REPORTS
IN
INFORMATICS

ISSN 0333-3590

Generalized Shuffle-Exchange Networks

Hans Munthe-Kaas !

REPORT NO 61 JUNE 1992

Department of Informatics

UNIVERSITY OF BERGEN

Bergen, Norway

ISSN 0333-3590

Generalized Shuffle-Exchange Networks

Hans Munthe-Kaas 1

REPORT NO 61 JUNE 1992

Abstract. A class of generalized Shuffle-Exchange (SE) nets is defined. As permutation networks
these have the same functionality as the classical SE net, but some of them possess recursive structures
lacking in the classical SE net. This make them very attractive from a hardware-designers point of
view. We develop the theory of the topology of generalized SE nets and present general theorems
showing how to construct networks built up recursively by using identical (or a small number of

different) building blocks.

Index Terms interconnection networks, perfect shuffle, permutation networks, shuffle-

exchange networks, SIMD computers.

1. Introduction. In massively parallel SIMD computers, or data parallel com-
puters, the most common form of interprocessor communication is permutations of
the data set. Le. each (virtual) processor sends out one data item and receive one. A
natural efficiency measure for SIMD interconnection networks is therefore the number
of routing steps for a permutation, i.e. the number of parallel steps needed to do an
arbitrary permutation. We consider here only static permutations, i.e. permutations
that are known in advance, or that are to be performed many times, so that the cost of
computing the optimal routing can be neglected. This is relevant for many algorithms
and for e.g. measuring the ability of a given network to emulate arbitrary networks.
We define the cost of a network as the product of the permuting power and the number
of wires in the network, thus the cost is a price/performance measure. It is relatively
easy to show that the cost of any interconnection network must satisfy:

(1) c(n) = Q(n -log(n)),

! Department of Informatics, University of Bergen, Hgyteknologisenteret, N-5020 Bergen.
1

Network Permuting power | No. of wires Cost
Complete graph 1 0(n?) O(n?)
Boolean Cube O(log(n)) O(nlog(n)) | ©(nlog?(n))
Butterfly O(log(n)) O(nlog(n)) | ©(nlog?(n)
2-D Mesh 0(y/n)) 0(n) ©(n+/n)
Ring O(n) O(n) O(n?)
Cube Connected Cycles O(log(n)) O(n) O(nlog(n))
(Generalized) SE O(log(n)) O(n) O(nlog(n))
TABLE 1

Cost complezity for various interconnection networks

where n is the number of nodes in the network. Figures for some networks are summa-
rized in Table 1. The Shuffle Fxchange (SE) network [18] is among the few networks
with optimal cost complexity. Despite of this, the SE network has not been exten-
sively used in hardware design. The reason for this is probably that the SE network
is rather complicated to draw in a nice regular fashion; the graph lacks the recursive
structure found in e.g. the Boolean cube and other popular networks. Layouts for the
SE network has been studied in the context of VLSI design [7], but due to the lack
of recursiveness, the layouts are very complicated. In his excellent new book [8] F.T.
Leighton writes: ”The structures of the shuffle-exchange and de Bruijn graphs are
probably [among] the most intriguing and least understood”.

In this paper we will introduce a family of Generalized Shuffle Exchange (GSE)
networks. This family of graphs contains the ’classical’ SE net as a special case. In
terms of functionality as permutation networks, all the GSE networks are equivalent,
but as graphs they are non-isomorphic. We show that the GSE family of networks
contains two chains of 'maximally foldable graphs’. These are recursively defined, and
allow very regular layouts. They represent exciting new alternatives to the hardware
designers.

Our basis for searching for generalized versions of the SE net is the following
question: What is the most general form of a network with the same permuting func-
tionality as the (classical) SE net? To make this question more presize we must define
the contents of this 'permuting functionality’. This is given in Assumption 1, moti-
vated by the results below. Before plunging into the theory part of this paper, the
reader is invited to look at the figures and read the Epilogue.

A famous theorem from telephone switching theory (in a more general setting
known as the Slepian-Duguid [1] theorem) states that any permutation of N = 2m
objects can be performed in the following way:

1. Arrange the objects in a 2 by m array.

2. Permute objects within each column of the array.

3. Permute objects within each row of the array.

4. Permute objects within each column of the array.
The theorem is also valid for a general factorization N = mq-mg. We call the version
above SD2.

In the case where N = 2", SD2 may be applied recursively, thus any permutation
of 2" objects can be performed in 2n — 1 steps, where each step involves a rearrange-

2

F1G. 1. Recursive application of SD2 to perform arbitrary permutation on SE network

ment of the objects in 2 by 2* arrays, and (possibly) swapping pairs of objects. The
algorithm runs forwards until all the elements are arranged in 2 by 1 arrays, and
then returns back again. The Benes network, based on this idea, is the most famous
network capable of performing general permutations. It is well known that the Benes
network can be realized by a (recirculating) SE network. This is shown for N = 8 in
Figure 1. The SE network consists of 2" nodes, represented as n-digit binary numbers
9 = (9n-1,9n—2,---,90). The network can perform two different permutations; the
shuffle and the ezchange defined as:

S (Gty Gnezyerr 1 80)) = (Gn—2s Gr8y 505 s J050m—1)
and

E((g‘n_1,gn_2,.-.,go)) = (gn—lagn—%"'vgo D 1))

where @ denotes boolean addition (xor). We will use the shorthand notation 7o =
go @ 1. The exchange is usually conditional, i.e. two objects differing only in the
rightmost address bit may or may not be conjugated, depending on the value of the

other bits.
In general any permutation P of N = 2" objects can be written as a product of

shuffles, inverse shuffles and conditional exchanges as:
P=FEy 1S EgpgS™! - STVE,SE, 1S+ SE,SE,

The computation of conditions on each exchange F;, to achieve a given permutation,
is called the routing problem for the Benes network, and is discussed in a series of
papers [6, 9, 10, 11, 12, 20]. For general permutations the routing problem is hard to
solve, but for many important classes of permutations it can be solved very efficiently.

