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Abstract. Motivated by numerical integration on manifolds, we relate the algebraic properties of invariant
connections to their geometric properties. Using this perspective, we generalize some classical results
of Cartan and Nomizu to invariant connections on algebroids. This has fundamental consequences
for the theory of numerical integrators, giving a characterization of the spaces on which Butcher and
Lie–Butcher series methods, which generalize Runge–Kutta methods, may be applied.
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1. Introduction.

1.1. Background and motivation. A connection on a smooth manifold M can be viewed
as a nonassociative product on the Lie algebra of vector fields X(M). The properties of the
resulting algebra contain geometric information about the connection and about M itself. In
particular, a flat and torsion-free connection gives X(M) the structure of a pre-Lie algebra,
while a flat connection with parallel torsion gives X(M) the structure of a post-Lie algebra. The
notion of a pre-Lie algebra originates from work of Vinberg [32], Gerstenhaber [11], Agrachev
and Gamkrelidze [2], while post-Lie algebras are due to Vallette [31].

Recently, Munthe-Kaas and Lundervold [26] related this algebraic perspective to certain
analytical techniques for approximating flows of vector fields: Butcher series methods (Butcher
[5, 6], Hairer and Wanner [16]) in the pre-Lie case and Lie–Butcher series methods (Munthe-
Kaas [23, 24, 25]) in the more general post-Lie case. These techniques, which involve expressing
flows as formal power series in rooted trees and forests, were originally developed for the
analysis of numerical integrators.

It is natural to ask which manifolds M admit such structures and to which the techniques
of Butcher and Lie–Butcher series may therefore be applied. Nomizu [29], following earlier
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50 H. Z. MUNTHE-KAAS, A. STERN, AND O. VERDIER

work of E. Cartan [7], showed that M admits a flat and torsion-free connection (i.e., an affine
manifold structure) if and only if it is locally representable as an abelian Lie group with its
canonical affine connection, while M admits a flat connection with parallel torsion if and only
if it is locally representable as a Lie group with its (−)-connection. It follows that Butcher
series methods may be applied in the former case and Lie–Butcher series methods in the latter
case.

However, a 1999 paper of Munthe-Kaas [25] (see also Munthe-Kaas and Wright [28]) showed
that such methods may be applied more generally whenever a Lie algebra g acts transitively on
M . This includes not only the case where M = G is the Lie group integrating g but also (for
example) when M is a homogeneous space or when M is equipped with a frame of vector fields
generating a Lie subalgebra g ⊂ X(M). In fact, M need not admit a flat connection at all, as
in the example of g = so(3) acting transitively on M = S2, the 2-sphere. The Cartan–Nomizu
characterization is therefore not the end of the story.

To include these examples in the algebraic framework, Munthe-Kaas and Lundervold [26]
considered connections more general than affine connections, namely, connections on a Lie
algebroid A→M , which is an anchored vector bundle with a compatible Lie bracket on the
space of sections Γ(A). (An affine connection is just the special case when A = TM is the
tangent bundle with the Jacobi–Lie bracket.) When equipped with a connection such that
Γ(A) is a pre-Lie algebra or post-Lie algebra, we say that A is a pre-Lie algebroid or post-Lie
algebroid. In particular, a g-action on M has an associated action algebroid gnM →M ; as a
vector bundle, this is just the trivial bundle with fiber g over M . Munthe-Kaas and Lundervold
[26] showed that the canonical flat connection makes g nM into a post-Lie algebroid, and
when g is abelian, this is in fact a pre-Lie algebroid.

This previous work therefore gives sufficient conditions for A→M to admit a (pre-Lie)
post-Lie structure: It is sufficient for A to be an (abelian) action algebroid. The purpose of
the present work is to prove conditions that are both necessary and sufficient, thereby giving a
full characterization of the spaces to which Butcher and Lie–Butcher series methods may be
used for numerical integration and analysis of flows on M .

1.2. Overview. The main results of this paper, Theorems 4.2 and 4.4, show that if A→M
is transitive, i.e., the anchor is surjective, then it admits a (pre-Lie) post-Lie structure if and
only if it is locally isomorphic to the action algebroid of some transitive (abelian) g-action
with its canonical flat connection, and this isomorphism is global when M is simply connected.
(In the nontransitive case, this result holds leaf-by-leaf on the foliation induced by the anchor.)
This generalizes the Cartan–Nomizu results stated above, which correspond to the special case
A = TM .

Consequently, the only way to apply Butcher and Lie–Butcher series methods to manifolds,
at least locally is the one introduced 20 years ago: equip the manifold with a transitive
Lie algebra action. From the perspective of applications, this means that, when faced with
problems requiring numerical integration on arbitrary manifolds, one has two options. The
first option is to introduce such a structure via a (generally noncanonical) choice of local
coordinates or a frame of vector fields, which allows Butcher or Lie–Butcher series methods to
be applied. The alternative is to use a different class of methods, such as projection methods;
see Hairer et al. [15, Chapter IV] for an overview of methods on manifolds.D

ow
nl

oa
de

d 
11

/1
2/

21
 to

 1
29

.1
77

.1
46

.1
79

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



INVARIANT CONNECTIONS AND LIE ALGEBRA ACTIONS 51

The paper is organized as follows:
• Section 2 begins by introducing a purely algebraic treatment of connections, relating

Lie-admissible, pre-Lie, and post-Lie algebras of connections to curvature and torsion.
We then bring geometry into the picture by applying this framework to algebras of
affine connections on M , linking the pre-Lie and post-Lie conditions to the results of
Cartan [7] and Nomizu [29].
• Section 3 considers connections on anchored bundles and Lie algebroids and gives

necessary and sufficient conditions, in terms of curvature and torsion, for an algebroid
to be Lie-admissible, pre-Lie, or post-Lie.
• Section 4 proves the main results, applying the framework of the previous sections to

characterize transitive pre-Lie and post-Lie algebroids in terms of transitive g-actions
on M . We also remark on the nontransitive case, in which these results hold leaf-by-leaf
on the foliation of M induced by the anchor, and compare our results to those of Blaom
[4] and Abad and Crainic [1], who drop the transitivity assumption but require strictly
stronger conditions on the connection than the pre-Lie and post-Lie conditions.

2. Algebras of invariant connections. In this section, we begin by considering a purely
algebraic notion of a connection as a nonassociative product on a Lie algebra. We then recall
the definitions of Lie-admissible, pre-Lie, and post-Lie algebras, and we discuss the relationship
between these algebras and the curvature and torsion of the connection corresponding to the
product. Finally, we apply this framework to affine connections, obtaining necessary and
sufficient conditions for M to admit a connection giving X(M) a Lie-admissible, pre-Lie, or
post-Lie structure and relating this to the Cartan–Nomizu classification.

2.1. Connections on Lie algebras. Certain properties of the connections we wish to study
are purely algebraic in the sense that they do not depend on any local or geometric arguments.
Therefore, we postpone geometry to subsequent sections and begin in the following algebraic
setting.

Definition 2.1. Let
(
L, J·, ·K

)
be a Lie algebra over a field k of characteristic zero. A

connection on L is a k-linear map ∇ : L → End(L), X 7→ ∇X .1 Equivalently, a connection
corresponds to a k-bilinear product . on L defined by X . Y := ∇XY .

