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Abstract. A class of generalized Shuffle-Exchange (SE) nets is defined. As permutation networks
these have the same functionality as the classical SE net, but some of them possess recursive structures
lacking in the classical SE net. This make them very attractive from a hardware-designers point of
view. We develop the theory of the topology of generalized SE nets and present general theorems
showing how to construct networks built up recursively by using identical (or a small number of

different) building blocks.

Index Terms interconnection networks, perfect shuffle, permutation networks, shuffle-

exchange networks, SIMD computers.

1. Introduction. In massively parallel SIMD computers, or data parallel com-
puters, the most common form of interprocessor communication is permutations of
the data set. Le. each (virtual) processor sends out one data item and receive one. A
natural efficiency measure for SIMD interconnection networks is therefore the number
of routing steps for a permutation, i.e. the number of parallel steps needed to do an
arbitrary permutation. We consider here only static permutations, i.e. permutations
that are known in advance, or that are to be performed many times, so that the cost of
computing the optimal routing can be neglected. This is relevant for many algorithms
and for e.g. measuring the ability of a given network to emulate arbitrary networks.
We define the cost of a network as the product of the permuting power and the number
of wires in the network, thus the cost is a price/performance measure. It is relatively
easy to show that the cost of any interconnection network must satisfy:

(1) c(n) = Q(n -log(n)),
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Network Permuting power | No. of wires Cost
Complete graph 1 0(n?) O(n?)
Boolean Cube O(log(n)) O(nlog(n)) | ©(nlog?(n))
Butterfly O(log(n)) O(nlog(n)) | ©(nlog?(n)
2-D Mesh 0(y/n)) 0(n) ©(n+/n)
Ring O(n) O(n) O(n?)
Cube Connected Cycles O(log(n)) O(n) O(nlog(n))
(Generalized) SE O(log(n)) O(n) O(nlog(n))
TABLE 1

Cost complezity for various interconnection networks

where n is the number of nodes in the network. Figures for some networks are summa-
rized in Table 1. The Shuffle Fxchange (SE) network [18] is among the few networks
with optimal cost complexity. Despite of this, the SE network has not been exten-
sively used in hardware design. The reason for this is probably that the SE network
is rather complicated to draw in a nice regular fashion; the graph lacks the recursive
structure found in e.g. the Boolean cube and other popular networks. Layouts for the
SE network has been studied in the context of VLSI design [7], but due to the lack
of recursiveness, the layouts are very complicated. In his excellent new book [8] F.T.
Leighton writes: ”The structures of the shuffle-exchange and de Bruijn graphs are
probably [among] the most intriguing and least understood”.

In this paper we will introduce a family of Generalized Shuffle Exchange (GSE)
networks. This family of graphs contains the ’classical’ SE net as a special case. In
terms of functionality as permutation networks, all the GSE networks are equivalent,
but as graphs they are non-isomorphic. We show that the GSE family of networks
contains two chains of 'maximally foldable graphs’. These are recursively defined, and
allow very regular layouts. They represent exciting new alternatives to the hardware
designers.

Our basis for searching for generalized versions of the SE net is the following
question: What is the most general form of a network with the same permuting func-
tionality as the (classical) SE net? To make this question more presize we must define
the contents of this 'permuting functionality’. This is given in Assumption 1, moti-
vated by the results below. Before plunging into the theory part of this paper, the
reader is invited to look at the figures and read the Epilogue.

A famous theorem from telephone switching theory (in a more general setting
known as the Slepian-Duguid [1] theorem) states that any permutation of N = 2m
objects can be performed in the following way:

1. Arrange the objects in a 2 by m array.

2. Permute objects within each column of the array.

3. Permute objects within each row of the array.

4. Permute objects within each column of the array.
The theorem is also valid for a general factorization N = mq-mg. We call the version
above SD2.