2. Definition of Generalized SE networks. The (classical) SE-network is not
the only recirculating network capable of performing the operations of SD2 recursively.
It is our goal to characterize all recirculating networks with this capability, i.e. we seek
all pairs of permutations {S, E} such that E2 = I and {S~!, S, E} can realize a Benes
network. The resulting networks are closely related to the classical SE network, and
we call them Generalized Shuffle Exchange networks.

The necessary and sufficient conditions for the recursive application of SD2 is that
there exists a partitioning of the set of objects G in two sets that are mapped onto
each other by I/, and that successive use of S splits each part in two smaller parts
mapped to each other by E. Formally, we require:

3

ASsSUMPTION 1.
1. We are given N = 2" objects G and two permutations S and E on G such

that E* = I, the identity permutation.

2. There exists a partitioning G = Po U Py such that |Po| = |P1| = N/2 and
E(Po) = 731.

3. Define recursively the sets Pig i, ,..ix bY

Pio iryesiv = S (Pig ityeniket) N Piy
for allk € {1,2,...,n— 1} and i; € {0,1}. Then:
E(,PiOaily-"vik) = ,Pz'o,‘l'l,u.,i_k- ’

The following theorem characterize the possible forms $ and £ can take:
TueorEM 2.1. If {S,E} is a pair of permutations satisfying the conditions in
Assumption 1, then there exists a binary indexing of the elements g € G:

9 = (9n—-1,9n—2,-++,91,90) 3 9i € {0,1}

such that

(2) E(g): (gn—-l,gn—%"'aglag_o-)
and
(3) 5(9) = (Yn—2>9n-3,-- -, 90, f(9))

where [is a boolean function satisfying

(4) f(g) = f((gn—l,gn—Q, cee 790)) = h((gn—Q,gn—B, s ago)) @D gn-1

for some boolean function h.

Conversely: let G be the set of alln digit binary numbers. Given a boolean function
f :{0,1}"* — {0,1} satisfying (4), then (2) and (3) define a pair of permutations
satisfying the conditions in Assumption 1.

Note: A map of the form given in (3) is called a shift register, and with the
additional property in (4) it is called a non-singular (or invertible) shift register. A
thorough account for the mathematical properties of shift registers is found in [4].
Proof: By condition 2 we find that

lpio,'ilw---,ikl = |fP‘i0,i11-~~y‘ik—1 |/2 = N/zk

thus Pj,,..i,_, consists of a uniquely defined single element for {'Iﬁj}?;& given. We
make the identification

g = (f0,%15+ y80-1) = Pig it in-1 -
By induction it is easy to show that

PiOyily-v-»in—l = Sn—l(Pio) n Sn—z(Pi) n---N S(Pin—z) n Pin—1 :
4

Thus a re-indexing gives:
9 = (gn-1,9n-2,---,90) = Sn_ngn—l n Sn_ngn—z - NSPg NPy, .
This shows that

S(gﬂ—h e ,gO) = (gn—Zagn—B, oo 7,(]0,9-—1)

for some g_1 € {0,1} , thus S is a shift register. In [4] it is shown that a shift register
is invertible if and only if it satisfies (4).
The second part of the theorem is checked by letting

Po=4{9=(9n-1,--,90) | 90=0} ; P1 =G\Po .

a

DEFINITION 1. A Generalized Shuffle Exchange network, GSE(n, f), is a graph
consisting of N = 2" nodes G, with edges (g, Eg) and (g,5g) for all g € G, where E
is defined in (2) and S is a non-singular shift register defined in (3) and (4).

Note that the problem of computing a routing for a GSE network is equivalent
to the routing problem for the classical SE network; if {E; 2=l is a routing for
the classical network, then {Ei 127:11‘ 1 is a routing for the same permutation on the
GSE, where E;(g) = Ei(g) ® f(g). Thus the functionality of the different networks is
identical.

The networks have, however, different topologies, and some of the generalized nets
have recursive structures that make them more attractive from a hardware point of

view than the classical SE network.

3. The de Bruijn graph.

DEFINITION 2. The de Bruijn graph B(n) is a graph with N = 2" nodes, each node
(Gn-1>Gn-2,---,90) is connected with an edge to the two nodes (gn_2,9n-3,---,90,0)
and (gn-2, gn-3,- - ,90,1).

Although the de Bruijn graph can be studied as an interconnection network in
its own right [13] (it’s functionality is very close to the SE network), we are mainly
interested in it as a tool for understanding the topology of GSE graphs.

An automorphism of a graph is a permutation ¢ : G — G s.t. (¢(g),¢(h)) is an
edge in the graph if and only if (¢,h) is an edge. Automorphisms of permutation
networks are very useful from a hardware point of view, since they represents all the
symmetries of the graph, and they allow the graph to be folded to a simpler and
more compact form. The folded graph is called the quotient graph, and is defined
as the graph obtained by merging pairs of nodes {g,¢(¢)} into single ’supernodes’.
In Section 5 we will develop more general folding theorems, where many points are
collected to supernodes.

Parts 2 and 3 of the following theorem are also found in [3].

TueoreEM 3.1. Let ¢* = (Go_1,...,00) denote the complement of g.

1. The B(n) graph has only one non-trivial automorphism, given by

P9) =9" .

5

2. The quotient graph of B(n) w.r.t. ¢ us:
B(n)/¢ = B(n —1)

3. The elements in B(n)/¢ are identified with elements in B(n —1) by the func-
tion:

(5) P ({ gg* }) = (.{/n—l D gn—2,9n—2 D gn-3,...,91 D gO) .

Before we prove the theorem, we need some lemmas:
LEMMA 3.2. The de Bruijn graph is connected.

Proof: Obvious.
(]

LEMMA 3.3. All nodes g € B(n) except (0,0,...0) and (1,1,...,1) are connected
to two other nodes. The two exeptional nodes are connected to themselves and to one
other node.

Proof: Each node ¢ = (gn-1,...,90) is connected to the two nodes (gn—2,...,90,0)
and (¢n_2,...,90,1). These are different from g for every g except for g = (0,...,0)
aiid = {Lgus051):

O

Let a cycle denote a set of edges connecting a node to itself.

