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Coordinate Free Numerics —
Closing the gap between ‘Pure’ and ‘Applied’ mathematics?’

The theory of differential equations have diverged in two different directions in our century; the applied mathematical
coordinate based presentation which has its origin in hand calculations, and the pure mathematical presentation based
on coordinate free formulations, commutative diagrams and global analysis.

Through various examples, we show that much can be gained by employing ‘abstract’ coordinate free formula-
tions also in scientific/numerical computing. The origin of this line of work, was an attempt to design a software
system for numerical solution of tensor field equations on parallel computers by using formal methods from pure
computer science [2]. It was discovered that the pure abstract mathematical definitions was better suited for software
design than the concrete coordinate based definitions, and that modern computer languages enables us to express
and program various numerical algorithms directly within a coordinate free language. Later [3] we discovered very
useful computational techniques for manipulating tensor indexes which are simple to program within the abstract
framework, but cannot be conveniently expressed within a coordinate based formulation. Recently [4], we have shown
that the Butcher theory for analyzing Runge Kutta methods may be replaced by a coordinate free analysis based on
Lie series and Lie groups. Through its geometric formulation and structural simplicity, this approach is interesting
for investigating geometric ODE integrators (e.g. symplectic ODE methods).

Our thesis is the following: Modern computer languages enables us to use abstract formulations
from pure mathematics in computational mathematics. Computational mathematics will gain from
this, and it may eventually lead to a narrowing of the gap between pure and applied mathematics.

1. ‘Abstract’ vs. ‘Concrete’; ‘What’ vs. ‘How’

A basis for modern algebraic programming technology and Object Oriented software design is the recognition that
“Computer programming is what + how”. 1.e. we should keep in mind the difference between an abstract specification
of tasks to be done and the actual algorithms/data structures used in a concrete implementation. The abstract
specification defines the external interfaces of a software module, and the concrete implementation is hidden within
the module and not accessible to the rest of the world. The main benefits are modularity (change algorithms/data
structures within a given module without doing anything outside), and it is also crucial for successful debugging and
verification.

Although this programming model has been very successful in computer science tasks (graphic packages,
discrete event simulations, .. .), it is not at all evident that the same approach is useful or even possible in numerical
computing. At the very hart of the problem is the fact that the applied mathematical language was developed for the
use in hand calculations, and is not suited for describing ‘what’. E.g. take the common definition of the laplacian:
V2= 83—; + ;—;. This is really a ‘how’ description; ‘how to compute V?2 in a cartesian coordinate system’. Similar
problems occur if we, within the classical language, try to answer questions such as ‘what is a tensor’, ‘what is the
domain of a differential equation’, ‘what is a Runge-Kutta method’ etc.

In pure mathematics the main goal has been to study structures rather than doing actual computations. Hence
one have been forced to develop languages for discussing ‘what’ independently of ‘how’. This is the core of coordinate
free formulations, and is also perhaps a reason for the current division between pure and applied math.

2. The SOPHUS system for solving tensor field equations

In the SOPHUS project [2,3], we have developed a software system for doing tensor field computations, which is
almost entirely depending on coordinate free formulations. The basis is differential manifolds as definitions of do-
mains, categorical diagrams in multilinear algebra as definitions of tensors and geometrical definitions of differential
equations via Lie derivations and covariant derivations. The core of the SOPHUS system is a module implementing

real valued functions over a domain. Although this module is implemented by using a given discretization (e.g. finite
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differences or spectral methods), it is visible to the rest of the system only through a set of continuous operations;
we may add or multiply two functions, take Lie derivatives of functions etc. The rest of the system is independent
of the chosen discretization, and most of it is also independent of particular coordinate systems.

This leads to significant gains in terms of software modularity, portability between various parallel computers
and flexibility w.r.t. changing discretization techniques and numerical algorithms. The most surprising discovery
was perhaps a very useful algorithm for doing manipulations with tensor indexes [3] which we will briefly describe
below.

To motivate this algorithm we will look at some examples from componentwise tensor analysis. Let g;; denote
the components of the metric tensor. It appears in many different expressions, e.g. inner products r = yig;;z7,
contractions r = g;;a”’ and index lowering b,* = g;;a?*. All these computations are performed by fetching different
sets of numbers, multiplying, adding and storing into components of the result. The order of which the numbers
should be fetched differ in these examples, and the information about this must be read out of the indexes (sum over
repeated indexes). In many cases tensors possess many symmetries, and it is important to only store and compute
different components. Consider Hookes law in linear elasticity: o% = Aijklekl, where o and e are the symmetric
stress and strain tensors, and A is Hookes tensor, possessing the symmetries Aijkl = Ajikl = Aklij which reduce
the number of different components from 81 to 21. In the case where a compact storage of o, n and A is used, it is
not evident where to fetch and store the components. In designing a general system for tensor computations, we are
faced with the problems of how to specify symmetries and various uses of the same object, how to compute fetch
and store addresses and how to take advantage of all symmetries, both to reduce storage and computations. Our
algorithm solves all these problems in a relatively simple manner, but it cannot be expressed within the componen-
twise notation.

In the (category theoretical) coordinate free language, tensorial constructions are expressed in terms of com-
mutative diagrams, i.e. diagrams (graphs) where the nodes represent linear spaces and the arrows are multilinear
maps. The various uses of the metric tensor in the above examples are represented by different arrows, and we can
formally express how to obtain one arrow from another. This corresponds to preparing the data set in the metric
tensor g for different uses; e.g. for using in an inner product, a contraction or index lowering. The process can be
summarized as follows:

1. The tensor operations are expressed in terms of commutative diagrams. The various diagram operations are
expressed as computer programs.

2. The diagrams are pulled down with a functor to a category of indexes. In this category the nodes are indexes
and the arrows represent programs which compute the index transformations involved in a computation (where
to fetch and store components).

3. The arrows are lifted from the index category to the category of linear maps with a free functor. This step
corresponds to actually performing the tensor computations, given information about where to fetch and store.

3. Conclusions

We have seen an example of a problem which at best requires a very large and complex program to be handled
generally within the classical formulation, but where the solution based on the abstract formulation is surprisingly
simple. We believe that modern programming technology gradually will contribute in narrowing the gap between
pure and applied mathematics, and that this will influence computational sciences in a positive direction.
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