In the case where N = 2", SD2 may be applied recursively, thus any permutation
of 2" objects can be performed in 2n — 1 steps, where each step involves a rearrange-
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F1G. 1. Recursive application of SD2 to perform arbitrary permutation on SE network

ment of the objects in 2 by 2* arrays, and (possibly) swapping pairs of objects. The
algorithm runs forwards until all the elements are arranged in 2 by 1 arrays, and
then returns back again. The Benes network, based on this idea, is the most famous
network capable of performing general permutations. It is well known that the Benes
network can be realized by a (recirculating) SE network. This is shown for N = 8 in
Figure 1. The SE network consists of 2" nodes, represented as n-digit binary numbers
9 = (9n-1,9n—2,---,90). The network can perform two different permutations; the
shuffle and the ezchange defined as:

S ( Gty Gnezyerr 1 80)) = (Gn—2s Gr8y 505 s J050m—1)
and

E((g‘n_1,gn_2,.-.,go)) = (gn—lagn—%"'vgo D 1) )

where @ denotes boolean addition (xor). We will use the shorthand notation 7o =
go @ 1. The exchange is usually conditional, i.e. two objects differing only in the
rightmost address bit may or may not be conjugated, depending on the value of the

other bits.
In general any permutation P of N = 2" objects can be written as a product of

shuffles, inverse shuffles and conditional exchanges as:
P=FEy 1S EgpgS™! - STVE,SE, 1S+ SE,SE,

The computation of conditions on each exchange F;, to achieve a given permutation,
is called the routing problem for the Benes network, and is discussed in a series of
papers [6, 9, 10, 11, 12, 20]. For general permutations the routing problem is hard to
solve, but for many important classes of permutations it can be solved very efficiently.

2. Definition of Generalized SE networks. The (classical) SE-network is not
the only recirculating network capable of performing the operations of SD2 recursively.
It is our goal to characterize all recirculating networks with this capability, i.e. we seek
all pairs of permutations {S, E} such that E2 = I and {S~!, S, E} can realize a Benes
network. The resulting networks are closely related to the classical SE network, and
we call them Generalized Shuffle Exchange networks.

The necessary and sufficient conditions for the recursive application of SD2 is that
there exists a partitioning of the set of objects G in two sets that are mapped onto
each other by I/, and that successive use of S splits each part in two smaller parts
mapped to each other by E. Formally, we require:
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ASsSUMPTION 1.
1. We are given N = 2" objects G and two permutations S and E on G such

that E* = I, the identity permutation.

2. There exists a partitioning G = Po U Py such that |Po| = |P1| = N/2 and
E(Po) = 731.

3. Define recursively the sets Pig i, ,..ix bY

Pio iryesiv = S (Pig ityeniket ) N Piy
for allk € {1,2,...,n— 1} and i; € {0,1}. Then:
E(,PiOaily-"vik) = ,Pz'o,‘l'l,u.,i_k- ’

The following theorem characterize the possible forms $ and £ can take:
TueorEM 2.1. If {S,E} is a pair of permutations satisfying the conditions in
Assumption 1, then there exists a binary indexing of the elements g € G:

9 = (9n—-1,9n—2,-++,91,90) 3 9i € {0,1}

such that

(2) E(g): (gn—-l,gn—%"'aglag_o-)
and
(3) 5(9) = (Yn—2>9n-3,-- -, 90, f(9))

where [ is a boolean function satisfying

(4) f(g) = f((gn—l,gn—Q, cee 790)) = h((gn—Q,gn—B, s ago)) @D gn-1

for some boolean function h.

Conversely: let G be the set of alln digit binary numbers. Given a boolean function
f :{0,1}"* — {0,1} satisfying (4), then (2) and (3) define a pair of permutations
satisfying the conditions in Assumption 1.

Note: A map of the form given in (3) is called a shift register, and with the
additional property in (4) it is called a non-singular (or invertible) shift register. A
thorough account for the mathematical properties of shift registers is found in [4].
Proof: By condition 2 we find that

lpio,'ilw---,ikl = |fP‘i0,i11-~~y‘ik—1 |/2 = N/zk

thus Pj,,..i,_, consists of a uniquely defined single element for {'Iﬁj}?;& given. We
make the identification

g = (f0,%15+ y80-1) = Pig it in-1 -
By induction it is easy to show that

PiOyily-v-»in—l = Sn—l(Pio) n Sn—z(Pi ) n---N S(Pin—z) n Pin—1 :
4



Thus a re-indexing gives:
9 = (gn-1,9n-2,---,90) = Sn_ngn—l n Sn_ngn—z - NSPg NPy, .
This shows that