The Lie bracket on L makes it possible to define algebraic notions of curvature and the
torsion, which are formally identical to the familiar definitions from differential geometry.

Definition 2.2. Given a connection ∇ on
(
L, J·, ·K

)
, its curvature is the k-bilinear map

R : L× L→ End(L) given by

(1) R(X,Y ) := ∇X∇Y −∇Y∇X −∇JX,Y K,

and its torsion is the k-bilinear map T : L× L→ L given by

(2) T (X,Y ) := ∇XY −∇YX − JX,Y K.

If R = 0, the connection is flat, and if T = 0, it is torsion-free.

1By End(L), we mean linear endomorphisms on L as a vector space over k, not necessarily Lie algebra
endomorphisms.D
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52 H. Z. MUNTHE-KAAS, A. STERN, AND O. VERDIER

Remark 2.3. A representation of a Lie algebra is precisely a flat connection.

Covariant derivatives ∇R and ∇T are defined by the usual product rules,

(∇ZR)(X,Y )W := ∇Z
(
R(X,Y )W

)
(3)

−R(∇ZX,Y )W −R(X,∇ZY )W −R(X,Y )∇ZW,
(∇ZT )(X,Y ) := ∇Z

(
T (X,Y )

)
− T (∇ZX,Y )− T (X,∇ZY ).(4)

The curvature (resp., torsion) is parallel if ∇R = 0 (resp., ∇T = 0), and if both the curvature
and the torsion are parallel, we say that ∇ is an invariant connection.

Associated to each ∇ is a dual connection2 ∇XY := ∇YX+ JX,Y K, which is seen to satisfy

∇ = ∇. The curvature and torsion of ∇ are denoted by R and T . Observe that T and T are
related by

(5) T (X,Y ) = ∇XY −∇XY = −T (X,Y ),

so the torsion expresses the difference between the primal and dual connections, and a connection
is its own dual if and only if it is torsion-free. In particular, the connection ∇̃ := 1

2(∇+∇) is
always torsion-free.

Example 2.4. On any Lie algebra, we may define the trivial connection ∇XY = 0, which
has the dual connection ∇XY = JX,Y K. We see that R = 0 trivially and R = 0 by the Jacobi
identity, and indeed ∇ and ∇ are Lie algebra representations: the trivial representation and
the adjoint representation, respectively.

Proposition 2.5. For a connection ∇ on a Lie algebra, we have

(6) (∇ZT )(X,Y ) = R(X,Y )Z +R(Y,Z)X +R(Z,X)Y.

Proof. Consider the three terms defining (∇ZT )(X,Y ) in (4). First,

∇Z
(
T (X,Y )

)
= ∇Z∇XY −∇Z∇YX −∇ZJX,Y K

= ∇Z∇XY −∇Z∇YX −∇JX,Y KZ −
q
Z, JX,Y K

y
.

For the second term,

T (∇ZX,Y ) = ∇∇ZXY −∇Y∇ZX − J∇ZX,Y K

= ∇Y∇ZX −∇Y∇ZX
= ∇Y

(
∇XZ + JZ,XK

)
−∇Y∇ZX

= ∇Y∇XZ −∇Y∇ZX +∇JZ,XKY +
q
Y, JZ,XK

y
,

and likewise for the third,

T (X,∇ZY ) = ∇X∇ZY −∇X∇Y Z +∇JY,ZKX +
q
X, JY,ZK

y
.

Combining these and applying the Jacobi identity gives (6).

2For connections on a Lie algebroid, this is the notation used by Crainic and Fernandes [9]; the name dual
connection appears in Blaom [4], who denotes it by ∇∗.D
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INVARIANT CONNECTIONS AND LIE ALGEBRA ACTIONS 53

Corollary 2.6. Assuming R = 0, we have R = 0 if and only if ∇T = 0.

Cyclic sums of trilinear functions will appear repeatedly. We denote∑
	

f(X,Y, Z) := f(X,Y, Z) + f(Y,Z,X) + f(Z,X, Y ).

For example, the Jacobi identity may be written as
∑

	

q
X, JY,ZK

y
.

Proposition 2.7. For a connection ∇ on a Lie algebra, we have

(7)
∑
	

T
(
X,T (Y,Z)

)
=
∑
	

R(X,Y )Z +
∑
	

R(X,Y )Z.

Proof. From (5), we have

T
(
Z, T (X,Y )

)
= ∇Z

(
T (X,Y )

)
+∇Z

(
T (X,Y )

)
= ∇Z∇XY −∇Z∇YX −∇JX,Y KZ −

q
Z, JX,Y K

y

+∇Z∇XY −∇Z∇YX −∇JX,Y KZ −
q
Z, JX,Y K

y
.

The last equality comes from the expression obtained for ∇Z
(
T (X,Y )

)
in the previous proof,

together with the corresponding version for ∇. Taking the cyclic sum of both sides and
applying the Jacobi identity gives (7).

Corollary 2.8. If R = R = 0, then T is a Lie bracket.

Proof. By definition, T is always bilinear and skew-symmetric. If R = R = 0, the right-hand
side of (7) vanishes, so T also satisfies the Jacobi identity.

Corollary 2.9 (Bianchi’s first identity). For a connection ∇ on a Lie algebra, we have

(8)
∑
	

(∇XT )(Y, Z) =
∑
	

R(X,Y )Z +
∑
	

T
(
X,T (Y, Z)

)
.

Proof. Take the cyclic sum of both sides of (6) and apply (7).

Remark 2.10. Bianchi’s second identity,∑
	

(∇XR)(Y, Z) =
∑
	

R
(
X,T (Y, Z)

)
,

also holds in this setting. The proof is a lengthy calculation which we omit since we will not
need to use this identity.

2.2. Lie-admissible, pre-Lie, and post-Lie algebras of connections. We now consider
Lie-admissible, pre-Lie, and post-Lie algebraic structures on an algebra (A, .). For each of
these, we show that the product . may be interpreted as a connection on a Lie algebra, and we
characterize these algebraic structures in terms of the curvature and torsion of this connection.

The associator of the product . is denoted by

a(X,Y, Z) := X . (Y . Z)− (X . Y ) . ZD
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54 H. Z. MUNTHE-KAAS, A. STERN, AND O. VERDIER

following the sign convention of Munthe-Kaas and Lundervold [26]. In the sequel, an important
role is played by the associator triple bracket,

[X,Y, Z] := a(X,Y, Z)− a(Y,X,Z).

When . corresponds to a connection on a Lie algebra, the following useful identity relates the
associator triple bracket to curvature and torsion.

Proposition 2.11. For a connection ∇ on a Lie algebra, we have

[X,Y, Z] = R(X,Y )Z − T (X,Y ) . Z.

Proof. By definition of R and T and the linearity of the connection,

R(X,Y )Z = X . (Y . Z)− Y . (X . Z)− JX,Y K . Z,
T (X,Y ) . Z = (X . Y ) . Z − (Y . X) . Z − JX,Y K . Z,

so subtracting gives [X,Y, Z].

2.2.1. Lie-admissible algebras. The definition of a Lie-admissible algebra is due to Albert
[3].

Definition 2.12. An algebra (A, .) is Lie-admissible if
∑

	[X,Y, Z] = 0.