LEMMA 3.4. Given a node g € G there is a unique cycle of minimal length passing
through g.
Proof: The classical shuffle (f = 0) has a period of at most n, thus the length p of the
minimal cycle through ¢ satisfies p < n. Any cycle through g with length p < n is the
unique path:

(.(]n—l;gn—% cee ag()) — (gn—Z, e 790797)—1) — (gn—Ba cee ,90’gy>—1agp—2) — - -+ etc.

a

LEMMA 3.5. If an automorphism has a fived point ¢(g') = ¢' for some g', then

#(g) = g for every g € G, i.e. ¢ is the trivial automorphism.
Proof: We start with a function ¢ s.t. ¢(¢’) = ¢/, and show that there is only one way
to extend ¢ to an automorphism on G. ¢’ connects to two points, ¢g' and g?. These
are topologically distinct, since one of them lies in the minimal cycle through g’. Thus
the only way of extending ¢ to ¢' and ¢? is ¢(g') = ¢* and ¢(g?) = ¢>. Since B(n)is
connected, ¢ is extended uniquely in the same fashion to the trivial map on all of G.
O

Proof of Theorem 3.1: Part 1: Since the two nodes (0,...,0) and (1,...,1) are
topological exceptions, any automorphism must be of one of the two types:

1. Mappings where (0,...,0) and (1,...,1) are fixed points.

2. Mappings swapping (0,...,0) and (1,...,1).
The only automorphism of type 1 is the trivial map. It is readily checked that the
¢ given in the theorem is an automorphism (of type 2). From the group property of
automorphisms, it follows that there is no other automorphism of type 2. (Suppose

6

& is another automorphism of type 2, then dop=1 is an automorphism of type 1, and
must equal the identity map. Hence ¢ = ¢.)
Part 2 and 3: The given v : B(n)/¢ — B(n — 1) is bijective, its inverse being

¢_1((gn—2) e >.(/0)) — {(gn—l,gn—l @ Jn—2y-- -,@?z_llgi,@?:_olgi) I In—-1 € {O,]-} } .

A straightforward computation shows that 1 maps edges in B(n)/¢ onto edges in
B(n — 1). Thus % is a graph isomorphism.
0

4. The Recursive Structure of GSE-networks. We continue the discussion
by finding automorphisms and quotient graphs for the GSE-networks.

To make life easier, we assume that shuffle and exchange edges are of different
"color’, i.e. we exclude the possibility of automorphisms mapping exchange edges to
shuffle edges or vice versa. This assumption can be justified by the different function-
ality of the two edge types in computer hardware. The omission of this assumption
leads to more complicated proofs, but not to essentially different results.

Parts of the Theorems 4.1,4.3 and 4.4 are given in an other context in [3].

THEOREM 4.1. If the condition

(6) f(g)=f(g") forallgeG

holds, then the function ¢ in Theorem 3.1 is the unique non-trivial automorphism of
GSE(n, f). If the condition fails, then GSE(n, f) has no non-trivial automorphism.
Proof: Let ¢ be an automorphism of GSE(n, f), i.e. it must satisfy poF = Fog¢ and
$0S = So¢p. We also find that

¢oFoS = FoSo¢p

thus ¢ must also be an automorphism of B(n). This proves that ¢ in (5) is the only
possible automorphism of GSE(n, f). Now, if condition (6) fails, it is evident that

$0S # So¢, thus ¢ is not an automorphism for GSE(n, f).
O

Functions satisfying (6) are called self complementary.

THEOREM 4.2. Let n > 2. There are 92" different functions f salisfying (/,2,
but some of these produce isomorphic GSE(n, f) graphs. There are %(22“_1 +92°7
different (i.e. non-isomorphic) GSE(n,-) graphs. There are 92"* different GSE(n,-)
graphs with non-trivial automorphisms.

For n = 1 there are 2 graphs, both with automorphisms.

Proof: First statement: The set {0,1}™ contains 2" different points and f can be freely
specified on half of these, thus 22" different functions. Third statement: When (6)
holds, then f can be specified on 2771/2 = 2"=2 different points, this yields the
result. Second statement: Self complementary functions must represent a unique
graph, because if there are two different self complementary functions representing
the same graph, we would get more than one non-trivial automorphism for B(n).
By the same reason there are exactly two different non-self complementary functions
representing the same graph, they are pairs f and fo¢. In total, the number of different
graphs must equal the number of self complementary f plus half the number of f that
are not self complementary. This yields the result. Last statement: is checked directly.

7

THEOREM 4.3. If f is self complementary, then
GSE(n, f)/¢ = GSE(n — 1,h) ,
where h is the function
(7) h(gn-2,Gn=3,--->00) = f(®1Z0 9i> DIo Gis - - -90,0) -

Nodes in GSE(n, f)/¢ are identified with nodes in GSE(n — 1,h) where the function
P given in (5).

Proof: A simple calculation shows that ¥ maps E-edges in GSE(n, f)/¢ onto E-edges
in GSE(n — 1,h). A staightforward, but somewhat longer, computation shows that
if we let S; denote the shuffle on GSE(n, f) and §), the shuffle on GSE(n — 1,h),
then 1oS; = Spotp. This shows that shuffle-edges in GSE(n, f)/¢ are mapped onto

shuffle-edges in GSE(n — 1,h).
O

This may be called the ’lowering theorem’ for GSE networks. An inverse to this
theorem is the following ’lifting theorem’, which shows how foldable graphs can be
recursively constructed:

THEOREM 4.4. A graph GSE(n — 1,h) can be written as:

GSE(n — 1,h) = GSE(n, f)/¢
where f is the function:
8) f(gn-1,9n-25--+,90) = h(gn-1 ® gn-2,gn—2 ® gn-3,...,91 B go) B go -

If h is self complementary, then GSE(n, f) is the unique GSE(n,-) graph folding
to GSE(n — 1,h). If h is not self complementary, then there are two non-isomorphic
graphs folding to GSE(n — 1,h), one of them is given by (8), the other by:

(9) f(gn—lag'n—27 cee agO) = h(f/n—l D gn—2,9n—2 D gn-3,---,91 D f/O) @ go -

Proof: From (7) we find that

(g1 ® Gn2s---,91 ® 90)) = f((gn-1 D g0,9n—2 D go,---,91 D 90,0)) .

