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Abstract .

Runge-Kutta methods are formulated via coordinate independent operations on
manifolds. It is shown that there is an intimate connection between Lie series and
Lie groups on one hand and Butcher's celebrated theory of order conditions on the
other. In Butcher's theory the elementary differentials are represented as trees . In the
present formulation they appear as commutators between vector fields . This leads to
a theory for the order conditions, which can be developed in a completely coordinate
free manner . Although this theory is developed in a language that is not widely used
in applied mathematics, it is structurally simple . The recursion for the order condi-
tions rests mainly on three lemmas, each with very short proofs . The techniques used
in the analysis are prepared for studying RK-like methods on general Lie groups and
homogeneous manifolds, but these themes are not studied in detail within the present
paper .
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1 Introduction.

The theory of differential equations has diverged in two different directions in
our century ; the pure mathematical abstract presentation based on coordinate
free formulations, and the applied mathematical presentation based on concrete
coordinate representations . In previous papers, we have shown that coordinate
free formulations can be very useful also in areas of applied mathematics ; both
as a tool for structuring numerical software (object oriented design) [10], and as
a tool for developing new numerical algorithms [11] .
In the present paper we use coordinate free techniques to analyze Runge-

Kutta (RK) methods for solving ordinary differential equations . Our motivation
is twofold :

1. We want to understand to what degree the RK process is depending on
a particular coordinate formulation, and the fact that the domain in the
classical formulation is a vector space .
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2 . We are later interested in developing specialized RK methods for ODEs
possessing various symmetries and conservation laws (e.g., symplectic sys-
tems, isospectral systems and systems whose solution is invariant under a
Lie group of transformations) . Such symmetries and conservation laws are
most easily studied in a coordinate free setting . We believe that the analy-
sis of numerical schemes would be simpler if the numerical scheme could be
expressed and analyzed in a coordinate free form and the symmetries are
introduced at this level, rather than by bringing the symmetries down to
a particular coordinate representation and perform a classical coordinate
dependent analysis .

In this paper we complete the task of developing the order conditions of clas-
sical RK methods in a coordinate free framework, and establish the connection
between basic Lie group techniques and Butcher's order theory . The techniques
we develop are also prepared for studying generalizations of classical RK schemes,
such as RK methods based on non-commuting flows . It is a goal to keep the pa-
per at a level where it can be read by people without previous knowledge of Lie
group techniques . We have therefore deliberately avoided a detailed discussion
of possible generalizations .

The Butcher theory of order conditions was originally developed in [4], see [7]
for a thorough exposition of this theory. An alternative approach is given by Al-
brecht in [2] . Applications of Lie brackets in Runge-Kutta methods is discussed
by several authors especially in the field of symplectic integration, see the book
of Calvo and Sanz-Serna [13] . Numerical integration of ODEs on Lie groups is
of considerable interest in computational mechanics, see [14] and the references
therein. Crouch and [6] discuss RK methods on general manifolds in a formula-
tion that is closely related to ours . Their techniques are based on formulations
of the algorithms and analysis of order conditions on the Lie group, while our
formulation and analysis is performed on the corresponding Lie algebra . The
latter approach ties the bonds back to the Butcher theory in the case of abelian
Lie groups, and seems to bring major simplifications also into the analysis of
more general cases .

2 Basic Lie group techniques .

In this section we will introduce the following basic concepts :

•

	

Differential manifolds, vector fields and flows .

•

	

Pullbacks and Lie series .

•

	

Lie algebras and Lie group actions on a manifold .

We will avoid some general mathematical definitions, and rather interpret
these concepts through concrete examples . The examples are sufficient for un-
derstanding our development of the Butcher theory in the next section . The
interested reader is referred to the texts [1, 12, 16, 3] for a rigorous treatment of
basic topics and [9, 15] for advanced topics in Lie group theory .
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A differentiable n-manifold, M, is a domain supporting functions which ev-
erywhere can be differentiated in n different directions . For the purpose of
developing the classical Butcher theory, we can think of a manifold as being the
n-dimensional real vector space M = Rn (or an open subset of this), and regard
all translations of Rn as being a commutative Lie group acting on M . This
will henceforth be referred to as the euclidean example . Another useful mental
image of M is a smooth n-dimensional hypersurface embedded in N", n < m .
It should, however, be noted that manifolds can be defined independently of a
particular embedding in IIB' .

