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Simulation of ordinary differential equations on manifolds: some
numerical experiments and verifications*
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During the last few years, different approaches for integrating ordinary differential
equations on manifolds have been published. In this work, we consider two of these
approaches. We present some numerical experiments showing benefits and some
pitfalls when using the new methods. To demonstrate how they work, we compare
with well known classical methods, e.g. Newmark and Runge-Kutta methods.

1. Introduction

In recent years, many authors have argued that certain problems in mechanics
cannot be solved in a satisfactory way by classical numerical methods. For instance,
it might be desirable that problems which possess certain invariants are solved with a
numerical method that preserves the same invariants. Typical examples are the
symplectic structure in a Hamiltonian system, the energy in a conservative mechanical
system and the angular momentum of a rotating rigid body in space. Classical numerical
methods normally fail to preserve these quantities.

Special energy preserving methods as well as symplectic methods are old, but it is
within the last decade that symplectic Runge-Kutta methods have become popular (see
e.g. Sanz-Serna and Calvo 1994). In computational mechanics, numerical integration
of ordinary differential equations on Lie groups is of interest and has been investigated
by e.g. Simo and Wong (Simo and Wong 1991). An example of such a Lie group is
the configuration space of a rigid body (also called SO(3)).

During the last few years, different approaches for integrating ordinary differential
equations on manifolds have been published. Isospectral flows are considered in Calvo,
Iserles and Zanna (1995) and orthogonal flows in Dieci, Russel and van Vieck (1994).
In this work, we consider two of these approaches (see Crouch and Grossman 1993 and
Munthe-Kaas 1995).

The two approaches are essentially different. Crouch and Grossman (Crouch and
Grossman 1993) formulate their methods in terms of flows of simpler systems of vector
fields. The Munthe-Kaas methods (Munthe-Kaas 1995) are developed for Lie groups,
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but they may be generalized to include more general manifolds. In Euclidean space,
both types of methods coincide with the traditional Runge-Kutta formulation.

Classical numerical methods make use of vector space operations, that are not
generally defined on manifolds, where the new methods operate. These methods only
perform operations that are defined on manifolds, for instance computing flows and
pullbacks. The methods are developed using elementary theory from differential
geometry.

Submanifolds embedded in some Euclidean space often arise from constraints being
imposed or invariants the solution is known to possess. The numerical methods are
defined in such a way that the computed solution is restricted to the submanifold. The
numerical error produced by the method will only result in error on the manifold, and
will not let the numerical solution drift away from the constraint manifold. Due to
physical understanding of many problems, this submanifold on which the solution
evolves is often known in advance. The integration methods incorporate this knowledge
to integrate exactly with respect to the constraints.

The configuration space of a rigid body may be viewed as a 3-dimensional manifold
embedded in R®. The new methods integrate by computing flows of vector fields on
this manifold, and the numerical solution will, hence, never leave the three dimensional
manifold.

2. How the Methods Work
In this section, we explain briefly how the numerical methods work.

2.1. Explicit Runge-Kutta Methods

Classical, s-stage, explicit Runge-Kutta methods for solving the second order initial
value problem

y' =flt,y),  y(to)=yo, (1)
on the interval [t,, 1, + h], are traditionally written as

i=1
ki=f(tn+cih, yat h D, aik;)
i=1

Yns1=YnTh 2 bik;,
i=1

where y, and y.:, arc approximations to y(t,) and y(fn+1), respectively. The
coefficients of the method are normally specified through a Butcher tableau,

o O

Cz2 |dn 0

e 0 =14

Cy [ 13 . as‘s—l 0 bT
| by ... ber b

and, as usual it is assumed that ¢;=ZiZiay, i=1,..., 5.

Runge-Kutta methods work in vector spaces, and a geometric interpretation of a step
is shown in Fig. 1. At the starting point, p, = y,, we evaluate the right hand side of the
differential equation to find k. p» is computed by following the direction &, a distance
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Figure 1. Geometric interpretation of how a Runge-Kutta method with four stages integrates
from point y, to y, . .

haz. At p,, the differential equation is again evaluated, and we find k2. We continue
like this, and compute the final step by taking a linear combination,
h25-1bjkj, of ki,....k,. At each point p; we compute a direction, and a linear
combination of these directions gives the final direction to follow a distance 4. Note
that the operations which constitute the primitives of the schemes are not generally
defined on manifolds.

2.2. Crouch-Grossman Methods

The Crouch-Grossman method (Crouch & Grossman 1993) is formulated for
differential equations on the form

n
YO =F(t,y)= X ft. )Ey),  yO)=yoe M,
i=1
whose solution evolves on an n dimensional manifold, .#, of R, ye#,E,,. .., E,

are real analytic vector fields on R" and f;:R X RY— R. We denote by F,(y) a vector
field with coefficients frozen at (t, p) relative to a given frame,

Fo(3) = Fe.p(9) = 3 [z, ).