Such algebras are called “Lie-admissible” due to the following equivalence.

Proposition 2.13. (A, .) is Lie-admissible if and only if the commutator bracket JX,Y K :=
X . Y − Y . X is a Lie bracket on A.

Proof. The commutator bracket is always skew-symmetric and bilinear. A short calculation
shows that

∑
	

q
X, JY, ZK

y
=
∑

	[X,Y, Z], so the Jacobi identity is equivalent to the Lie-
admissibility condition.

Proposition 2.14. The following are equivalent:
(i) (A, .) is a Lie-admissible algebra.
(ii)

(
A, J·, ·K

)
is a Lie algebra with a torsion-free connection ∇.

Proof. T (X,Y ) = 0 says precisely that JX,Y K = X . Y − Y . X.

2.2.2. Pre-Lie algebras. The notion of pre-Lie algebra appears in work of Vinberg [32]
in differential geometry and Gerstenhaber [11] in algebra. They also appear in the work of
Agrachev and Gamkrelidze [2] in control theory under the name “chronological algebras.”

Definition 2.15. An algebra (A, .) is pre-Lie if [X,Y, Z] = 0.

It follows immediately from this definition that every pre-Lie algebra is a Lie-admissible
algebra, so . corresponds to a torsion-free connection ∇ on

(
A, J·, ·K

)
, where J·, ·K is the

commutator bracket. The next result shows that the pre-Lie condition corresponds to the case
where ∇ is also flat.

Proposition 2.16. The following are equivalent:
(i) (A, .) is a pre-Lie algebra.
(ii)

(
A, J·, ·K

)
is a Lie algebra with a flat and torsion-free connection ∇.D
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INVARIANT CONNECTIONS AND LIE ALGEBRA ACTIONS 55

Proof. If (A, .) is pre-Lie, then Proposition 2.14 says that . corresponds to a torsion-free
connection, and Proposition 2.11 with T = 0 gives R(X,Y )Z = [X,Y, Z] = 0, so the connection
is also flat. The converse direction is immediate from Proposition 2.11 with R = 0 and
T = 0.

2.2.3. Post-Lie algebras. The notion of post-Lie algebra is due to Vallette [31].

Definition 2.17. A post-Lie algebra
(
A, [·, ·], .

)
is a Lie algebra

(
A, [·, ·]

)
equipped with a

product . satisfying the compatibility conditions

X . [Y, Z] = [X . Y,Z] + [X,Y . Z],(9a)

[X,Y ] . Z = [X,Y, Z].(9b)

Given a post-Lie algebra
(
A, [·, ·], .

)
, we immediately see from (9b) that (A, .) is pre-Lie if

and only if [X,Y ] . Z = 0 for all X,Y, Z ∈ A. Furthermore, any pre-Lie algebra (A, .) admits
a post-Lie structure by taking [·, ·] to be trivial.

Proposition 2.18. If
(
A, [·, ·], .

)
is a post-Lie algebra, then

(10) JX,Y K := X . Y − Y . X + [X,Y ]

is also a Lie bracket on A.

Proof. This bracket is always skew-symmetric and bilinear. To establish the Jacobi identity
for J·, ·K, a calculation shows that

(11)
∑
	

q
X, JY,ZK

y
=
∑
	

(
X . [Y,Z]− [X . Y,Z]− [Y,X . Z]

)
+
∑
	

(
[X,Y, Z]− [X,Y ] . Z

)
+
∑
	

[
X, [Y,Z]

]
.

On the right-hand side, the first cyclic sum vanishes by (9a), the second by (9b), and the last
by the Jacobi identity for [·, ·].

Assuming
(
A, [·, ·], .

)
is post-Lie, we consider . as a connection on

(
A, J·, ·K

)
. It follows

from (10) that T (X,Y ) = −[X,Y ]. Therefore, the post-Lie condition (9a) says that ∇T = 0,
while (9b) says that R = 0 (using Proposition 2.11 to relate the triple bracket to curvature
and torsion). Furthermore, the vanishing of (11) corresponds to the first Bianchi identity (8).

Conversely, if
(
A, J·, ·K

)
is a Lie algebra with connection ∇, we may define [X,Y ] =

−T (X,Y ) and ask when
(
A, [·, ·], .

)
is post-Lie. The following result shows that the conditions

∇T = 0 and R = 0 are sufficient as well as necessary.

Proposition 2.19. Let ., [·, ·], and J·, ·K be related by (10). Then the following are equivalent:
(i)
(
A, [·, ·], .

)
is a post-Lie algebra.

(ii)
(
A, J·, ·K

)
is a Lie algebra with a flat, parallel-torsion connection ∇.

(iii)
(
A, J·, ·K

)
is a Lie algebra with a flat connection ∇ and flat dual connection ∇.

Proof. We have already shown, in discussion above, that (i) implies (ii), and Corollary 2.6
says that (ii) and (iii) are equivalent. To show that (ii) implies (i), observe that ∇T = 0 and
R = 0 immediately give (9a) and (9b), while Corollary 2.8 implies that [·, ·] = −T is a Lie
bracket.D
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56 H. Z. MUNTHE-KAAS, A. STERN, AND O. VERDIER

2.3. Algebras of affine connections. We now bring geometry into the picture by consid-
ering affine connections. The main result of this section, Theorem 2.23, gives necessary and
sufficient conditions for M to admit a connection giving X(M) a Lie-admissible, pre-Lie, or
post-Lie structure. Munthe-Kaas and Lundervold [26] had previously shown sufficiency but
not necessity of these conditions.

Recall that a vector field X ∈ X(M) on a smooth manifold defines a derivation f 7→ X[f ]
on C∞(M). This forms a Lie algebra

(
X(M), J·, ·KJ

)
with respect to the Jacobi–Lie bracket,

JX,Y KJ [f ] := X
[
Y [f ]

]
− Y

[
X[f ]

]
.

An affine connection is not only R-bilinear on X(M) but also C∞(M)-linear in the first
argument and satisfies a Leibniz rule in the second,

∇fXY = f∇XY, ∇XfY = X[f ]Y + f∇XY,

for all f ∈ C∞(M), X,Y ∈ X(M). It is straightforward to show that if ∇ is an affine
connection, then so are ∇ and ∇̃, but we postpone the proof to the more general setting of Lie
algebroids in section 3. The curvature and torsion of an affine connection ∇ are defined with
respect to J·, ·KJ , and these definitions imply that R and T are tensorial, i.e., C∞(M)-linear in
all arguments.

To apply the framework developed in this section to affine connections, we first show that
the brackets J·, ·K constructed for Lie-admissible, pre-Lie, and post-Lie algebras agree with the
Jacobi–Lie bracket.

Lemma 2.20. If J·, ·K is a Lie bracket on X(M) satisfying the Leibniz rule

(12) JX, fY K = X[f ]Y + fJX,Y K

for all f ∈ C∞(M), X,Y ∈ X(M), then J·, ·K = J·, ·KJ .

Proof. Using the Jacobi identity and Leibniz rule, a calculation gives

0 =
q
X, JY, fZK

y
+

q
Y, JfZ,XK

y
+

q
fZ, JX,Y K

y

= X
[
Y [f ]

]
Z − Y

[
X[f ]

]
Z − JX,Y K[f ]Z

=
(
JX,Y KJ − JX,Y K

)
[f ]Z,

and the result follows since f ∈ C∞(M), X,Y, Z ∈ X(M) are arbitrary.