We let .F(M) denote the set of all real valued functions :'

.F(A4) ={f : .M-R}
A tangent vector based on a point p E M is t = (p, v), where v E R' is tangent to
M in the point p . The set of all tangent vectors at all points is called the tangent
bundle and is denoted TM. TM is a 2n-dimensional manifold . A vector field
is a map F : M -> TM such that F(p) = (p, v) . The set of all vector fields on
M is denoted 1(M) . Two tangent vectors (p, u) and (p, v), based on the same
point p, can be added by adding their second components as vectors . There is
generally no rule for adding two tangent vectors based on different points, unless
we specify a process which transports the two vectors to a common basepoint .
This process is called a pullback and is defined below .

EXAMPLE 2.1 . In the euclidean example we have M = T ' andTM = W'xR°,
where the first component denotes the base point of the vector and the second its
direction . In classical vector calculus on R' it is tacitly assumed that tangent
vectors can be brought to a common basepoint by parallel translations, thus
one usually forgets about the first component of TM, and the tangent bundle
is identified with Rn itself. Hence classically a vector field is defined as a map
F : IIBn -4 IRn . Such identifications are unfortunate from an analysis and software
specification point of view, since it introduces `type errors' by identifying objects
(coordinate vectors and tangent vectors) which, because they possess different
properties, should be treated as being of different type .

A derivation on .F(M) is a mapping D : .F(M) -- .F(M) with the following
properties :

•

	

R-linear : D(f + g) = D(f) + D(g) for all f, g E .F(M)

•

	

Leibniz rule : D(f g) = D(f )g + f D(g) for all f, g E F(M)

•

	

Local operator : D(f )Ju = D(f !u) for all open sets U C M
The following fundamental result shows that we may define a vector field by

specifying a derivation operator on .F(M) and vice versa :

PROPOSITION 2 .1 . /1](ch . 4 .2) There is a natural one-to-one correspondence
between derivations on .F(M) and vector fields on M . The derivation corre-
sponding to a given vector field F E 1(M) is written F[_], and is called the Lie
derivative on .F(M) (w.r.t . F) .

'All functions in this paper are assumed to be infinitely smooth .
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The commutator is a bilinear function [_, -] : 1(M) x 1(M) -> 1(.M) which
can be defined by its action as an F(.M) derivation. If H = [F, G] then

H[f] = F[G[f]] - G[F[f]] for all f E F(M) .

Given a fixed F E 1(.M), the map [F, _] : 1(M) -> 1(.M) defines a derivation
on 1(M) which is called the Lie derivative on 1(M) (w.r .t . F) .

EXAMPLE 2 .2 . In the euclidean example, a vector field F(p) = (p, F(p))
corresponds to the (Lie-) derivation F[_] given as :

F[g](p) = (Vg)(p)'F(p) for all g E F(M), p E .M .

Conversely, a derivation F[_] : .F(M) -+ .F(M) can always be written out in
(local) coordinates as :

F[g] =

	

i ~ g where f', g C .F(M) .

This corresponds to the Lie derivation on F(JVM) defined by the vector field

F(p) = (p, F(p)), where F(p) = >i, fzez . We wit[ henceforth use the symbol ax=
both to denote a partial derivative operator, and to denote the constant vector
field arc (p) - (p, e2) for all p . Thus F

	

f i ate= is both a derivation and a

vector field . If F = J:ti f
Zate,_ , G = Ez g~ Sx= then

F,G=2~
C )ag2_

afzl a
(2.1)

	

[

	

]

	

f aX~ Y' axe ax i

Proposition 2 .1 is also the basis for relating tangent vectors based on different
points. Let 0 : M ---> .M be a diffeomorphism (i .e. a smooth function with
a smooth inverse), and let g C .T(M). We define the pullback of g along ~,

cb *g E F(M), as :

O*g = goo

We define the pullback of a vector field F E 1(M), written q5*F E 1(M), such
that derivations commute with pullbacks, i .e . :

(2 .2)

	

(0*F)[cl*g] = cb*(F[g]) for all g E .F(M) .