S(gﬂ—h e ,gO) = (gn—Zagn—B, oo 7,(]0,9-—1)

for some g_1 € {0,1} , thus S is a shift register. In [4] it is shown that a shift register
is invertible if and only if it satisfies (4).
The second part of the theorem is checked by letting

Po=4{9=(9n-1,--,90) | 90=0} ; P1 =G\Po .

a

DEFINITION 1. A Generalized Shuffle Exchange network, GSE(n, f), is a graph
consisting of N = 2" nodes G, with edges (g, Eg) and (g,5g) for all g € G, where E
is defined in (2) and S is a non-singular shift register defined in (3) and (4).

Note that the problem of computing a routing for a GSE network is equivalent
to the routing problem for the classical SE network; if {E; 2=l is a routing for
the classical network, then {Ei 127:11‘ 1 is a routing for the same permutation on the
GSE, where E;(g) = Ei(g) ® f(g). Thus the functionality of the different networks is
identical.

The networks have, however, different topologies, and some of the generalized nets
have recursive structures that make them more attractive from a hardware point of

view than the classical SE network.

3. The de Bruijn graph.

DEFINITION 2. The de Bruijn graph B(n) is a graph with N = 2" nodes, each node
(Gn-1>Gn-2,---,90) is connected with an edge to the two nodes (gn_2,9n-3,---,90,0)
and (gn-2, gn-3,- - ,90,1).

Although the de Bruijn graph can be studied as an interconnection network in
its own right [13] (it’s functionality is very close to the SE network), we are mainly
interested in it as a tool for understanding the topology of GSE graphs.

An automorphism of a graph is a permutation ¢ : G — G s.t. (¢(g),¢(h)) is an
edge in the graph if and only if (¢,h) is an edge. Automorphisms of permutation
networks are very useful from a hardware point of view, since they represents all the
symmetries of the graph, and they allow the graph to be folded to a simpler and
more compact form. The folded graph is called the quotient graph, and is defined
as the graph obtained by merging pairs of nodes {g,¢(¢)} into single ’supernodes’.
In Section 5 we will develop more general folding theorems, where many points are
collected to supernodes.

Parts 2 and 3 of the following theorem are also found in [3].

TueoreEM 3.1. Let ¢* = (Go_1,...,00) denote the complement of g.

1. The B(n) graph has only one non-trivial automorphism, given by

P9) =9" .
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2. The quotient graph of B(n) w.r.t. ¢ us:
B(n)/¢ = B(n —1)

3. The elements in B(n)/¢ are identified with elements in B(n —1) by the func-
tion:

(5) P ({ gg* }) = (.{/n—l D gn—2,9n—2 D gn-3,...,91 D gO) .

Before we prove the theorem, we need some lemmas:
LEMMA 3.2. The de Bruijn graph is connected.

Proof: Obvious.
(]

LEMMA 3.3. All nodes g € B(n) except (0,0,...0) and (1,1,...,1) are connected
to two other nodes. The two exeptional nodes are connected to themselves and to one
other node.

Proof: Each node ¢ = (gn-1,...,90) is connected to the two nodes (gn—2,...,90,0)
and (¢n_2,...,90,1). These are different from g for every g except for g = (0,...,0)
aiid = {Lgus051):

O

Let a cycle denote a set of edges connecting a node to itself.