Proposition 2.21. Let ∇ be an affine connection and [·, ·] a tensorial bracket. If
(
X(M), [·, ·], .

)
is post-Lie, then the bracket JX,Y K := X.Y −Y .X+[X,Y ] of (10) agrees with the Jacobi–Lie
bracket.

Proof. It suffices to check that the Leibniz rule (12) holds:

JX, fY K = X . (fY )− (fY ) . X + [X, fY ]

= X[f ]Y + f(X . Y )− f(Y . X) + f [X,Y ]

= X[f ]Y + fJX,Y K.

The result then follows by Lemma 2.20.D
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INVARIANT CONNECTIONS AND LIE ALGEBRA ACTIONS 57

Repeating the same computation with [·, ·] = 0, we find the following.

Proposition 2.22. Let ∇ be an affine connection. If
(
X(M), .

)
is Lie-admissible, then the

commutator bracket JX,Y K := X . Y − Y . X agrees with the Jacobi–Lie bracket.

Applying Propositions 2.14, 2.16, and 2.19 now yields our main result on algebras of affine
connections.

Theorem 2.23. Let ∇ be an affine connection on a smooth manifold M .
(i)
(
X(M), .

)
is a Lie-admissible algebra if and only if ∇ is torsion-free.

(ii)
(
X(M), .

)
is a pre-Lie algebra if and only if ∇ is flat and torsion-free.

(iii)
(
X(M), [·, ·], .

)
is a post-Lie algebra, with [·, ·] being tensorial, if and only if ∇ is flat

with parallel torsion T = −[·, ·].
Every smooth manifold M admits an affine connection ∇ and thus a torsion-free connection

∇̃, so Lie-admissibility of
(
X(M), .

)
reveals nothing about M . By contrast, the other two

algebraic structures are deeply associated with special geometries classified by Cartan [7] and
Nomizu [29].

Corollary 2.24. Let M be a smooth manifold.
• M admits an affine connection ∇ such that

(
X(M), .

)
is pre-Lie if and only if M is

locally representable as an abelian Lie group with its canonical affine connection.
• M admits a connection ∇ and a tensorial bracket [·, ·] such that

(
X(M), [·, ·], .

)
is

post-Lie if and only if M is locally representable as a Lie group with its (−)-connection.

Proof. Combine Theorem 2.23 with results (a) and (b) stated in section 20 of Nomizu
[29].

3. The geometry and algebra of connections on Lie algebroids. In this section, we recall
how connections may be generalized from the tangent bundle of M (i.e., affine connections) to
more general anchored bundles and Lie algebroids3 over M . We then characterize connections
inducing Lie-admissible, pre-Lie, and post-Lie structures in terms of their curvature and torsion,
generalizing the results of subsection 2.3 for affine connections.

3.1. Lie algebroids. Pradines [30] is credited for introducing Lie algebroids, which si-
multaneously generalize tangent bundles and Lie algebras (among many other things). A
comprehensive treatment is given by Mackenzie [22].

Definition 3.1. An anchored bundle (A, ρ) is a vector bundle A→M with a vector bundle
morphism ρ : A → TM called the anchor map. A Lie algebroid

(
A, ρ, J·, ·K

)
is an anchored

bundle equipped with a Lie bracket J·, ·K on the space of sections Γ(A), satisfying the Leibniz
rule

(13) JX, fY K = ρ(X)[f ]Y + fJX,Y K

for all f ∈ C∞(M), X,Y ∈ Γ(A). We say that an anchored bundle or Lie algebroid is transitive
if the anchor is surjective.

3Generally, the results of this section also hold for Lie–Rinehart algebras, which are an algebraic abstraction
of Lie algebroids (e.g., replacing smooth functions on M by a commutative algebra, vector fields on M by
derivations on that algebra, etc.). However, since we are laying the groundwork for section 4, which does use
the smooth manifold structure, we have chosen to use the language of Lie algebroids throughout.D
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58 H. Z. MUNTHE-KAAS, A. STERN, AND O. VERDIER

Example 3.2. The tangent bundle A = TM is a Lie algebroid over M with ρ the identity
map on TM and J·, ·K the Jacobi–Lie bracket.

More generally, any involutive distribution D ⊂ TM is a Lie algebroid over M with ρ the
inclusion D ↪→ TM and J·, ·K the restriction of the Jacobi–Lie bracket to D. (In fact, this
describes a Lie subalgebroid of the tangent Lie algebroid.)

Example 3.3. A Lie algebra is just a Lie algebroid over a single point with trivial anchor
ρ = 0.

More generally, a Lie algebroid with trivial anchor is called a bundle of Lie algebras: Since
ρ = 0, (13) implies that J·, ·K is tensorial, so for each x ∈M , we have a well-defined pointwise,
Lie bracket J·, ·Kx on the fiber Ax. Note that the fibers need not be isomorphic as Lie algebras;
i.e., A need not be isomorphic to the trivial bundle of Lie algebras g×M for any Lie algebra g.

Example 3.4. An action (sometimes called an infinitesimal action) of a Lie algebra g on
M is a Lie algebra homomorphism g→ X(M), ξ 7→ ξM . The action algebroid A = gnM is
the trivial vector bundle g×M →M together with the anchor ρ(ξ, x) := ξM (x) induced by
the action of g on M ; the bracket J·, ·K is uniquely determined by (13) and the condition that
it agrees with the bracket on g for constant sections.

The action algebroid is transitive precisely when the g-action is transitive. In particular, if
M is a homogeneous space, then its transitive Lie group action has a corresponding transitive
Lie algebra action.

The following is a standard (yet important) property of Lie algebroids. Some references on
Lie algebroids, including Mackenzie [22], include this property as part of the definition of a Lie
algebroid, but this turns out to be redundant. (An interesting account of this appears in the
introduction to Grabowski [12].) The argument is essentially one due to Herz [18], later used
by Kosmann-Schwarzbach and Magri [20, section 6.1].

Proposition 3.5. Given a Lie algebroid
(
A, ρ, J·, ·K

)
over M , the anchor map induces a Lie

algebra homomorphism
(
Γ(A), J·, ·K

)
→
(
X(M), J·, ·KJ

)
.

Proof. Just as in the proof of Lemma 2.20, one uses the Jacobi identity together with the
Leibniz rule (13) to calculate

0 =
q
X, JY, fZK

y
+

q
Y, JfZ,XK

y
+

q
fZ, JX,Y K

y

= ρ(X)
[
ρ(Y )[f ]

]
Z − ρ(Y )

[
ρ(X)[f ]

]
Z − ρ

(
JX,Y K

)
[f ]Z

=
(q
ρ(X), ρ(Y )

y
J
− ρ
(
JX,Y K

))
[f ]Z,

and the result follows since f ∈ C∞(M), X,Y, Z ∈ Γ(A) are arbitrary.

Remark 3.6. Lemma 2.20 is actually a special case of this result. In the language just
introduced, the Leibniz rule (12) implies that

(
TM, idTM , J·, ·K

)
is a Lie algebroid, so idTM

induces a Lie algebra isomorphism between
(
X(M), J·, ·K

)
and

(
X(M), J·, ·KJ

)
. That is, J·, ·K =

J·, ·KJ .