Since this equation defines how cb*F act as a derivation operator, it must also
define a vector field .

EXAMPLE 2 .3 . In the euclidean example pullback of vector fields is expressed
via the Jacobian matrix of 0. If 0 : 1[8" --~ R' and G = O*F, then we have :

J G(p) = F(O(p)) , where J,j = as
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Given a vector field F E X(M). An integral curve of F is a curve y : JR -> M,
t'- y(t), which satisfy the ODE :

dy(t) = F(y(t)) , where dy(t) = (y(t), ddtt)) E T.M .

The flow of a vector field F E X(.M) is a R-indexed family of mappings

of : M --> .M such that

fit, (y (t)) = y(t + t') for all t, t' and all integral curves y of F .

We will henceforth use the notation Ot = 4ft,F : M -4M to denote the flow of a
given vector field F . The following fundamental formulas [1](p .271,p.278) relate
Lie derivations and pullbacks :

for F, G E X(M), f e .F(A4) . Successive application of these formulas yields
Taylor series expansions of the pullback :

.

These are the basic forms of Lie series and are the main tool for series develop-
ments on general manifolds . 2
Many numerical algorithms can be viewed as a process where we are able to

compute pullbacks along certain `nice' flows exactly, and use this information to
approximate certain operators, (e .g ., finite difference approximations of differ-
ential operators can be viewed this way) . By `nice' we will mean that the flows
act (transitively and effectively) as a Lie group on the manifold . This should be
thought of as all flows generated by a set of vector fields which in each point of
.M spans all possible directions, and which act essentially in the same manner
everywhere. Formally we define these vector fields as :3

DEFINITION 2 .1 . Let .M be an n-manifold . Given a set of vector fields
W1, W2 , . . . , Wn E X(.M) which satisfy :

1. X(M) _ { E 1 f'Wa I f' E F(M) }

2Due to these formulas, it is common to find the notation ti t F - exp(tF) in the literature .
We will avoid this notation, since we will later work with time dependent vector fields, and in
that case the exponential notation may be misleading .

3Some readers will note that we, to keep the presentation simple, have avoided the usual
abstract definition of Lie groups and Lie algebras . Our definition is close to Sophus Lie's
original concept, see [12] .

'yt,Ff = 1

	

1

	

1

	

. . .f + 1F[f] + ZF[F[f]] + 3F[F[F[f]]] +

t2

	

t3
`I`t,FG = G + 1~ [F, G] + 2~ [F, [F, G]] + 3~ [F, [F, [F, G]]] + . .

(2 .3) d('1̀ t,Ff) _ '1~t,FF[f]

(2 .4) 01'

	

_ Tt,F [F, G]dt

	

FG)
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2. There exist a set of constants c Z~ E 118 such that

Then the set
n

g=

	

Z i ~ c 2 E118
i-I

is called a Lie algebra of M, and the elements of g are called infinitesimal gener-
ators (of the Lie group). The set of all flows generated by elements of g is called
a Lie group action on M . If ck j = 0, we say that g is abelian (=commutative) .

Note: If g is abelian, then there exists a coordinate system on the manifold such
that Wi = aa= . Thus the abelian Lie group case is equivalent to the Euclidean
case. However, by concentrating our emphasis on abelian Lie groups rather than
118', we are led to using geometric, coordinate independent, tools in the series
developments rather than the coordinate dependent multivariate Taylor series
of the classical analysis .

Let us fix an arbitrary point e E M . Any infinitesimal generator Y E g is
completely determined by its value on e, and the commutator between different
infinitesimal generators can also be computed in the single point e . Thus g has
the structure of the real vector space 118' equipped with the bilinear bracket
[_, _] : g x g --> g . The Lie algebra g should be thought of as a set of special
vector fields whose commutators and pullbacks are easily computed . We want
to approximate general vector fields by elements in g :

DEFINITION 2 .2 . Given a vector field F E 1(M) and a fixed point e E M, we
let F denote the unique element of g whose flow is tangent to the flow of F in
the point e, i :e . :

F E g such that F(e) = F(e) .