LEMMA 3.4. Given a node g € G there is a unique cycle of minimal length passing
through g.
Proof: The classical shuffle (f = 0) has a period of at most n, thus the length p of the
minimal cycle through ¢ satisfies p < n. Any cycle through g with length p < n is the
unique path:

(.(]n—l;gn—% cee ag()) — (gn—Z, e 790797)—1) — (gn—Ba cee ,90’gy>—1agp—2) — - -+ etc.

a

LEMMA 3.5. If an automorphism has a fived point ¢(g') = ¢' for some g', then

#(g) = g for every g € G, i.e. ¢ is the trivial automorphism.
Proof: We start with a function ¢ s.t. ¢(¢’) = ¢/, and show that there is only one way
to extend ¢ to an automorphism on G. ¢’ connects to two points, ¢g' and g?. These
are topologically distinct, since one of them lies in the minimal cycle through g’. Thus
the only way of extending ¢ to ¢' and ¢? is ¢(g') = ¢* and ¢(g?) = ¢>. Since B(n)is
connected, ¢ is extended uniquely in the same fashion to the trivial map on all of G.
O

Proof of Theorem 3.1: Part 1: Since the two nodes (0,...,0) and (1,...,1) are
topological exceptions, any automorphism must be of one of the two types:

1. Mappings where (0,...,0) and (1,...,1) are fixed points.

2. Mappings swapping (0,...,0) and (1,...,1).
The only automorphism of type 1 is the trivial map. It is readily checked that the
¢ given in the theorem is an automorphism (of type 2). From the group property of
automorphisms, it follows that there is no other automorphism of type 2. (Suppose
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& is another automorphism of type 2, then dop=1 is an automorphism of type 1, and
must equal the identity map. Hence ¢ = ¢.)
Part 2 and 3: The given v : B(n)/¢ — B(n — 1) is bijective, its inverse being

¢_1((gn—2) e >.(/0)) — {(gn—l,gn—l @ Jn—2y-- -,@?z_llgi,@?:_olgi) I In—-1 € {O, ]-} } .

A straightforward computation shows that 1 maps edges in B(n)/¢ onto edges in
B(n — 1). Thus % is a graph isomorphism.
0

4. The Recursive Structure of GSE-networks. We continue the discussion
by finding automorphisms and quotient graphs for the GSE-networks.

To make life easier, we assume that shuffle and exchange edges are of different
"color’, i.e. we exclude the possibility of automorphisms mapping exchange edges to
shuffle edges or vice versa. This assumption can be justified by the different function-
ality of the two edge types in computer hardware. The omission of this assumption
leads to more complicated proofs, but not to essentially different results.

Parts of the Theorems 4.1,4.3 and 4.4 are given in an other context in [3].

THEOREM 4.1. If the condition

(6) f(g)=f(g") forallgeG

holds, then the function ¢ in Theorem 3.1 is the unique non-trivial automorphism of
GSE(n, f). If the condition fails, then GSE(n, f) has no non-trivial automorphism.
Proof: Let ¢ be an automorphism of GSE(n, f), i.e. it must satisfy poF = Fog¢ and
$0S = So¢p. We also find that

¢oFoS = FoSo¢p

thus ¢ must also be an automorphism of B(n). This proves that ¢ in (5) is the only
possible automorphism of GSE(n, f). Now, if condition (6) fails, it is evident that

$0S # So¢, thus ¢ is not an automorphism for GSE(n, f).
O

Functions satisfying (6) are called self complementary.

THEOREM 4.2. Let n > 2. There are 92" different functions f salisfying (/,2,
but some of these produce isomorphic GSE(n, f) graphs. There are %(22“_1 +92°7
different (i.e. non-isomorphic) GSE(n,-) graphs. There are 92"* different GSE(n,-)
graphs with non-trivial automorphisms.

For n = 1 there are 2 graphs, both with automorphisms.

Proof: First statement: The set {0,1}™ contains 2" different points and f can be freely
specified on half of these, thus 22" different functions. Third statement: When (6)
holds, then f can be specified on 2771/2 = 2"=2 different points, this yields the
result. Second statement: Self complementary functions must represent a unique
graph, because if there are two different self complementary functions representing
the same graph, we would get more than one non-trivial automorphism for B(n).
By the same reason there are exactly two different non-self complementary functions
representing the same graph, they are pairs f and fo¢. In total, the number of different
graphs must equal the number of self complementary f plus half the number of f that
are not self complementary. This yields the result. Last statement: is checked directly.
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THEOREM 4.3. If f is self complementary, then
GSE(n, f)/¢ = GSE(n — 1,h) ,
where h is the function
(7) h(gn-2,Gn=3,--->00) = f(®1Z0 9i> DIo Gis - - -90,0) -

Nodes in GSE(n, f)/¢ are identified with nodes in GSE(n — 1,h) where the function
P given in (5).