An important consequence of this result is that the image of ρ defines an involutive
distribution on M , so there exists a (generally singular) foliation of M into leaves. The
restriction to each leaf L ⊂M defines a transitive Lie algebroid over L.D
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INVARIANT CONNECTIONS AND LIE ALGEBRA ACTIONS 59

3.2. Connections, curvature, and torsion. We next discuss connections, first on anchored
bundles and then on Lie algebroids, where the latter largely follows the treatment given in
Fernandes [10], Crainic and Fernandes [9].

Definition 3.7. Given an anchored bundle (A, ρ) over M , an A-connection on a vector
bundle E →M is an R-bilinear map Γ(A)× Γ(E)→ Γ(E), (X,u) 7→ ∇Xu, which is C∞(M)-
linear in the first argument and satisfies a Leibniz rule in the second, i.e.,

∇fXu = f∇Xu, ∇Xfu = ρ(X)[f ]u+ f∇Xu

for all f ∈ C∞(M).

An affine connection is just a TM -connection, where, as before, the anchor is the identity
map. Given a TM -connection on an anchored bundle A, the following construction gives an
induced A-connection on A.

Proposition 3.8. Let (A, ρ) be an anchored bundle over M and ∇ be a TM -connection on
A. Then ∇XY := ∇ρ(X)Y is an A-connection on A.

Proof. R-bilinearity follows from the R-bilinearity of the TM -connection together with the
fact that ρ is a vector bundle morphism. For any f ∈ C∞(M) and X,Y ∈ Γ(A), we have

∇fXY = ∇ρ(fX)Y = ∇fρ(X)Y = f∇ρ(X)Y = f∇XY

and

∇XfY = ∇ρ(X)fY = ρ(X)[f ]Y + f∇ρ(X)Y = ρ(X)[f ]Y + f∇XY,

which completes the proof.

If
(
A, ρ, J·, ·K

)
is a Lie algebroid and ∇ is an A-connection on A, then ∇ is also a connection

on the Lie algebra
(
Γ(A), J·, ·K

)
in the sense of subsection 2.1. Therefore, all of the results in that

section immediately hold in the Lie algebroid setting. We now show that∇XY := ∇YX+JX,Y K
and ∇̃ := 1

2(∇+∇) are in fact connections in the Lie algebroid sense, not just the Lie algebra
sense.

Proposition 3.9. If
(
A, ρ, J·, ·K

)
is a Lie algebroid and if ∇ is an A-connection on A, then

so are ∇ and ∇̃.

Proof. R-bilinearity of ∇ follows from the R-bilinearity of ∇ and of J·, ·K. For any f ∈
C∞(M) and X,Y ∈ Γ(A),

∇fXY = ∇Y fX + JfX, Y K
= ρ(Y )[f ]X + f∇YX − ρ(Y )[f ]X + fJX,Y K

= f∇XY

and

∇XfY = ∇fYX + JX, fY K
= f∇YX + ρ(X)[f ]Y + fJX,Y K

= ρ(X)[f ]Y + f∇XY,D
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60 H. Z. MUNTHE-KAAS, A. STERN, AND O. VERDIER

so ∇ is an A-connection. That ∇̃ is also an A-connection follows easily from the fact that ∇
and ∇ are A-connections.

Example 3.10. Let g be a Lie algebra, considered as a Lie algebroid over a single point.
The trivial connection ∇ξη = 0 is a g-connection on g, and ∇ξη = Jξ, ηK = adξ η. We can thus
identify ∇ with the trivial representation and ∇ with the adjoint representation of g on itself.
This is readily generalized to the case where A is a bundle of Lie algebras over M .

Example 3.11. Let A = gnM be an action algebroid. As a vector bundle, this is just the
trivial bundle g×M , so we can define the obvious TM -connection ∇ vanishing on constant
sections. Identifying ξ, η ∈ g with the corresponding constant sections, it follows that the
corresponding A-connections on A satisfy ∇ξη = 0 and ∇ξη = Jξ, ηK.

In particular, if M = G is the Lie group integrating g, then we may identify constant
sections of gnG with left-invariant vector fields on G (and arbitrary sections with arbitrary
vector fields). Under this identification, the connections ∇, ∇, and ∇̃ correspond, respectively,
to the affine (−)-, (+)-, and (0)-connections of Cartan and Schouten [8].

The curvature and torsion of an A-connection on a Lie algebroid A are defined exactly as
in (1)–(2), and all the results of subsection 2.1 involving the curvature and torsion of ∇, ∇,
and ∇̃ immediately hold in this setting.

As with affine connections, R and T are tensorial, i.e., C∞(M)-linear in each argument,
not just R-linear, so they contain local, geometric information about the connection.4 The
proof that

fR(X,Y )Z = R(fX, Y )Z = R(X, fY )Z = R(X,Y )fZ

is by direct calculation, showing that all terms involving the anchor cancel. For R(fX, Y )Z,
one gets the two canceling terms ±ρ(Y )[f ]∇XZ. Similarly, for R(X, fY ), one gets the
two canceling terms ±ρ(X)[f ]∇Y Z. Finally, for R(X,Y )fZ, one gets the additional term(
Jρ(X), ρ(Y )KJ − ρ(JX,Y K)

)
[f ]Z, which vanishes by Proposition 3.5. Similarly, one gets

canceling terms ±ρ(Y )[f ]X when computing T (fX, Y ) and ±ρ(X)[f ]Y when computing
T (X, fY ), which implies the tensoriality of T .

3.3. Algebras of A-connections. We next relate the curvature and torsion of an A-
connection ∇ to Lie-admissible, pre-Lie, and post-Lie algebraic structures on Γ(A) with the
product .. This generalizes the results of subsection 2.3 on affine connections, which correspond
to the case A = TM .

3.3.1. Lie-admissible algebroids. We begin by introducing Lie-admissible algebroids,
which are a natural generalization of Lie-admissible algebras.

Definition 3.12. A Lie-admissible algebroid (A, ρ,∇) is an anchored bundle (A, ρ), equipped
with an A-connection ∇ on A, such that

(
Γ(A), .

)
is a Lie-admissible algebra.

Proposition 3.13. Let (A, ρ) be an anchored bundle and ∇ an A-connection on A. Then
(A, ρ,∇) is a Lie-admissible algebroid if and only if (A, ρ) admits a Lie algebroid structure
such that ∇ is torsion-free.

4One also has tensorial curvature in the more general setting where ∇ is an A-connection on a vector bundle
E →M . The proof is the same, just replacing Z ∈ Γ(A) by u ∈ Γ(E).D
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INVARIANT CONNECTIONS AND LIE ALGEBRA ACTIONS 61

Proof. The condition that (A, ρ) admits a Lie algebroid structure such that ∇ is torsion-
free simply says that

(
A, ρ, J·, ·K

)
is a Lie algebroid, where JX,Y K := X . Y − Y . X is the

commutator bracket.
First, if

(
A, ρ, J·, ·K

)
is a Lie algebroid, then, by definition, J·, ·K is a Lie bracket on Γ(A),

so Proposition 2.13 implies Lie-admissibility.
Conversely, if (A, ρ,∇) is Lie-admissible, then Proposition 2.13 implies that J·, ·K is a Lie

bracket, so it suffices to show that it satisfies the Leibniz rule (13). Indeed,

JX, fY K := X . (fY )− (fY ) . X

= ρ(X)[f ]Y + f(X . Y )− f(Y . X)

= ρ(X)[f ]Y + fJX,Y K,

which completes the proof.