EXAMPLE 2 .4 . In the euclidean example, the Lie algebra is spanned by the
infinitesimal generators Wi = aaT . These generate the set of all translations on
l18' . Evidently g is abelian, since [ aai , aa; ] = 0 . This fact is actually everything
we need to know about the euclidean example to derive the classical Butcher
theory!
Given an arbitrary point e E M. The approximation F of F = E i f2 Wi E

1(M) is computed as

F =

	

f''(e)Wi .
Z

If Y E g we have :

`pt,y (p) = p + tY

(ipt y f) (p) = f (p + tY) for all f E _T(M) .
(Wt yF) (p) = F(p + tY) for all F E 1(M) ,

[Wi, Wi] _

n

j Wk for all i, j .

577
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where we apply the usual identification of g with R' given as Wi H ei .

3 Lie-Butcher theory.

3.1 Runge-Kutta methods

Classically a single Runge-Kutta step can be formulated as : Let M = Rn,
let F : 1R - Rn be a vector field and let y(t) E IIRn be an integral curve of F .
Given the point yo = y(to) . We find y1 y(to + h) by the computation :

Ki = F(yo + Yi) , for i = 1, 2 . . . . I s .
s

Yi = hy ai, j Kj , for i = 1, 2, . . . , s .
j=1

s

y1 = yo + h

	

bjKj ,
j=1

where Ki,YY E Rn and ai,j,bj E R are constants defining a particular method .
The method has order p if

IIy1- y(to + h)II = O(hP+1 )

where II - II is some norm on R' . The Butcher theory [4, 7] is a systematic way to
write down the algebraic conditions that ai,j and bj must satisfy for a method
to have a given order .

We will restate RK methods in a coordinate free setting . Let M be a manifold,
F E X(M) a vector field and g a Lie algebra of M. Let e = y(t o) E M, and
recall (Def . 2 .2) that F denotes the approximation in g which is tangent to F in
the point yo . A Runge-Kutta step is written as :

(3 .1) Ki

Notes :

case .

Yh =

t=1 Y,

	

or i = 1,2, . . .,s .
s

h

s

j=1
(3 .4)

	

y1 = 'I't=1,Yh (e) ,

where Ki , Yi, Yh E g and yo, yl E .tit . The method has order p if

('1't=1,Yhf-Wh,Ff)(e)I =O(hP+1 ) for all f E .F(M) .

•

	

Kj jor i = 1, 2, . ) 8 .

1. This formulation coincides with the traditional formulation in the euclidean
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2 . The definition of the order of the method is only depending on the norm
•

	

I on R, and is independent of any metric on M (which in general may
or may not be present) .

3. We will only derive the order conditions under the assumption that g is
abelian, but the main tools are developed for general g .

4. On a general manifold .M it may be impossible to find infinitesimal genera-
tors WI,..., Wn, which satisfies Definition 2 .1 globally on the whole of M .
For our purpose it is, however, sufficient to find infinitesimal generators
which satisfy the definition locally on an open subset U C Nl, containing
e, i .e . we are only interested in a local Lie group action on N1 . Such a local
Lie group action can always be found . It is even always possible to find
a local Lie group action with an abelian Lie algebra g . There may, how-
ever, be situations where it is advantageous to work with a non-abelian
Lie algebra g . (See [6] for a discussion of this .)

The analysis will proceed along the following lines :

1 . Find a time dependent infinitesimal generator Z t E g that satisfy

'I't,Z, (e) _ !t,F(e) for all t .

2. Given Yh E g computed by the RK step, find a time dependent infinitesimal
generator Zt E g such that

'I't=l,Yh (e) ='fit=h,Zt (e) for all h .

3. The order conditions arise by equating the first terms in a Lie series de-
velopment of Zt and Zt up to a given order .

3.2 Lie-Butcher series for the exact solution

We will find a special type Lie series expansion of a time dependent infinites-
imal generator Zt with the same integral curve as F through the point e .
LEMMA 3 .1 . Let F E X(M) be a vector field and Z t E g be a time dependent

infinitesimal generator. If 'Lt,Z,(e) = 'It,F(e) for all t, then

('It Zt Zt)(e) _ (W t ,Zt F) (e) for all t .

If g is abelian, then
F for all t .

PROOF .