Since f must be self complementary, we arrive at (8). Second part of the theorem:
From Theorem 4.2 it follows by counting that there is a 1-1 correspondence between
general functions h of order n — 1 and self complementary functions f of order n.
Each self complementary f represents a unique graph, so since self complementary h
represent GSE(n—1, h) uniquely, such functions are lifted to a unique graph GSE(n, f).
Non self complementary h, on the other hand, represent the same graph as hogp. These
functions h may either be lifted directly by (8) or by applying (8) to hog, which yields

the alternative lifting (9).
g

By starting with the trivial one-node GSE graph, and lift » times, Theorem 4.4
yields:

THEOREM 4.5. For each n there are exactly two different GSE graphs that can be
folded n times.

These are called the mazimally foldable GSE graphs. We return to an algebraic
description of them in the next section.

5. Linear GSE networks. Whereas the previous section showed that there are
a tremendous number of different GSE graphs for each n, we will in this section restrict
our attention to a much smaller class of networks, which can be studied in terms of
linear recursion theory.

A linear homogenous boolean function is a function

n—1
F(gn=15-+-,90)) = D €i*Gn-1-i
=0

where additions and multiplications are modulo 2. A linear inhomogenous boolean
function is defined as

fo=rflgo1,

where f is homogenous. A linear shift register is a shift register where f is linear
(homogenous or inhomogenous), and we define a linear GSE network similarly. The
mathematical theory for linear shift registers is rich, and a lot is known about their
structure (see [4, 16]). The dynamics of a linear shift register is most easily studied
by introducing the characteristic polynomial defined for a homogenous f as:

(10)) = chzmz ,

where ¢, = 1. (All polynomials are over the binary field GF[2]). For the results in this
paper, we do not need to define the characteristic polynomial for the inhomogenous
case, and we will use a bar over the characteristic polynomial to indicate that it
corresponds to an inhomogenous recursion. The networks are henceforth written in
terms of the characteristic polynomial as GSE(r(z)) or GSE(7(z)).
For homogenous f the following results are easily derived from Section 4:
e f is regular & ¢o = 1.
e f is self complementary < an even number of coefficients ¢; equals 1 <
7¢(1) =0 & (2 4 1) divides 74(z).
The same holds for f = f @ 1 if f is inhomogenous. Lifting (and lowering) takes a
particularly simple form (verified by a direct computation):
LEMMA 5.1. Let f be derived from h by a lift, asin (8). Thenr¢(z) = rp(x)(z+1).
COROLLARY 5.2. The mazimally foldable GSE graphs are given as GSE(c,(z))
and GSE(c,(2)), where the characteristic polynomial a,(z) is given as

o) =1+ = Zc?-wi where ¢ = (n) mod 2 .
i

Character. pol. Homogenous graph Inhomogenous graph

fix OprrtOn ol

(14x) = 14X \

(14+x) =
14+X+X4+X

(1)t = 14t

FIG. 2. The two families of mazimally fodable GSE graphs.
The first of these graphs is shown in Figure 2. If n = 2' it is known that (’;‘) =
0 mod 2 for i ¢ {1,n}, hence

(1+2)? = 1+ 2%

showing that GSE(cy) = SE(2!), the classical SE net. The functions 7 for n = 2¢
represent shuffles

Sﬁ(gn—l;-- . 7g0) = (gn—Za' . agOagn—l) .

It can be verified that the shuffle-orbits for @, n = 2! are all of equal length 2n = 2+1,
(The possible periods must be p = 2. but if we assume 7 < ¢ we will get contradictions
g; = g for the components of g). It is further evident that n shuffles maps ¢ to g*.
This shows that if GSE(3r) is folded one time, the periods of each orbit must be
halved. If we continue folding, the periods cannot be halved before we reach n = g1,
since we know that this level has periods p = 2!. Thus, we have proved the following:

THEOREM 5.3. Foralln € {1,2,3,...} the shuffle orbits of GSE(7,,) have the the
same length:

p = 2llog (W41

This theorem is found in a different context in 3], and can be derived from more
general results given in [16, 19].

Lemma 5.1 indicates that factorizations of the characteristic polynomial is impor-
tant for folding the GSE graphs to ’nice’ layouts. In the remaining part of this section

10

we elaborate upon this, showing that any factorization of r(z) = s(x)-t(z) can be
used to fold the graph GSE(7(z)) onto GSE(s(z)). The proof of this requires some
additional formalism.

Instead of working with the ’state’ vector ¢ = (gn—1,...,90) as we have done up
to now, we will use shift register sequences defined as the (periodic) infinite sequences
of bits the shift register can produce:

{a;} =4...,ai,ai-1,...,a1,00} ,

thus n consecutive bits from {a;} define the node in the graph. The characteristic
polynomial 7(z) in (10) defines the following recurrence relation on {a;}:

n
Zci-aT_i =0.
1=0

A 1-1 correspondence between shift register sequences and nodes in the graph is
obtained by associating the node ¢ = (¢_1,9n-2,---,90) with the sequence {a,} with
initial conditions:

{a_1 =0n-1,0-2 = Gn—2y.-.,0_n = go} .

The sequence associated with ¢ = (0,0,...,1) is called the pulse response. We let
Q(r(z)) denote the set of shift register sequences generated by r(z). The following
facts are proved in [16]:

o Q(r(2)) forms a 2" dimensional vector space over the binary field G F[2] (i.e.

(a;),(b;) € Qr(z)) = (a; ®b;) € Qr(x))).

e The pulse response and its first n — 1 shifts spans Q(r).

o Q(s(z)) C Qs(z)-t(2)).

o If s(z) and ¢(z) are relative prime then Q(s(z)-t(z)) = Q(s(2)) + Q(t(z)).