Example 3.14. A Lie-admissible algebra is just a Lie-admissible algebroid over a point;
Proposition 3.13 gives the corresponding Lie algebra as a Lie algebroid over a point. More
generally, a Lie-admissible algebroid with trivial anchor can be seen as a “bundle of Lie-
admissible algebras,” and Proposition 3.13 gives the corresponding bundle of Lie algebras.

The next results examine the situation where
(
A, ρ, J·, ·K

)
is a given Lie algebroid whose

bracket is not a priori equal to the commutator of ..

Proposition 3.15. Let
(
A, ρ, J·, ·K

)
be a Lie algebroid and ∇ be an A-connection on A. If

(A, ρ,∇) is Lie-admissible, then ρ ◦ T = 0.

Proof. If (A, ρ,∇) is Lie-admissible, then Proposition 3.13 implies that we have two Lie
algebroid structures: one with J·, ·K and the other with the commutator bracket. However,
Proposition 3.5 implies that ρ maps each of these to the Jacobi–Lie bracket on X(M), so

ρ(X . Y − Y . X) =
q
ρ(X), ρ(Y )

y
J

= ρ
(
JX,Y K

)
.

Hence, ρ
(
T (X,Y )

)
= 0 for all X,Y ∈ Γ(A).

Unlike the situation for affine connections in Proposition 2.22, we may not necessarily
conclude that J·, ·K agrees with the commutator bracket. However, we may conclude this if the
anchor is injective.

Corollary 3.16. Let
(
A, ρ, J·, ·K

)
be a Lie algebroid and ∇ be an A-connection on A. If ∇ is

torsion-free, then (A, ρ,∇) is Lie-admissible. The converse is true if ρ is injective.

Proof. If T = 0, then the commutator bracket of . is precisely J·, ·K, so Proposition 3.13
implies that (A, ρ,∇) is Lie-admissible.

Conversely, if (A, ρ,∇) is Lie-admissible, then Proposition 3.15 says that ρ ◦ T = 0, which
implies that T = 0 under the assumption that ρ is injective.

Remark 3.17. Theorem 2.23(i) is a special case of this result for A = TM , where the
anchor ρ = idTM is injective.

The following counterexample shows that the converse above is generally not true unless ρ
is injective.D

ow
nl

oa
de

d 
11

/1
2/

21
 to

 1
29

.1
77

.1
46

.1
79

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s
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Example 3.18. Consider a bundle of Lie algebras
(
A, 0, J·, ·K

)
. Since the anchor is trivial,

we may take the trivial connection ∇XY = 0. This is clearly Lie-admissible, but its torsion
T (X,Y ) = −JX,Y K generally does not vanish.

We may also obtain necessary and sufficient geometric conditions for Lie-admissibility in
cases where ρ is not injective by imposing some mild restrictions on the A-connection ∇. In the
next proposition, we assume that ∇XY = 0 whenever ρ(X) = 0. This is always the case, for
instance, when ∇ arises from a TM -connection on A using the construction in Proposition 3.8.

Proposition 3.19. Let
(
A, ρ, J·, ·K

)
be a Lie algebroid and ∇ an A-connection on A such that

∇XY = 0 whenever ρ(X) = 0. Then (A, ρ,∇) is Lie-admissible if and only if ρ ◦ T = 0 and∑
	

R(X,Y )Z = 0

for all X,Y, Z ∈ Γ(A).

Proof. Using Proposition 2.11, we obtain

R(X,Y )Z = [X,Y, Z] + T (X,Y ) . Z.

If ρ ◦ T = 0, then the assumption on ∇ gives T (X,Y ) . Z = 0, so

R(X,Y )Z = [X,Y, Z].

The result then follows immediately from the definition of Lie-admissibility together with
Proposition 3.15.

Finally, note that every Lie algebroid admits an A-connection ∇ (pick any TM -connection
on A and apply Proposition 3.8) and thus admits a torsion-free A-connection ∇̃. Therefore, as
with the case of affine connections, Lie-admissibility does not actually reveal any information
about the Lie algebroid itself.

3.3.2. Pre-Lie algebroids. We next introduce what we call pre-Lie algebroids, which are
a natural generalization of pre-Lie algebras to the algebroid setting.5

Definition 3.20. A pre-Lie algebroid (A, ρ,∇) is an anchored bundle (A, ρ) with an A-
connection ∇ on A, such that

(
Γ(A), .

)
is a pre-Lie algebra.

From this definition, we immediately see that every pre-Lie algebroid is Lie-admissible, so
the results of the previous section apply.

Proposition 3.21. Let (A, ρ) be an anchored bundle and ∇ an A-connection on A. Then
(A, ρ,∇) is a pre-Lie algebroid if and only if (A, ρ) admits a Lie algebroid structure such that
∇ is flat and torsion-free.

Proof. If (A, ρ,∇) is pre-Lie, then in particular it is Lie-admissible. Therefore, Proposi-
tion 3.13 implies that

(
A, ρ, J·, ·K

)
is a Lie algebroid, where J·, ·K is the commutator of ., with

5We caution the reader that the term “pre-Lie algebroid” has occasionally appeared in the literature [14] to
mean an almost-Lie algebroid, i.e., an algebroid where J·, ·K is not required to satisfy the Jacobi identity [13].
This is different from our definition.D
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INVARIANT CONNECTIONS AND LIE ALGEBRA ACTIONS 63

respect to which ∇ is torsion-free. As in the proof of Proposition 2.16, applying Proposition 2.11
with T = 0 gives R(X,Y )Z = [X,Y, Z] = 0, so the connection is also flat, and the converse
direction is immediate from Proposition 2.11 with R = 0 and T = 0.

Proposition 3.22. Let
(
A, ρ, J·, ·K

)
be a Lie algebroid and ∇ an A-connection on A such that

∇XY = 0 whenever ρ(X) = 0. Then (A, ρ,∇) is pre-Lie if and only if R = 0 and ρ ◦ T = 0.

Proof. If (A, ρ,∇) is pre-Lie, then in particular it is Lie-admissible, so Proposition 3.15
implies that ρ◦T = 0. From the assumption on ∇, we have T (X,Y ).Z = 0, so Proposition 2.11
implies R(X,Y )Z = [X,Y, Z] = 0. Conversely, if R = 0 and ρ ◦ T = 0, then again the
assumption on ∇ gives T (X,Y ) . Z = 0, so Proposition 2.11 implies [X,Y, Z] = 0.

Remark 3.23. If ρ is injective, then the condition ρ◦T = 0 in Proposition 3.22 is equivalent
to T = 0. In particular, Theorem 2.23(ii) becomes a special case of this result for A = TM
since the anchor ρ = idTM is injective.