Tt,Z, (e) = 'yt,F(e) =~> ('I`t,Ztf) (e) _ ('h t,Ff) (e) for all f E .T(M), t E R

By (2 .2) and (2.3) we have :

d Nt*' Zt f) _ 'yt,Zt (Zt[f]) _ (Tt,ZtTt) [Tt,Z t f]
dt (T*Ff) _ 'Ft,F(F[f]) = t,zt(F[f]) = ( t,ZtF) [~t,Ztfl
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Thus (fit zt Zt)(e) = ( fit ztF)(e) . When g is abelian it is a standard result that
any element of g is invariant under pullback by any flow in the Lie group, hence
Zt (e) _ ('hi,ztF)(e) .

	

0
In the euclidean example, this lemma is just saying in a roundabout way the

obvious fact that Zt (q) = F(q) in the point q = T t , zt (e) .
Let Y • Z define a second order derivation operator via : 4

PROOF . If G t E X(M) is a time dependent vector field, we have [1](p .285)

d (`Yt,ztGt ) = wt,Z, ([Zt,Gt]+ dGt l .

The lemma follows by applying this formula recursively on T t zt F .

	

0
In the case where g is abelian, the computation of Bi(Zt ) can be done formally

as if Zt were just a scalar function . The first of these are:

where Zt = Zt - zt • • • • • Zt and Zti)
= dt~ Zt .

This recursion turns out to be the cornerstone in our explanation of the
Butcher theory. It is essentially all we need to recursively generate all the order
conditions . Before doing this, we will complete our Lie series development of Zt
and relate this to the classical B-series . From Lemma 3 .1 and 3 .2 we get :

4We may just think of Y •Z as being a formal product defined through the commutator . It
is properly defined as belonging to the enveloping algebra, C5, see [15, Ch .3 .2] .

(3 .5) [Y-Z, F] = [Y, Z, F] = [Y, [Z, F]] for Y, Z E g,

We then have

dt(Y •Z
)=(-Y) •z +Y •(-Z).

LEMMA 3 .2 .
d 2
dti (`y:,z,F) _ `I`t,z t ([Bi(Zt),F])

where Bi(Zt ) are recursively given as :

(3 .6) BI(Zt) = Zt

(3.7) Bi+1(Zt) = Zt • Bi(Zt) + ~t Bi(Zt) for i > 0 .

(3 .8) BI(Zt) = Zt

(3.9) B2(Z) = Zt'Zt + dt Zt = Zt + ZtM

(3.10) B3(Zt)=Zt (Zt +Ztl))+-A+Z(1))=Zt +3Zt •ZtM +Zt2)

(3 .11) B4(Zt ) = Zt +6Zt •Zt 1) +3Zt1) •Zt 1) +4Zt •Z(2) +Z (3)},
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THEOREM 3 3 . Let F E X(M) and let g be an abelian Lie algebra for M . If
Zt E g satisfy T t,z (e) = W t ,F(e), then

Zt -
=0

[F, F] =

[F, [F, F], F] =

where Zo z ~ _ t=

	

are recursively given as :
t=o

Zo°) = F

Zoz) _ [Bi(Zt)It=o , F]

Note that we may compute all Zo 2) simply by plugging the previous Zo' ) , j < i
into the expressions for Bi(Zt ) given in (3.6),(3.7) . This yields :

Zoo)

	

Zo = F

Z
0
(i) [BI(Zt)(c-o,F] = [Zo,F]

	

F]

Zo2)
_ [ B2(Zt)~t-o F] = [Zo +Zo 1) ,F] - [F, F, F] + [FF,F],F]

Zo3) = [F, F, F, F] + 3 [F, [F, F], F] + [[F, F, F], F] + [[F]F]F][F, , .

The connections to the Butcher theory appear when we use (2.1) to write
out the coordinate expressions for each of these commutator brackets in local
coordinates. Each bracket corresponds in a one-to-one fashion to an elementary
differential represented by a tree in the Butcher theory. We have, e.g. :

_ F

	

f a8x3

j,k

j,k,l,m

fk fj a
k axj

f

for i > 0 .

.f l .fl fk,m agj

581

Where the notation is as in [7], i .e . upper indices are vector components, lower are
partial derivations . The correspondence between elementary commutators and
Butcher trees is shown in Figure 3 .1. The recursive structure of the commutators
is readily seen. The root of each tree corresponds to the un-barred F in the
commutator, and the subtrees enter into the other slots . This shows that our
Lie-series expansion of Zt is really a B-series in disguise!' We have not found
this form of Lie series expansions in the literature on Lie group theory, and will
henceforth call it a Lie-Butcher type series.