Proof: A simple calculation shows that ¥ maps E-edges in GSE(n, f)/¢ onto E-edges
in GSE(n — 1,h). A staightforward, but somewhat longer, computation shows that
if we let S; denote the shuffle on GSE(n, f) and §), the shuffle on GSE(n — 1,h),
then 1oS; = Spotp. This shows that shuffle-edges in GSE(n, f)/¢ are mapped onto

shuffle-edges in GSE(n — 1,h).
O

This may be called the ’lowering theorem’ for GSE networks. An inverse to this
theorem is the following ’lifting theorem’, which shows how foldable graphs can be
recursively constructed:

THEOREM 4.4. A graph GSE(n — 1,h) can be written as:

GSE(n — 1,h) = GSE(n, f)/¢
where f is the function:
8)  f(gn-1,9n-25--+,90) = h(gn-1 ® gn-2,gn—2 ® gn-3,...,91 B go) B go -

If h is self complementary, then GSE(n, f) is the unique GSE(n,-) graph folding
to GSE(n — 1,h). If h is not self complementary, then there are two non-isomorphic
graphs folding to GSE(n — 1,h), one of them is given by (8), the other by:

(9) f(gn—lag'n—27 cee agO) = h(f/n—l D gn—2,9n—2 D gn-3,---,91 D f/O) @ go -

Proof: From (7) we find that

(g1 ® Gn2s---,91 ® 90)) = f((gn-1 D g0,9n—2 D go,---,91 D 90,0)) .

Since f must be self complementary, we arrive at (8). Second part of the theorem:
From Theorem 4.2 it follows by counting that there is a 1-1 correspondence between
general functions h of order n — 1 and self complementary functions f of order n.
Each self complementary f represents a unique graph, so since self complementary h
represent GSE(n—1, h) uniquely, such functions are lifted to a unique graph GSE(n, f).
Non self complementary h, on the other hand, represent the same graph as hogp. These
functions h may either be lifted directly by (8) or by applying (8) to hog, which yields

the alternative lifting (9).
g



By starting with the trivial one-node GSE graph, and lift » times, Theorem 4.4
yields:

THEOREM 4.5. For each n there are exactly two different GSE graphs that can be
folded n times.

These are called the mazimally foldable GSE graphs. We return to an algebraic
description of them in the next section.

5. Linear GSE networks. Whereas the previous section showed that there are
a tremendous number of different GSE graphs for each n, we will in this section restrict
our attention to a much smaller class of networks, which can be studied in terms of
linear recursion theory.

A linear homogenous boolean function is a function

n—1
F(gn=15-+-,90)) = D €i*Gn-1-i
=0

where additions and multiplications are modulo 2. A linear inhomogenous boolean
function is defined as

fo=rflgo1,

where f is homogenous. A linear shift register is a shift register where f is linear
(homogenous or inhomogenous), and we define a linear GSE network similarly. The
mathematical theory for linear shift registers is rich, and a lot is known about their
structure (see [4, 16]). The dynamics of a linear shift register is most easily studied
by introducing the characteristic polynomial defined for a homogenous f as:

(10) ) = chzmz ,

where ¢, = 1. (All polynomials are over the binary field GF[2]). For the results in this
paper, we do not need to define the characteristic polynomial for the inhomogenous
case, and we will use a bar over the characteristic polynomial to indicate that it
corresponds to an inhomogenous recursion. The networks are henceforth written in
terms of the characteristic polynomial as GSE(r(z)) or GSE(7(z)).
For homogenous f the following results are easily derived from Section 4:
e f is regular & ¢o = 1.
e f is self complementary < an even number of coefficients ¢; equals 1 <
7¢(1) =0 & (2 4 1) divides 74(z).
The same holds for f = f @ 1 if f is inhomogenous. Lifting (and lowering) takes a
particularly simple form (verified by a direct computation):
LEMMA 5.1. Let f be derived from h by a lift, asin (8). Thenr¢(z) = rp(x)(z+1).
COROLLARY 5.2. The mazimally foldable GSE graphs are given as GSE(c,(z))
and GSE(c,(2)), where the characteristic polynomial a,(z) is given as

o) =1+ = Zc?-wi where ¢ = (n) mod 2 .
i



Character. pol. Homogenous graph Inhomogenous graph

fix OprrtOn ol

(14x) = 14X \

(14+x) =
14+X+X4+X

(1)t = 14t

FIG. 2. The two families of mazimally fodable GSE graphs.
The first of these graphs is shown in Figure 2. If n = 2' it is known that (’;‘) =
0 mod 2 for i ¢ {1,n}, hence