Example 3.24. Recall from Example 3.18 that if
(
A, 0, J·, ·K

)
is a bundle of Lie algebras

with ∇ the trivial connection, then (A, ρ,∇) is a Lie-admissible algebroid whose torsion
T (X,Y ) = −JX,Y K generally does not vanish. In fact, this is also a pre-Lie algebroid since the
fact that the connection is trivial immediately gives [X,Y, Z] = 0. Hence, T = 0 is generally
not a necessary condition for a pre-Lie algebroid unless ρ is injective.

3.3.3. Post-Lie algebroids. Unlike the definitions of Lie-admissible and pre-Lie algebroids
above, which to our knowledge are new, the definition of a post-Lie algebroid appeared in
Munthe-Kaas and Lundervold [26].

Definition 3.25. A post-Lie algebroid
(
A, ρ, [·, ·],∇

)
is an anchored bundle (A, ρ) with a

tensorial Lie bracket [·, ·] on Γ(A) and an A-connection ∇ such that
(
Γ(A), [·, ·], .

)
is a post-Lie

algebra.

Munthe-Kaas and Lundervold [26, Proposition 2.24] showed that a Lie algebroid equipped
with a flat and torsion-free connection admits a post-Lie algebroid structure. The following
theorem, which is the main result of this section, strengthens this by providing both necessary
and sufficient conditions for a post-Lie structure.

Theorem 3.26. Let (A, ρ) be an anchored bundle and ∇ an A-connection on A. Then (A, ρ)
admits a post-Lie algebroid structure

(
A, ρ, [·, ·],∇

)
if and only if it admits a Lie algebroid

structure
(
A, ρ, J·, ·K

)
such that R = R = 0.

Proof. If
(
A, ρ, [·.·],∇

)
is a post-Lie algebroid, then Proposition 2.18 implies that JX,Y K :=

X . Y − Y . X + [X,Y ] is a Lie bracket on Γ(A). Moreover, for all f ∈ C∞(M),

JX, fY K = X . (fY )− (fY ) . X + [X, fY ]

= ρ(X)[f ]Y + f(X . Y )− f(Y . X) + f [X,Y ]

= ρ(X)[f ]Y + fJX,Y K,

so the Leibniz rule (13) holds, and hence
(
A, ρ, J·, ·K

)
is a Lie algebroid. Now, since [X,Y ] =

−T (X,Y ), Proposition 2.11 implies

R(X,Y )Z = [X,Y, Z]− [X,Y ] . Z,D
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64 H. Z. MUNTHE-KAAS, A. STERN, AND O. VERDIER

which vanishes by the post-Lie condition (9b). Substituting R = 0 into (6) and using the
definition of ∇T from (4) then gives

R(X,Y )Z = [Z . X, Y ] + [X,Z . Y ]− Z . [X,Y ],

which vanishes by the other post-Lie condition (9a). Hence, R = R = 0.
Conversely, suppose

(
A, ρ, J·, ·K

)
is a Lie algebroid such that R = R = 0, and let [X,Y ] =

−T (X,Y ) = T (X,Y ), which is tensorial. Then (7) implies that [·, ·] satisfies the Jacobi
identity, so in fact this is a tensorial Lie bracket. Finally, (6) implies the post-Lie condition
(9a), while R = 0 is equivalent to the post-Lie condition (9b). Hence,

(
A, ρ, [·, ·],∇

)
is a

post-Lie algebroid.

Remark 3.27. Theorem 2.23(iii) is a special case of this result when A = TM . Together
with the preceding results, characterizing Lie-admissible and post-Lie algebroids in terms of
curvature and torsion, we have now completed the generalization of Theorem 2.23 to the
algebroid setting.

4. Pre-Lie, post-Lie, and action algebroids. As stated in the introduction, Munthe-Kaas
[25] (see also Munthe-Kaas and Wright [28]) showed that Lie–Butcher series methods may be
applied to approximate flows on a manifold M equipped with a transitive g-action, where g
is a Lie algebra. This work was motivated by the question of how to construct and analyze
numerical integrators on manifolds more general than Lie groups. In the language of Munthe-
Kaas and Lundervold [26] and of this paper, this is due to the fact that an action algebroid
gnM admits a post-Lie algebroid structure when equipped with its canonical flat connection.
When g is abelian, this algebroid is actually pre-Lie, and ordinary Butcher series methods,
such as Runge–Kutta methods, may be used.

In this section, we prove local converses to these statements. Namely, we prove that
every transitive post-Lie algebroid on M , whose A-connection arises from a TM -connection,
is locally isomorphic to the action algebroid of a transitive g-action with its canonical flat
connection—and in the pre-Lie case, g must be abelian. These local isomorphisms are actually
global when M is simply connected. Essentially, this shows that there is no other way of
applying Lie–Butcher series methods to M other than by equipping M with a g-action.

We note that Blaom [4] and Abad and Crainic [1] investigated the question of when a
Lie algebroid is (locally) an action algebroid, dropping the assumption of transitivity but
requiring assumptions on ∇ that are stronger than the post-Lie condition in the nontransitive
case. (This can be seen as an alternative way of generalizing the Cartan–Nomizu results to Lie
algebroids.) Namely, they assume a flat TM -connection on A, which is stronger than R = 0 for
the A-connection, and that it be a Cartan connection (in the language of Blaom [4]) or have
vanishing basic curvature (in the language of Abad and Crainic [1]), which is stronger than
R = 0. These turn out to be equivalent in the transitive case but distinct in the nontransitive
case, as we discuss in subsection 4.2. Our proofs adapt some of the techniques developed in
this previous work (especially Abad and Crainic [1, Proposition 2.12]) to the transitive pre-Lie
and post-Lie cases.

In addition to these converse results, we also provide new, streamlined proofs of some
of the forward results that had appeared in Munthe-Kaas and Lundervold [26] based onD
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INVARIANT CONNECTIONS AND LIE ALGEBRA ACTIONS 65

the characterizations developed in section 3 and the tensoriality of the curvature and tor-
sion.

4.1. Main results. We begin with the pre-Lie case, characterizing the relationship between
pre-Lie algebroids and abelian action algebroids.

Proposition 4.1. If an abelian Lie algebra g acts on M , then the action algebroid g nM
admits a pre-Lie algebroid structure.

Proof. Since g nM is a trivial bundle, take ∇ to be the flat TM -connection on g nM ,
and consider the corresponding gnM -connection arising from Proposition 3.8. Now, since
R and T are tensors, we may evaluate them pointwise by extending to constant sections.
However, ∇ξη = 0 and Jξ, ηK = 0 for all constant sections ξ, η ∈ g, so R and T vanish. Hence,
Proposition 3.21 implies that this is a pre-Lie algebroid.

Theorem 4.2. Let (A, ρ) be a transitive anchored bundle over M and ∇ be a TM -connection
on A. Then (A, ρ,∇) is a pre-Lie algebroid if and only if

(
A, ρ, J·, ·K

)
is locally isomorphic to

the action algebroid of a transitive abelian Lie algebra action on M with ∇ locally the canonical
flat connection. This isomorphism is global if M is simply connected.

Proof. The converse follows from the argument in Proposition 4.1 with the minor modifi-
cation that we evaluate R and T by extending to locally constant sections. It only remains to
prove the forward direction.