'Although we have now given the terms a geometric meaning, we have paved the road for
future generalizations .
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0 F

IF, F, F, F]

0/- IF, [F, F] , F]

Figure 3 .1: The correspondence between Butcher trees and commutators

3.3 Lie-Butcher series for the numerical solution

In this section we will derive the order conditions by computing the Lie-
Butcher series for the Yh computed by the RK method . To keep the exposition
on an elementary level, we will be more explicit than necessary in our procedure .
A mathematically more streamlined version of this process is given in the next
section. The RK process computes a flow, generated by Yh, which is close to the
true solution in the two points t = 0 and t = 1 but not necessarily in between .
For the analysis we must compute the flow which follows the solution for all
times .

HANS MUNTHE-KAAS

I IF, F, F]

LEMMA 3.4 . Let g be abelian and let Yh, Zh e g such that

'I't=l,Yh (e) = W h Zh (e) for all h .

Then
d

Zh = I'h = dYh.

PROOF . In the euclidean example this is an elementary result of vector calcu-
lus. We will compute Zh for general g . Define the exponential map exp : g -f M
as exp(Y) = Wt=i y(e) . Regard Yh as a curve in g, which is mapped to a curve
exp(Yh) in M . Zh is a tangent vector to this curve in the point q = exp(Yh) .
Hence :

Zh(q) = d(exp(Yh))(h) = (dexp)Y5 (Yh) (q),

where d exp is the differential of the exponential map [15] (p .108) . If two infinites-
imal generators are equal in a point they are equal everywhere, so in general

Zh = (d exp)Y,t (Yh) .



In the abelian case d exp is the identity map .

	

0
THEOREM 3.5 . The Runge-Kutta algorithm compute Yh E g such that

Wt=i,yh (e) = T h Z,, (e),

where

i!

	

°
i=0

If g is abelian, then the terms ZDZ) are given by the following recursion :

to (3 .2), (3 .3) .

	

0

Let us write out the first terms of this recursion :

K ~°}2

Ir.( 0 )
2

= F

= L-: a i , jK( ) -

K( 1) = [Y (°) , F] _

LIE-BUTCHER THEORY

(hq(h)) (q)

j=1

PROoF . Eqns . (3.14),(3.15) follows from Lemma 3.2 . Eqns . (3.16),(3.17) fol-
lows from Lemma 3.4 by applying the Leibniz formula :

= 4
h=0

	

(O(h)) (e-1>

From these we obtain Z02) and the order conditions :

=1

h=0

583

(3.14) K~ °)

	

F

(3.15) K( n) _ [Bn (Y), F] , n > 1

(3.16) Yz(n) = (n + 1)
S

K(n) , n>0

(x.17) Z°' ) - (n+1)~l3

J=~
s

, n>fl
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(3.18)

(3 .20)

(3 .21)

Z0 _

=~> 3

i,j,k

ui ®Y
j
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biai,jai,k [F , F, F] + 6

biai,jai,k = 1 ,

[Y, F] _

z, ,k

z,3,k

ba

ui®[Y, F]

(3 .19)

	

qft YF =

	

Ui®'Ft Y F

We equip gs with a product . by letting

=1

bi ai,j ai,k [[F , F], F]

(uz(3Y) . ( vj(9 Zj) = (ui .vi ) 0 (Y . Zi )

3.4 Streamlining the theory

We will in this section introduce a more compact notation and simplify the
recursion . Formally the theory could have been developed by defining the s-
stage RK scheme on M as a projection of a 1-stage scheme on the s-fold product
manifold M x . . . x M . We will, however, rather do it directly by inspecting the
formulas of the previous section .

The different internal stages Ki and Y are stacked together in s x n matrices
K, Y E gs , where gs = Woo . Commutators and pullbacks are extended to gs
by parallelizing over the first component of g, if Y = E i u i®Y E gs then :

where ui •vj E R' is the Schur product i .e. the componentwise product of the two
vectors, and Y1 .Zj is the product in the sense of (3 .5) . The product is extended
to all of gs by linearity, i .e . :

uj ®Zj =

	

(ui .vj) 0 (Y . Zj ) .