(1+2)? = 1+ 2%

showing that GSE(cy) = SE(2!), the classical SE net. The functions 7 for n = 2¢
represent shuffles

Sﬁ(gn—l;-- . 7g0) = (gn—Za' . agOagn—l) .

It can be verified that the shuffle-orbits for @, n = 2! are all of equal length 2n = 2+1,
(The possible periods must be p = 2. but if we assume 7 < ¢ we will get contradictions
g; = g for the components of g). It is further evident that n shuffles maps ¢ to g*.
This shows that if GSE(3r) is folded one time, the periods of each orbit must be
halved. If we continue folding, the periods cannot be halved before we reach n = g1,
since we know that this level has periods p = 2!. Thus, we have proved the following:

THEOREM 5.3. Foralln € {1,2,3,...} the shuffle orbits of GSE(7,,) have the the
same length:

p = 2llog (W41

This theorem is found in a different context in 3], and can be derived from more
general results given in [16, 19].

Lemma 5.1 indicates that factorizations of the characteristic polynomial is impor-
tant for folding the GSE graphs to ’nice’ layouts. In the remaining part of this section
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we elaborate upon this, showing that any factorization of r(z) = s(x)-t(z) can be
used to fold the graph GSE(7(z)) onto GSE(s(z)). The proof of this requires some
additional formalism.

Instead of working with the ’state’ vector ¢ = (gn—1,...,90) as we have done up
to now, we will use shift register sequences defined as the (periodic) infinite sequences
of bits the shift register can produce:

{a;} =4...,ai,ai-1,...,a1,00} ,

thus n consecutive bits from {a;} define the node in the graph. The characteristic
polynomial 7(z) in (10) defines the following recurrence relation on {a;}:

n
Zci-aT_i =0.
1=0

A 1-1 correspondence between shift register sequences and nodes in the graph is
obtained by associating the node ¢ = (¢_1,9n-2,---,90) with the sequence {a,} with
initial conditions:

{a_1 =0n-1,0-2 = Gn—2y.-.,0_n = go} .

The sequence associated with ¢ = (0,0,...,1) is called the pulse response. We let
Q(r(z)) denote the set of shift register sequences generated by r(z). The following
facts are proved in [16]:

o Q(r(2)) forms a 2" dimensional vector space over the binary field G F[2] (i.e.

(a;),(b;) € Qr(z)) = (a; ®b;) € Qr(x))).

e The pulse response and its first n — 1 shifts spans Q(r).

o Q(s(z)) C Qs(z)-t(2)).

o If s(z) and ¢(z) are relative prime then Q(s(z)-t(z)) = Q(s(2)) + Q(t(z)).

For each {a;} € Q(r(2)) define the generating function as:

(o]
(11) G(z)= Z(Li'mi :
1=0

It is a fundamental fact that if the initial state {a_y1,a_9,...,a_,} = g is given,
then [4]:
(12) G(z) = Py(2)

O
where p,(2) is a polynomial of degree < n, depending on the initial state. If g(z) =
G121 4 .-+ + goa¥ it can be shown that:

(13) py(2¢) = polynomial_part_of (g(z)-r(z)/2") .