For each {a;} € Q(r(2)) define the generating function as:

(o]
(11) G(z)= Z(Li'mi :
1=0

It is a fundamental fact that if the initial state {a_y1,a_9,...,a_,} = g is given,
then [4]:
(12) G(z) = Py(2)

O
where p,(2) is a polynomial of degree < n, depending on the initial state. If g(z) =
G121 4 .-+ + goa¥ it can be shown that:

(13) py(2¢) = polynomial_part_of (g(z)-r(z)/2") .

Equations (12) and (13) define an isomorphism between GSE(r(x)) and rational func-
tions p(x)/r(x), where deg(p(z)) < deg(r(z)). If deg(p(z)) > deg(r(z)), the coeffi-
cients of the power series of p(2)/7(¢) and (p(2) mod r(z))/r(z) are eventually equal,
and we define the equivalence

p(m)—@i p(2) = ¢(x) mod 7(x
B = L3 () = g(2) mod 1(z)

11

From (11) we see that the shuffle is given as
a-p(2) mod r(x)
@)

The pulse response is represented by 1/7(a), hence the exchange must be given as

E(p(z)/r(z)) = (p(z) + 1)/r(2) -

Theorems 5.4, 5.6 and 5.7 are stated for the homogenous case. For the inhomoge-
nous case, see comments after Theorem 5.7.

THEOREM 5.4. Let 7(2) = s(z)-t(x¢). Define the function
p (p(m)) _ p(z) mod #(2)
“\r(e)) ~ () '
Then ¢; defines a homomorphism of GSE(r(z)) onto GSE(t(xz)). The kernel of the
homomorphism is given as

S(p(z)/r(2)) =

Ken(:) = Qs(2)) -

If ged(s(2), t(x)) = 1 then ¢fq() is 1-1.
Proof: ¢, is clearly onto. Furthermore:

z-p(z) mod r(2)\ _ (z-p(x)mod s(z)-t(z)) mod i(z)
o r(z) t(z)
@-p(x) mod t(z)
= o) = $105, = S10¢y

and

. (p(m:) + 1) _1 +p(wt)(;r;0d U2} . 408, = Buody .

#(55) -# (5 =

we find that Ker(¢;) = Q(s(2)) . If 7(z) and s(z) are relative prime, then Q(r) =
Q(s) + Q(t) thus counting dimensions yields that ¢; must be 1-1 on Q(t).

Since

O

It is easy to express ¢ in terms of the state vector representation. The following
lemma can be shown by inspecting the generating function G(z):
LEMMA 5.5. Letr, s, t and ¢; be as in Theorem 5.4, where

k
s(z) = ZSJ".’L‘j ;
J=0
If d)t((gn—la oo ,gg)) = (hn—k-—lahn—k—% e ,ho) then

k
hi_p = Zgi_]--sj- forie {k,k+1,...,n—1}.
7=0
12

14+x+x2 1+x2 (14+x+x%)(1+x2) Building block:

. 7

FIG. 3. Graph represented as the direct product of relatice prime polynomials, as in Theorem 5.6.

Example: s(z) = (1 4+ z) yields hi_1 = ¢; ® gi—1, as we found in (5).
Example: s(z) = (1 + 2 + 23) yields hi_3 = ¢; ® gi—1 ® gi-3-

We will now use this theorem to find GSE graphs with regular layouts. This is
done by letting the cosets of Ker(¢;) define supernodes in the graph. Theorem 5.4
guarantees that the supernode graph is isomorphic to GSE(#(z)). We also want to
compute the local dynamics within the supernodes. The most symmetric case is when
r(z) can be factored in two relative prime factors:

THEOREM 5.6. Let 7(z) = s(z)-t(z) where ged(s(z),t(z)) = 1. Then every node
gr € Q(r(2)) can be uniquely identified with a pair of nodes

gr = (gs,gt) where g5 € Q(s(x)) and g; € Q(t(z)),

such that shuffle and exchange act according to:

Er(gr) = (ES(gs)’ Et(gt))

and

Sr(gr) = (95(9s), Se(9r)) -

In other words: GSE(r(z)) is the direct product of GSE(s(z)) and GSE({(z)).
Proof: Since Q(r) = Q(s) + Q(t), each g, € Q(r) can be uniquely written as g, =
Gs + Gi. Let ¢5 and ¢; be defined as in Theorem 5.4. Let g; = #5(gr) = ¢5(ds), and
gt = ¢:(g:) = ¢4(Gt). Then this theorem follows immediately from Theorem 5.4.

O

We may think of g; as a global coordinate for g, (supernode address) and g, as
the local coordinate within each supernode. The application of this theorem is shown
in Figure 3. In the general case it is not possible to achieve symmetry between global
and local coordinates. We may, however, choose global coordinates as above, and local
coordinates to achieve a high degree of regularity also here.

THEOREM 5.7. Let r(z) = s(z)-t(z). Then every node g, € (r(z)) can be
uniquely identified with a pair of nodes

gr = (gs,91) where g5 € Q(s(z)) and g; € Qt(z)),
13

such that shuffle and exchange act according to:

(14) E,(g:) = (95 Fal92))
and

' _J (Ss(gs),Si(ge)) if leftmost bit in g =0
) Sil9r) = { (55(9s),51(9t)) else

Proof: Let g, = p(z)/s(z)-t(z). We split p(z) as
p(a) = u(z) + t(z)-v(z) where deg(u(z)) < deg(t(z)) ,

and identify g with the pair g = (gs,g:) where gs = v(2)/s(2¢) and g; = u(z)/t(z)
¢¢(g). This identificaiton is clearly 1-1. Since p + 1 splits as p(z) + 1 = (u(z)+1
t(z)-v(z) we get (14). Note that if deg(p(x)) > deg(s(z)-t(z)), reduction modulo »
is done as:

m
(x)

p(z) mod (s(z)-t(x)) = u(z) + t(z)-(v(z) mod s(z)) ,
so if deg(u(z)) < deg(t(z)) — 1 we find
(2-p(z)) mod s(z)-t(z) = z-u(z) + t(z) (z-v(z) mod s(z)) ,

yielding the upper part of (15). On the other hand, if deg(u(z)) = deg(t(z)) — 1 we
get

z-u(2) = (2-u(z) mod t(r)) + t(e) = a(x) + t(z) ,
where deg(@(z)) < deg(t(z)), thus:
z-p(z) mod s(z)-t(z) = @(x) + t(z)-((v(z) 4+ 1) mod s(z)) ,

yielding the lower part of (15).
O

Note: The local structure comes in only two different variants, and there are no local
exchanges. Thus a network can be built up from only two basic building blocks, as
shown in Figure 4.