Suppose (A, ρ,∇) is a pre-Lie algebroid. By Proposition 3.21, the A-connection ∇ is flat
with respect to the commutator bracket J·, ·K. Now, denoting by RTM the curvature of the
TM -connection, it is straightforward to see that

R(X,Y )Z = RTM
(
ρ(X), ρ(Y )

)
Z

for all X,Y, Z ∈ Γ(A). Since ρ is surjective, R = 0 implies RTM = 0, so ∇ is a flat TM -
connection on A.

Therefore, we may take a local (or global if M is simply connected) frame of ∇-flat
sections e1, . . . , en. In particular, ∇eiej = 0 for all i, j = 1, . . . , n. However, since J·, ·K is the
commutator bracket, we have

Jei, ejK = ∇eiej −∇ejei = 0.

Thus, g = span{e1, . . . , en} is an abelian Lie algebra, and ρ is a g-action.

We next consider the post-Lie case, where g is generally nonabelian.

Proposition 4.3. Every action algebroid admits a post-Lie algebroid structure.

Proof. As in Proposition 4.1, gnM is a trivial bundle, so take the flat TM -connection
and its corresponding gnM -connection ∇. Since R and R are tensors, we may evaluate them
pointwise by extending to constant sections. However, ∇ξη = 0 for all constant sections ξ, η ∈ g,
so R = 0 trivially and R = 0 by the Jacobi identity. The result follows by Theorem 3.26.

Theorem 4.4. Let (A, ρ) be a transitive anchored bundle over M and ∇ be a TM -connection
on A. Then

(
A, ρ, [·, ·],∇

)
is a post-Lie algebroid if and only if

(
A, ρ, J·, ·K

)
is locally isomorphic

to the action algebroid of a transitive Lie algebra action on M with ∇ locally the canonical flat
connection. This isomorphism is global if M is simply connected.D
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66 H. Z. MUNTHE-KAAS, A. STERN, AND O. VERDIER

Proof. The proof is similar in spirit to that of Theorem 4.2. The converse follows from
the argument in Proposition 4.3 with the minor modification that we evaluate R and T by
extending to locally constant sections. It only remains to prove the forward direction.

Suppose
(
A, ρ, [·, ·],∇

)
is a post-Lie algebroid. By Theorem 3.26, the A-connection ∇

satisfies R = R = 0 with respect to the Lie algebroid structure defined by the bracket
JX,Y K := X . Y − Y . X + [X,Y ]. As in the proof of Theorem 4.2, R = 0 together with
surjectivity of ρ implies that the TM -connection ∇ is flat.

Therefore, take a local (or global, if M is simply connected) frame of ∇-flat sections
e1, . . . , en, and define the structure functions ckij ∈ C∞(M) such that Jei, ejK =

∑n
k=1 c

k
ijek.

Since these sections are ∇-flat, for any i, j = 1, . . . , n and X ∈ Γ(A), we have

∇ei∇ejX =
q
ei, Jej , XK

y
, ∇ej∇eiX = −

q
ej , JX, eiK

y
,

∇Jei,ejKX = ∇XJei, ejK−
q
X, Jei, ejK

y
=

n∑
k=1

ρ(X)[ckij ]ek −
q
X, Jei, ejK

y
.

These expressions, together with the Jacobi identity, immediately give

R(ei, ej)X =
n∑
k=1

ρ(X)[ckij ]ek,

so R = 0 implies that ρ(X)[ckij ] = 0 for all i, j, k = 1, . . . , n and X ∈ Γ(A). Since ρ is

surjective, this implies that the structure functions ckij are in fact constants. Therefore,

g = span{e1, . . . , en} is a Lie algebra with structure constants ckij , and ρ is a g-action.

4.2. Remarks on the nontransitive case. The transitivity assumption is important for
numerical integration and analysis of flows on M using Butcher and Lie–Butcher series methods.
Transitivity allows us to locally “lift” vector fields on M to sections of A, apply these methods
using the pre-Lie or post-Lie structure of Γ(A), and then drop back down to M .

However, recall that when the Lie algebroid A→M is nontransitive, the anchor induces
a (generally singular) foliation of M into leaves L ⊂ M , and the restriction AL → L is a
transitive Lie algebroid on each leaf. In this case, we can only “lift” vector fields on M that
are tangent to leaves of the foliation, so it is sufficient to restrict to each leaf and apply the
results of subsection 4.1.

The following example illustrates that the results of subsection 4.1 generally do not hold
in the nontransitive setting, although they do hold leaf-by-leaf.

Example 4.5. Let A = TS2 → S2, but take ρ = 0 instead of the identity. For any affine
connection ∇, the induced A-connection is trivial, so (A, ρ,∇) is a pre-Lie algebroid. In this
case, the commutator bracket J·, ·K is also trivial, so

(
A, ρ, J·, ·K

)
is a bundle of abelian Lie

algebras over S2, where each fiber is isomorphic as a Lie algebra to R2. (Since the fibers
are all isomorphic, this is actually something stronger than a bundle of Lie algebras: It is a
so-called Lie algebra bundle.) However, this is not isomorphic—even locally—to the trivial
action algebroid R2 n S2 with ∇ its canonical flat connection since S2 does not admit a flat
affine connection.D
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However, since the anchor is trivial, the leaves of the induced foliation are just points x ∈ S2.
The transitive Lie algebroids obtained by restricting to leaves are the abelian Lie algebra fibers
Ax → {x}, and, of course, each of these is isomorphic to the trivial action algebroid R2 n {x}.

Finally, we again mention that the results of Blaom [4], Abad and Crainic [1] show that
A is locally isomorphic to an action algebroid, even without assuming transitivity, when the
connection satisfies stronger assumptions than the pre-Lie or post-Lie conditions. That this
condition is strictly stronger is illustrated by the counterexample above: In this case, A admits
a pre-Lie structure but generally not a connection of the type considered by Blaom [4], Abad
and Crainic [1].

5. Conclusion. We have characterized Lie-admissible, pre-Lie, and post-Lie algebras of
connections in terms of the curvature and torsion of these connections. For affine connections
on a manifold M , we related pre-Lie and post-Lie structures to classical results of Cartan
[7] and Nomizu [29] on manifolds admitting flat affine connections with vanishing or parallel
torsion. In the more general setting of connections on a transitive Lie algebroid over M ,
we showed that pre-Lie and post-Lie structures may only arise locally (or globally if M is
simply connected) from the action algebroid gnM of a transitive g-action on M , equipped
with its canonical flat connection. This generalizes the Cartan–Nomizu results stated above,
which correspond to the special case A = TM . Furthermore, it implies that the approach of
Munthe-Kaas [25], which equips M with a transitive g-action and applies (Lie–)Butcher series
methods, is essentially the only way to use this family of methods for numerical integration on
manifolds.

Finally, we remark that Nomizu [29] also considered invariant affine connections with
parallel (but not necessarily vanishing) curvature and either vanishing or parallel torsion.
Manifolds admitting such connections are locally representable as symmetric homogeneous
spaces (for vanishing torsion) or reductive homogeneous spaces (for parallel torsion). These do
not fit into the pre-Lie or post-Lie algebraic framework. For symmetric spaces, the appropriate
algebraic objects are Lie triple systems Jacobson [19], Loos [21], Helgason [17], which were
used for numerical integration on symmetric spaces in Munthe-Kaas et al. [27]. Forthcoming
work in progress studies algebras of connections such that the triple bracket [·, ·, ·] gives rise to
a Lie triple system.
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