Equations (12) and (13) define an isomorphism between GSE(r(x)) and rational func-
tions p(x)/r(x), where deg(p(z)) < deg(r(z)). If deg(p(z)) > deg(r(z)), the coeffi-
cients of the power series of p(2)/7(¢) and (p(2) mod r(z))/r(z) are eventually equal,
and we define the equivalence

p(m)—@i p(2) = ¢(x) mod 7(x
B = L3 () = g(2) mod 1(z)

11



From (11) we see that the shuffle is given as
a-p(2) mod r(x)
@)

The pulse response is represented by 1/7(a), hence the exchange must be given as

E(p(z)/r(z)) = (p(z) + 1)/r(2) -

Theorems 5.4, 5.6 and 5.7 are stated for the homogenous case. For the inhomoge-
nous case, see comments after Theorem 5.7.

THEOREM 5.4. Let 7(2) = s(z)-t(x¢). Define the function
p (p(m)) _ p(z) mod #(2)
“\r(e)) ~ () '
Then ¢; defines a homomorphism of GSE(r(z)) onto GSE(t(xz)). The kernel of the
homomorphism is given as

S(p(z)/r(2)) =

Ken(:) = Qs(2)) -

If ged(s(2), t(x)) = 1 then ¢fq() is 1-1.
Proof: ¢, is clearly onto. Furthermore:

z-p(z) mod r(2)\ _  (z-p(x)mod s(z)-t(z)) mod i(z)
o r(z) t(z)
@-p(x) mod t(z)
= o) = $105, = S10¢y

and

. (p(m:) + 1) _1 +p(wt)(;r;0d U2} . 408, = Buody .

#(55) -# (5 =

we find that Ker(¢;) = Q(s(2)) . If 7(z) and s(z) are relative prime, then Q(r) =
Q(s) + Q(t) thus counting dimensions yields that ¢; must be 1-1 on Q(t).

Since

O

It is easy to express ¢ in terms of the state vector representation. The following
lemma can be shown by inspecting the generating function G(z):
LEMMA 5.5. Letr, s, t and ¢; be as in Theorem 5.4, where

k
s(z) = ZSJ".’L‘j ;
J=0
If d)t((gn—la oo ,gg)) = (hn—k-—lahn—k—% e ,ho) then

k
hi_p = Zgi_]--sj- forie {k,k+1,...,n—1}.
7=0
12
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FIG. 3. Graph represented as the direct product of relatice prime polynomials, as in Theorem 5.6.

Example: s(z) = (1 4+ z) yields hi_1 = ¢; ® gi—1, as we found in (5).
Example: s(z) = (1 + 2 + 23) yields hi_3 = ¢; ® gi—1 ® gi-3-

We will now use this theorem to find GSE graphs with regular layouts. This is
done by letting the cosets of Ker(¢;) define supernodes in the graph. Theorem 5.4
guarantees that the supernode graph is isomorphic to GSE(#(z)). We also want to
compute the local dynamics within the supernodes. The most symmetric case is when
r(z) can be factored in two relative prime factors:

THEOREM 5.6. Let 7(z) = s(z)-t(z) where ged(s(z),t(z)) = 1. Then every node
gr € Q(r(2)) can be uniquely identified with a pair of nodes

gr = (gs,gt) where g5 € Q(s(x)) and g; € Q(t(z)),

such that shuffle and exchange act according to:

Er(gr) = (ES(gs)’ Et(gt))

and

Sr(gr) = (95(9s), Se(9r)) -

In other words: GSE(r(z)) is the direct product of GSE(s(z)) and GSE({(z)).
Proof: Since Q(r) = Q(s) + Q(t), each g, € Q(r) can be uniquely written as g, =
Gs + Gi. Let ¢5 and ¢; be defined as in Theorem 5.4. Let g; = #5(gr) = ¢5(ds), and
gt = ¢:(g:) = ¢4(Gt). Then this theorem follows immediately from Theorem 5.4.

O

We may think of g; as a global coordinate for g, (supernode address) and g, as
the local coordinate within each supernode. The application of this theorem is shown
in Figure 3. In the general case it is not possible to achieve symmetry between global
and local coordinates. We may, however, choose global coordinates as above, and local
coordinates to achieve a high degree of regularity also here.