Now to the inhomogenous versions of the above theorems. Since an inhomogenous
shuffle can be written as S = EoS, where S is homogenous, we arrive at the following
modifications:

o Theorem 5.4: ¢; defines an homomorphism of GSE(r(z)) onto GSE(t(2)).

o Theorem 5.6 GSE(r(z) r(z)) is the direct product of GSE(s(z)) and GSE(t(z)
o Theorem 5.7 GSE(r(z)) factores into the global structure of GSE(t(z)), an
local structure given by S and S3 as in (15).
The theorems in this section extends readily to the case where () can be factorized

into three or more factors.

14

01234567 76543210

01234567 76543210 3 I

= L1
S iy O
N AL
\!\ A
AN
N
DS G
9L T e —
._. S "
l_—"U-.' <
= | 4 01234567 76543210

76543210

01234567 >
Building blocks: m m

F1G. 4. GSE((1 + ©)8) represented as in Theorem 5.7, where (1 + z)6 = (1 +)3 (1 + z)3.

6. Epilogue. We have a strong belief in the future for Shuffle-Exchange type
networks in massively parallel computing. This is partly based on the optimal bound
given in (1), partly on the fact that many important algorithms map elegantly onto
SE nets (more easily than e.g. onto cube connected cycles) and partly also because of
a close resemblance between the perfect shuffle and so called mizing flows or Axiom A
flows in dynamical systems [5]. These are flows over infinite sets that are mixing the
inputs at an optimal (i.e. exponential) rate. There are some generic properties found
in almost any mixing flow: One of these is the existence of the Small’s horseshoe map
in the flow, which is a continuous analogue to the perfect shuffle. The other is the
existence of Markov partitions, which are the continuous analogue of the sets P;, _;, in
Assumption 1. Thus Shuffle- Exchange type networks are the natural discrete analogue
of continuous mizing flows. This gives the SE type networks a philosophical appeal,
as the ’correct way’ of mixing data.

A major purpose of this paper has been to show that SE-type networks are also
very attractive from a hardware designers point of view, and to tie the bonds between
parallel computing and the shift register art. Since the theory of shift registers appears
to be fairly unknown in the field of parallel computing, it has been a goal to keep the
discussion at a self contained level.

The theory in this paper has several interesting applications that has not been
addressed. One is the derivation of routing and mapping algorithms for SE networks.
Another is the construction of optimal layouts (in terms of area usage) for VLSI design
of SE graphs. Still another is the partitioning of SE networks. It is known that the

15

SE graph cannot be partitioned in smaller SE graphs [17]. Theorems 5.6 and 5.7 do,
however, show that the generalized graphs can be made partitionable by adding a
small number of additional edges. These issues will be addressed in forthcomming
papers.

7. Acknowledgements. The author arrived at the results in this paper moti-
vated by problems in parallel computing, and was surprised to find a strong connection
to the Coding Theory group in his immediate neighborhood. He would like to thank
Prof. Tor Helleseth for pointing to the relevant references in the shift register littera-
ture.

REFERENCES

[1] Benes V.E, Mathematical Theory of Connecting Networks and Telephone Traffic, New York:
Academic Press 1965.
[2] Bermond J-C., Peyrat C.: The deBruijn and Kautz networks: a competiton for the hypercube?,
CNRS, Paris, 1997.
(3] Fredricksen H.: Lechtures on Recursion, unpublished lechture notes, University of Bergen, 1970.
[4] Golomb S.W.: Shift Register Sequences, Holden-Day, San Francisco 1967 (224 pp.).
[5] Guckenheimer J.: A Brief Introduction to Dynamical Systems, Lectures in Appl. Math. Vol. 17,
pp.187-253, 1979.
[6] Huang S-T, Tripathi S.K.: Self-Routing Technique in Perfect-Shuffle Networks Using Control
Tags, IEEE Trans. Comput., vol. 37, pp. 251-256, no. 2 Feb. 1988.
[7] Kleitman A., Leighton F.T., Lepley M., Miller G.L.: An Asymptotically Optimal Layout for the
Shuffle-Exchange Graph, J. of Computer and Systems Sciences 26, 339-361 (1983).
[8] Leighton F.T.: Introduction to Parallel Algorithms and Architectures, Morgan Kaufman Publ.,
San Mateo, Calif. 1992. (831 pp).
[9] Lenfant J.: Parallel Permutations of Data: A Benes Network Control Algorithm for Frequently
Used Permutations, IEEE Trans. Comput., vol. C-27,pp. 637-647, no. 7 July 1978.
[10] Munthe-Kaas H.: Practical Parallel Permutation Procedures, to appear.
[11] NassimiD., Sahni S.: A Self-Routing Benes Network and Parallel Permutation Algorithms, IEEE
Trans. Comput., vol. C-30,pp. 332-340, no. 5 May 1981.
[12] Parker S.D.: Notes on Shuffle/Exchange-Type Switching Networks, IEEE Trans. Comput., vol.
C-29,pp. 213-222, no. 3 March 1980.
[13] Pradhan D.K., Samtham M.R.: The deBruijn multiprocessor network: A versatile parallel pro-
cessing and sorting network for VLSI, IEEE trans. on comput. 38 (1989).
[14] Pradhan D.K., Kodandapani K.L: A Uniform Representation of Single and Multistage Inter-
connection Networks Used in SIMD Machines, IEEE trans. on Comp., vol. C-29, no. 9,
1980.
[15] Preparata F.P., Vuillemin J.: The Cube-Connected Cycles: A versatile network for parallel
computation, Comm. ACM vol. 24 no. 5, 1981.
[16] Selmer E.S.:Linear Rercurrence Relations over Finite Fields, (mimeograph) Dept. of Mathemat-
ics University of Bergen, Norway, 1966, (212 pp.).
[17] Siegel H.J.: The Theory Underlying the Partitioning of Permutation Networks, IEEE Trans. on
Computers, vol. C-29, No. 9, 1980.
[18] Stone H.S.: Parallel Processing with the Perfect Shuffle, IEEE trans. on comput. C-20, 2, (Feb
1971).
[19] Ward M.: The Arithmetical Theory of Linear Recurring Series Trans. Amer. Math. Soc. 33
(1931), pp. 153-165.
[20] Wu C., Feng T.: The Universality of the Shuffle-Exchange Network, IEEE Trans. Comput., vol.
C-30, pp. 324-331, May 1981,

16

REPORTS IN INFORMATICS

“Reports in Informatics” is a series of publications from the University
of Bergen, Norway, containing material from computer science, numerical
mathematics, software engineering and other parts of informatics.