The operations on gs are now defined such that Lemma 3.2 holds in the same
form even for Z t E gs .
Let A = [ai, j] : R' - W and let bT = (b1, b 2 , . . . , b s ) : R' -* R. The RK

where I : g --~ g is the identity matrix, Y, K E gs and Yh e g .

scheme can now be written :

(3 .22) K = Wt_1,YF

(3.23) Y = (hA(3I) K

(3.24) Yh = (hbT®I) K
(3.25) yi = Wt=1 ,Yh (e)



It is now a straightforward matter to verify that our recursion can be written
as :
THEOREM 3.6 . The terms Zo n) E g of Theorem 3.5 are given by the following

recursion :

where 1 = (1, . . . ,1)T E W and Y(n), K(n) E g"
Let An denote the n-fold matrix product, let c = Al and let cn = c • c - •c

denote the n-fold Schur product . We write out the recursion above, and let the
coefficients of Bn(Y) enter the recursion on the right hand side of each tensor
product . Then the right hand parts of the terms equal the terms of ZG") in
Theorem 3.3, and the order conditions can be read directly out of the recursion :

h(o)

Y (1)

Y (2)

Y(3)
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(A®I)K (°) = (A®I) (1®F) = bT1 = 1

(2A®I)K(1) _ (2A®I) (c®[F, F4) r 2bTc = 1

(3A(DI) (c2® [F, F, F] + 2Ac® [ [ F,
F]

, F] / =~> 3bTc2 = 1, 6bTAc = 1

(4A01) (c3 ®[ .F, FF, F + c .2Ac®3 [F, [F, F

3AC 2®~IF,F,FJ,FI +6A2c®[ [pF ],F],F

4b T'c3 = 1, 8bT (c •Ac) = 1, 12bTAc2 = 1, 24bTA2c = I

Note that to derive the order conditions, we only need the left part of each
tensor product . It is neither necessary to know the coefficients of each term in
Bn (Y) nor the exact form of each commutator to do this, i .e . the recursion may
be simply developed in compact form as :

] +

n Terms in Bn (Y) Y(n) = (n + 1)A (K( n) )

0 A(1) _
1 Y) 2A B1 (Y) = 2A (c)

(3.30)
2 Y 2 , Y(1)) 3A B2(Y) = 3A (c2 , 2Ac)

3 Y 3 Y I'(1 ) Y(2 ) 4A B3(Y) = 4A (c3 , c-2Ac, 3Ac2 , 6A2C

(3.26) K (°) = 1®F
(3.27) Y (n) _ ((n + 1)A®1) K(n ) , n > 0

(3.28) K(n) _ [Bn(Y), F] , n > 1

(3.29) Z(n) _ ((n + 1)bT®I) K(n) , n > 0
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From the right column of (3.30) we get the order conditions :

bT1 = 1
2bTC = 1

(3.31)

	

3bTc2 = 1 , 6bTAc = 1
4bTC3 = 1 , 8bT(c•Ac) = 1 , 12bTAc2 = 1 , 24bTA2c = 1

Thus Theorem 3.6 as presented in (3 .30, 3 .31) provides a simple recursion for
generating order conditions of arbitrary order .

4 Concluding remarks .

There are several applications and generalizations of the present theory that
we want to be pursue in future work :

• Non-abelian case : From the theory of this paper it is possible to write
down order conditions for the general Lie group case . This leads to several
new order conditions, where the ordering of the subtrees in a given tree is of
importance . We have not yet studied these conditions and the development
of corresponding RK methods in detail .

• Composition of methods : There is a literature on the composition
of RK methods [5, 8] . It seems feasible to study compositions of meth-
ods within the present framework by employing the Baker-Champbell-
Hausdorff formula [15] (p .114), but the details of how this is done is still
open .

• RK on homogeneous manifolds : We believe that the present approach
may be formulated on homogeneous manifolds rather than Lie groups .
These are quotients of two Lie groups, and include several manifolds of
major practical interest, such as (the surface of) n-spheres, projective
spaces, Grassmann and Stiefel manifolds .
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