THEOREM 5.7. Let r(z) = s(z)-t(z). Then every node g, € (r(z)) can be
uniquely identified with a pair of nodes

gr = (gs,91) where g5 € Q(s(z)) and g; € Qt(z)),
13



such that shuffle and exchange act according to:

(14) E,(g:) = (95 Fal92))
and

' _J (Ss(gs),Si(ge))  if leftmost bit in g =0
) Sil9r) = { (55(9s),51(9t)) else

Proof: Let g, = p(z)/s(z)-t(z). We split p(z) as
p(a) = u(z) + t(z)-v(z) where deg(u(z)) < deg(t(z)) ,

and identify g with the pair g = (gs,g:) where gs = v(2)/s(2¢) and g; = u(z)/t(z)
¢¢(g). This identificaiton is clearly 1-1. Since p + 1 splits as p(z) + 1 = (u(z)+1
t(z)-v(z) we get (14). Note that if deg(p(x)) > deg(s(z)-t(z)), reduction modulo »
is done as:

m
(x)

p(z) mod (s(z)-t(x)) = u(z) + t(z)-(v(z) mod s(z)) ,
so if deg(u(z)) < deg(t(z)) — 1 we find
(2-p(z)) mod s(z)-t(z) = z-u(z) + t(z) (z-v(z) mod s(z)) ,

yielding the upper part of (15). On the other hand, if deg(u(z)) = deg(t(z)) — 1 we
get

z-u(2) = (2-u(z) mod t(r)) + t(e) = a(x) + t(z) ,
where deg(@(z)) < deg(t(z)), thus:
z-p(z) mod s(z)-t(z) = @(x) + t(z)-((v(z) 4+ 1) mod s(z)) ,

yielding the lower part of (15).
O

Note: The local structure comes in only two different variants, and there are no local
exchanges. Thus a network can be built up from only two basic building blocks, as
shown in Figure 4.

Now to the inhomogenous versions of the above theorems. Since an inhomogenous
shuffle can be written as S = EoS, where S is homogenous, we arrive at the following
modifications:

o Theorem 5.4: ¢; defines an homomorphism of GSE(r(z)) onto GSE(t(2)).

o Theorem 5.6 GSE(r(z) r(z)) is the direct product of GSE(s(z)) and GSE(t(z )
o Theorem 5.7 GSE(r(z)) factores into the global structure of GSE(t(z)), an
local structure given by S and S3 as in (15).
The theorems in this section extends readily to the case where () can be factorized

into three or more factors.

14
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6. Epilogue. We have a strong belief in the future for Shuffle-Exchange type
networks in massively parallel computing. This is partly based on the optimal bound
given in (1), partly on the fact that many important algorithms map elegantly onto
SE nets (more easily than e.g. onto cube connected cycles) and partly also because of
a close resemblance between the perfect shuffle and so called mizing flows or Axiom A
flows in dynamical systems [5]. These are flows over infinite sets that are mixing the
inputs at an optimal (i.e. exponential) rate. There are some generic properties found
in almost any mixing flow: One of these is the existence of the Small’s horseshoe map
in the flow, which is a continuous analogue to the perfect shuffle. The other is the
existence of Markov partitions, which are the continuous analogue of the sets P;, _;, in
Assumption 1. Thus Shuffle- Exchange type networks are the natural discrete analogue
of continuous mizing flows. This gives the SE type networks a philosophical appeal,
as the ’correct way’ of mixing data.

A major purpose of this paper has been to show that SE-type networks are also
very attractive from a hardware designers point of view, and to tie the bonds between
parallel computing and the shift register art. Since the theory of shift registers appears
to be fairly unknown in the field of parallel computing, it has been a goal to keep the
discussion at a self contained level.

The theory in this paper has several interesting applications that has not been
addressed. One is the derivation of routing and mapping algorithms for SE networks.
Another is the construction of optimal layouts (in terms of area usage) for VLSI design
of SE graphs. Still another is the partitioning of SE networks. It is known that the

15



SE graph cannot be partitioned in smaller SE graphs [17]. Theorems 5.6 and 5.7 do,
however, show that the generalized graphs can be made partitionable by adding a
small number of additional edges. These issues will be addressed in forthcomming
papers.
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vated by problems in parallel computing, and was surprised to find a strong connection
to the Coding Theory group in his immediate neighborhood. He would like to thank
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