The purposes of the series are several:

to be used as study material in seminars, graduate education etc.

to provide a faster way of publication than through journals

to allow a more detailed expositon than in normal publications

to document results of technical or development work, such as software
systems

0 b =

Most of the texts will be in English.

The reports will be exchanged with similar publications from other institu-
tions having corresponding interests.

Order for copies and other correspondance should be sent to:

Department of Informatics
University of Bergen
Hoyteknologisenteret
N-5020 Bergen

Norway

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

REPORTS IN INFORMATICS

KHALID AZIM MUGHAL.:
INTERACTIVE CONSTRUCTION, SYNTAX ANALYSIS AND EDITING OF PROGRAMS.
OCTOBER 1981.

PER OFSTAD:
PROGRAM ENTRY AND INSPECTION SYSTEM (PEIS). A PROJECT PROPOSAL.
NOVEMBER 1981.

STEIN W. WALLACE:
ENUMERATION ALGORITHM IN LINEAR PROGRAMMING.
FEBRUARY 1982.

JARLE BERNTSEN:
NUMERICAL COMPUTATION OF A THREE-DIMENSIONAL INTEGRAL.
NOVEMBER 1982.

TORLEIV KLQVE;
L CODES ON ALPHABETS WITH TWO SYMBOLS.
APRIL 1983.

JARLE BERNTSEN AND TERJE O. ESPELID:
ON THE USE OF GAUSS QUADRATURE IN ADAPTIVE AUTOMATIC INTEGRATION SCHEMES.
APRIL 1983.

JARLE BERNTSEN AND TERJE O. ESPELID:

ON THE CONSTRUCTION OF MINIMUM POINT SYMMETRIC THREE DIMENSIONAL EMBEDDED INTEGRA-
TION RULES FOR ADAPTIVE INTEGRATION SCHEMES.

JULY 1983.

TORLEIV KLQVE:
GENERALIZATION OF THE KORZHIK BOUND.
JANUARY 1984.

TORLEIV KLQVE:
CODES FOR ERROR CORRECTION AND DETECTION.
JANUARY 1984.

MAGNE MYRTVEIT:
HANDLING SEVERAL WINDOWS ON ALPHANUMERIC DISPLAYS.
MARCH 1984.

JARLE BERNTSEN:
ON THE SUBDIVISION STRATEGY IN NUMERICAL ADAPTIVE INTEGRATION OVER THE CUBE.
MAY 1984.

SVERRE STOR@Y:
ON THE RELATIVE RANKING OF COMPUTER SYSTEMS.
JULY 1984.

TERJE O. ESPELID:
ON THE CONSTRUCTION OF GOOD FULLY SYMMETRIC INTEGRATION RULES.
OCTOBER 1984.

MAGNE HAVERAAEN:
UNIFICATION OF THE LOOP-STRUCTURES.
FEBRUARY 1985.

JARLE BERNTSEN:
A TEST OF THE NAG SOFTWARE FOR AUTOMATIC NUMERICAL INTEGRATION OVER THE 3-CUBE.
MARCH 1985.

JARLE BERNTSEN AND TERJE O. ESPELID:
ON THE CONSTRUCTION OF HIGHER DEGREE THRE DIMENSIONAL EMBEDDED INTEGRATIONS RULES.
MAY 1985.

JARLE BERNTSEN:
CAUTIOUS ADAPTIVE NUMERICAL INTEGRATION OVER THE 3-CUBE.
JULY 1985.

SVERRE STOR@Y:
PARALLEL VERTEX ENUMERATION — A HOLISTIC APPROACH.
FEBRUARY 1986.

ADI BEN-ISRAEL AND SVERRE STORQY:
ON THE COMPUTATION OF BASIC FEASIBLE SOLUTIONS IN LINEAR PROGRAMMING.
JUNE 1986.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29,

30.

31.

32,

33.

34.

35.

36.

37.

38.

JARLE BERNTSEN:

A TEST OF SOME WELL KNOWN DIMENSIONAL GENERAL PURPOSE AUTOMATIC QUADRATURE ROU-
TINES.

JUNE 1986.

TOR HELLESETH AND @YVIND YTREHUS:
NEW BOUNDS ON THE MINIMUM LENGTH OF BINARY BLOCK CODES OF DIMENSION 8.
SEPTEMBER 1986.

SJUR D. FLAM:
STABILITY OF CONVEX PROGRAMS UNDER A DISTRIBUTED CONSTRAINT QUALIFICATION.
NOVEMBER 1986.

TORLEIV KLGVE:
BOUNDS ON THE SIZE OGF OPTIMAL DIFFERENCE TRIANGLE SETS.
DECEMBER 1986.

JARLE BERNTSEN AND MORTEN SKOGEN:
PROGRAMS FOR TESTING AUTOMATIC QUADRATURE ROUTINES.
FEBRUARY 1987.

BENGT ASPVALL:
LINEAR INEQUALITIES.
MARCH 1987.

ZYVIND YTREHUS:
CODE-BUSTER: A SOFTWARE TOOL FOR CHARACTERIZING ABSTRACT CODES.
MARCH 1987.

JARLE BERNTSEN AND TERJE O. ESPELID:
A PARALLEL GLOBAL ADAPTIVE QUADRATURE ALGORITHM FOR HYPERCUBES.
MARCH 1987.

