(1)| + |ω(2)| + · · · + |ω(n)|

) ,

and from this we find the recursion formulae

〈evol(α), I〉 = 1 (91)

〈evol(α),ω〉 = 1
|ω|

∑

∆·(ω)

〈evol(α),ω(1)〉 · 〈α,ω(2)〉 for ω ∈ OFC\{I}. (92)

5 Concluding Remarks

In this paper we have summarized the algebraic structures behind Lie–Butcher series.
For the purpose of computer implementations, we have derived recursive formulae
for all the basic operations on Lie–Butcher series that have appeared in the literature
over the last decade. The simplicity of the recursive formulae are surprising to us.
The GL-coproduct, the GL-exponential, the backward error and the inverse Dynkin
map are in our opinion significantly simpler in their recursive formulations than the
direct.

112 H. Z. Munthe-Kaas and K. K. Føllesdal

5.1 Programming in Haskell

We are in the process of making a software library for computations with post-Lie
algebras and Lie-Butcher series. Aswe have seen in this paper, many of the structures
and operations have nice recursive definitions. Functional programming languages
are well suited for this type of implementation. Haskell is one of the most popular
functional programming languages, it is named after the logician Haskell B. Curry.
The development of Haskell started in 1987 after a meeting at the conference on
Functional Programming Languages and Computer Architecture (FPCA 87), where
the need for common language for research in functional programming languages
was recognized. Haskell has since grown into a mature programming language, not
only used in functional programming research but also in the industry.

Not only do Haskell encourage recursive definitions of functions, it also has
algebraic data types which give us the opportunity to define recursive data types.

Functional programming language will usually result in shorter and more precise
code compared to imperative languages. Mathematical ideas are often straightfor-
ward to translate into a functional language.

A feature of Haskell that come in handy when working with infinite structures
is lazy evaluation, meaning that an expression will not be computed before it is
needed. This is an excellent feature for working with Lie-Butcher series, since these
are infinite series. The infinite series can only be evaluated on finite data, and when
such a computation is requested the system performs the necessary intermediate
computations.

Mathematical ideas such as functors and monads are very important concept in
Haskell, for example IO in Haskell is implemented as a monad. Another example is
the vector space constructor in Haskell is a monad, which makes it very easy to linear
extend a function on basis element to a linear function between vector spaces. Two
other examples of monads are the free functor and the universal enveloping functor.
The elementary differential map of B-series and Lie–Butcher series fits also nicely
into this picture.

Finally, we remark that the proof assistant Coq can output Haskell code, so for
critical parts of the software one can prove correctness of the implementation in Coq
and then output this as verified Haskell code.

References

1. Benettin, G., Giorgilli, A.: On the hamiltonian interpolation of near-to-the identity symplectic
mappings with application to symplectic integration algorithms. J. Stat. Phys. 74(5–6), 1117–
1143 (1994)

2. Butcher, J.C.: Coefficients for the study of Runge-Kutta integration processes. J. Aust. Math.
Soc. 3(02), 185–201 (1963)

3. Butcher, J.C.: An algebraic theory of integration methods. Math. Comput. 26(117), 79–106
(1972)

Lie–Butcher Series, Geometry, Algebra and Computation 113

4. Calaque, D., Ebrahimi-Fard, K., Manchon, D.: Two interacting Hopf algebras of trees: a Hopf-
algebraic approach to composition and substitution of B-series. Adv. Appl. Math. 47(2), 282–
308 (2011)

5. Cayley, A.: On the theory of the analytical forms called trees. Philos. Mag. 13(19), 4–9 (1857)
6. Chapoton, F., Livernet, M.: Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not.

2001(8), 395–408 (2001)
7. Chartier, P., Hairer, E., Vilmart, G.: Numerical integrators based on modified differential equa-

tions. Math. Comput. 76(260), 1941 (2007)
8. Chartier, P., Hairer, E., Vilmart, G.: Algebraic structures of B-series. Found. Comput. Math.

10(4), 407–427 (2010)
9. Dzhumadil’daev, A., Löfwall, C.: Trees, free right-symmetric algebras, free Novikov algebras

and identities. Homol. Homotopy Appl. 4(2), 165–190 (2002)
10. Ebrahimi-Fard,K.,Gracia-Bondía, J.M., Patras, F.:ALie theoretic approach to renormalization.

Commun. Math. Phys. 276(2), 519–549 (2007)
11. Ebrahimi-Fard, K., Lundervold, A., Mencattini, I., Munthe-Kaas, H.Z.: Post-Lie algebras and

isospectral flows. Symmetry Integr. Geom. Methods Appl. (SIGMA) 11(93) (2015)
12. Ebrahimi-Fard, K., Lundervold, A., Munthe-Kaas, H.: On the Lie enveloping algebra of a

post-Lie algebra. J. Lie Theory 25(4), 1139–1165 (2015)
13. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving

Algorithms for Ordinary Differential Equations, Vol. 31. Springer series in computational
mathematics (2006)

14. Hairer, E., Wanner, G.: On the Butcher group and general multi-value methods. Computing
13(1), 1–15 (1974)

15. Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie-group methods. Acta Numer.
2000(9), 215–365 (2000)

16. Lundervold, A., Munthe-Kaas, H.: Backward error analysis and the substitution law for Lie
group integrators. Found. Comput. Math. 13(2), 161–186 (2013)

17. Munthe-Kaas, H.: Lie-Butcher theory for Runge-Kutta methods. BIT Numer. Math. 35(4),
572–587 (1995)

18. Munthe-Kaas, H.: Runge-Kutta methods on Lie groups. BIT Numer. Math. 38(1), 92–111
(1998)

19. Munthe-Kaas, H., Krogstad, S.: On enumeration problems in Lie-Butcher theory. Future Gen.
Comput. Syst. 19(7), 1197–1205 (2003)

20. Munthe-Kaas, H., Owren, B.: Computations in a free Lie algebra. Philos. Trans. R. Soc. Lond.
A Math. Phys. Eng. Sci. 357(1754), 957–981 (1999)

21. Munthe-Kaas, H.Z., Lundervold, A.: On post-Lie algebras, Lie-butcher series and moving
frames. Found. Comput. Math. 13(4), 583–613 (2013)

22. Munthe-Kaas, H.Z., Wright, W.M.: On the Hopf algebraic structure of Lie group integrators.
Found. Comput. Math. 8(2), 227–257 (2008)

23. Oudom, J.-M., Guin, D.: On the Lie enveloping algebra of a pre-Lie algebra. J. K-Theory
K-Theory Appl. Algebra Geom. Topol. 2(01), 147–167 (2008)

24. Owren, B., Marthinsen, A.: Runge-Kutta methods adapted to manifolds and based on rigid
frames. BIT Numer. Math. 39(1), 116–142 (1999)

25. Philippe C., Hairer, E., Vilmart, G.: A substitution law for B-series vector fields. Technical
Report 5498, INRIA (2005)

26. Reutenauer, C.: Free Lie Algebras. Oxford University Press (1993)
27. Vallette, B.: Homology of generalized partition posets. J. Pure Appl. Algebra 208(2), 699–725

(2007)