TOR S@REVIK AND TERJE O. ESPELID:
FULLY SYMMETRIC INTEGRATION RULES FOR THE 4-CUBE.
AUGUST 1987.

JARLE BERNTSEN:

ADAPTIVE MULTIDIMENSIONAL QUADRATURE ROUTINES ON SHADED MEMORY PARALLEL COMPUT-
ERS.

OCTOBER 1987.

JARLE BERNTSEN:
PRACTICAL ERROR ESTIMATION IN ADAPTIVE MULTIDIMENSIONAL QUADRATURE ROUTINES.
APRIL 1988.

JARLE BERNTSEN, TERJE O. ESPELID AND ALAN GENZ:
A TEST OF ADMINT.
SEPTEMBER 1988.

PETTER M@LLER:

BRUK AV STRUKTURELL INFORMASJON | FORM AV N-GRAM OG STATISTISK INFORMASJON | FORM AV
EN MODIFISERT VITERBI-ALGORITME | KARAKTERGJENKJENNING.

OKTOBER 1988.

TERJE O. ESPELID:
INTEGRATION RULES, NULL RULES AND ERROR ESTIMATION.
DECEMBER 1988.

JARLE BERNTSEN:

TRITST: A SUBROUTINE FOR EVALUATING THE PERFORMANCE OF SUBROUTINES FOR AUTOMATIC
INTEGRATION OVER TRIANGLES.

JANUARY 1989.

BJZRNAR TESSEM:
TRUTH MAINTENANCE IN INFINITELY-VALUED LOGIC.
MARCH 1989.

KJELL J. OVERHOLT:
THE P-ALGORITHMS FOR EXTRAPOLATION.
JUNE 1989.

SIGURD MELDAL:
EXTENDING CSP WITH TERMINATION INDEPENDENT PROCESS ACTIVATION.
AUGUST 1989.

ZYVIND YTREHUS:
A RATE 3/8 (1,3) CONSTRAINED CODE WITH FREE HAMMING DISTANCE 3.
SEPTEMBER 1989.

39.

40.

41.

42,

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

BJORNAR TESSEM:
INTERVAL PROBABILITY PROPAGATION.
OCTOBER 1989.

JARLE BERNTSEN AND TERJE O. ESPELID:
A TEST OF DCUTRI AND TWODQD.
NOVEMBER 1989.

TOR HELLESETH AND @YVIND YTREHUS:
HOW TO FIND A [33,8,14] CODE.
NOVEMBER 1989,

BJORNAR TESSEM:
EXTENDING THE A/R ALGORITHM FOR INTERVAL PROBABILITY PROPAGATION.
DECEMBER 1989.

BJZRNAR TESSEM:
GRAPH PROPAGATION OF INTERVAL AND FUZZY TRUTH CONSTRAINTS.
FEBRUARY 1990.

JARLE BERNTSEN AND TERJE O. ESPELID:
DEGREE 13 SYMMETRIC QUADRATURE RULES FOR THE TRIANGLE.
MARCH 1990.

MAGNE HAVERAAEN:

DATA DEPENDENCIES AND SPACE-TIME ALGEBRAS IN PARALLEL PROGRAMMING.
(ALSO PUBLISHED AS YALE UNIVERSITY REPORT TR-784.)

JUNE 1990.

JARLE BERNTSEN, RONALD COOLS AND TERJE O. ESPELID:
A TEST OF DECUTET.
JUNE 1990.

TORLEIV KLGVE:
K-SEQUENCES, A GENERALIZATION OF SONAR SEQUENCES AND B-SEQUENCES.
JUNE 1990.

MARIAN VAJTERSIC:

MATRIX MULTIPLICATION ALGORITHMS FOR MATRICES OF THE SIZE n < 128 ON THE MASPAR PARAL-
LEL COMPUTER.

AUGUST 1990.

SVERRE STOR@Y:
WEIGHTS IMPROVEMENT IN COLUMN AGGREGATION.
JANUARY 1991.

TOR S@REVIK:
TRIANGULAR SOLVERS FOR MASSIVELY PARALLEL SIMD COMPUTERS.
JUNE 1991.

FREDRIK MANNE:
REDUCING THE HEIGHT OF AN ELIMINATION TREE THROUGH LOCAL RECORDINGS.
JUNE 1991.

HANS MUNTHE-KAAS:
SUPER PARALLEL FFT's.
MAY 1991.

P.BJORSTAD, F.MANNE, T.SZREVIK AND M.VAJTERSIC:
EFFICIENT MATRIX MULTIPLICATION ON SIMD COMPUTERS.
MARCH 1991.

PETTER BJZRSTAD AND MORTEN D. SKOGEN:

DOMAIN DECOMPOSITION ALGORITHMS OF SCHWARZ TYPE, DESIGNED FOR MASSIVELY PARALLEL
COMPUTERS.

MARCH 1991.

PETTER BJZRSTAD AND ERIK BOMAN:
A NEW ALGORITHM FOR THE SLALOM BENCHMARK.
MAY 1991.

PETTER BJZRSTAD, JON BRZEKHUS AND ANDERS HVIDSTEN:

PARALLEL SUBSTRUCTURING ALGORITHMS IN STRUCTURAL ANALYSIS, DIRECT AND ITERATIVE
METHODS.

JANUARY 1991.

PETTER BJ@RSTAD, JEREMY COOK, HANS MUNTHE-KAAS AND TOR S@REVIK:
IMPLEMENTATION OF A SAR PROCESSING ALGORITHM ON MASPAR MP-1208.
OCTOBER 1991.

58. KJELL JORGEN HOLE:
RUNLENGTH LIMITED ERROR CONTROL CODES OF HIGH RATES
FEBRUARY 1992.

59. FREDRIK MANNE:
AN ALGORITHM FOR COMPUTING A MINIMUM HEIGHT ELIMINATION TREE FOR A TREE.

FEBRUARY 1992.

60. QYVIND YTREHUS:
CONSTRUCTIONS AND PROOFS OF NONEXISTENCE OF SOME CONVOLUTIONAL CODES.
APRIL 1992.