The explicit Crouch-Grossman method may now be written as follows:

P = Yo
vi(p) = P,
Fy(h)(y) = Fp(y),
vih, p) = Mo TF et ath E ghenatlp |
Fi(h)(y) = Fou.p(y), e
Yir1 = "5 ghbs |F.3—1"'ehb|F}p.

where the exponentiation of a vector field as usual denotes its flow.! A geometric

' The flow of a vector field F e X (.#)is an ﬁ-indexedfamily of mappings ¢ .4 — # such
that ¢, (y(t)) =y(z+1") for all r and ¢' and all integral curves yof F.
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Figure 2. Geometric interpretation of how a Crouch-Grossman method with four stages
integrates from point z, to z,+ . The lines denote flow of certain vectorfields.

interpretation of a step is shown in Fig. 2. At point p, = z, we compute the vector field,
F}, defined by the differential equation. Point p» is found by following the integral curve
of F! through p, a distance hay, and F; is the vector field defined by the equations at
point p,. Point p; is found by following the integral curve of F, through p, a distance
ha and the integral curve of F} through this point a distance has. When all the vector
fields F?, i = I..., s, are computed, a step with the Crouch-Grossman method is taken
by following in turn the integral curves of F',..., F adistance hb,,..., hb,, respectively.

In Euclidean space, this method coincides with the traditional Runge-Kutta
formulation, since following integral curves just becomes following straight lines.

2.3. Munthe-Kaas Methods

Let ./ be a Lie group (which is also a manifold), F € X(.#) a vector field on . #
and g the Lie algebra of .#. Let further yo = y(to) € .4, and denote by F the element
in g which is tangent to F in the point yo. We will also denote by W, y: .# > .# the
flow of a given vector field ¥, and by Y} yF the pullback of F along Y. An explicit
Runge-Kutta step in the Munthe-Kaas setting may then be written as follows.

K: = Wi-iyF i=1l...s,

i—1
YI. = h 2 aijjg i= l..--, &,
i=1

Y,

h 2 b.i"Kb
=1

7

i = Wi=1v,(¥)
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%=R

Figure3. Geometric interpretation of how a Munthe-Kaas method with four stages works. The
lines denote flow of certain vector fields.

where K;, Y;, Y, € gand yo, y, € .#. A three stage method in this setting may thus be
written in detail as

P = Yo,

K] = F(PI)

P2 = exp(hauK))

P2 = ﬁz‘Pl

K, = p; 'F(p)p-

Ps = exp(h(as K, + axk,))

P3 = Pi-p

K3 = p3'F(p3)pa

yi = exp(h(b K, +b,K;+b3K3))p,.

A geometric interpretation of a step with the Munthe-Kaas algorithms is shown in
Fig. 3.

On manifolds, we can not add vectors as we do in Euclidean spaces. The base point
of the vectors is important, and when evaluating the equation at a point, the resulting
vector is not, in general, compatible with a vector computed in another point. The
pullback operation, which transforms the vectors in different fibers of the tangent
bundle to a common fiber, makes use of the inverse tangent mapping. When all
vectors are in the same fiber, we do have a vector space, and it makes sense to
compute linear combinations of the vectors. This is what we have tried to picture in
Fig. 3. Let K; be the value of a vector field at point p;, and let K, be the value at e of
the pulled back vector field. Then K, = K, since we compute K at the base point p,.
K; is computed at P2, which has been found by following the integral curve of K, a
distance haz. K; is computed at point ps, which has been found by following the
integral curve of the linear combination i(a3, K, + ax K,) of K, and K. K5 and K, are
computed in the same way. The final step is taken by following the integral curve of
the linear combination h 35_,b;K; of all the previously computed vector fields
Ky,..., K,.

The above algorithm is the original Munthe-Kaas algorithm that was presented in
Munthe-Kaas 1995. That paper explains the ideas and develops the tools needed. One
drawback, however, is that it turns out that methods of the above mentioned type are
at most of order two. Various variants of the algorithm has therefore been suggested.
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The main idea is to use so called correction functions to increase the order of the
schemes (see Munthe-Kaas and Zanna 1996).
A general initial value problem on a matrix Lie group, G, can be written as

J’:Zf(y:)')’n Yo=P,
where f: G— g. Here, y,: R G is a curve on G and y;/ : R> TG is a curve on the
tangent space to G. The following setting approximates the solution to order three on
matrix Lie groups when using the coefficients of an arbitrary third order classical
Runge-Kutta method (Munthe-Kaas 1996).
Yo=Pp
forn=0,1, 2,...
L=k =f(y»)
fori=2,..,s8
u;= th}:'. a;,-k,-
ki = f(exp(u) - V)
end
v=~h 2; 1 bjkj
v=v—¢ll,v]
Yni1=€Xp(P) = yn
end
where I, ki, ui, v,vegand y; e G.

The following algorithm approximates the solution to order four when using the
coefficients of an arbitrary fourth order classical Runge-Kutta method (Munthe-Kaas
and Zanna 1996).

Let ¢; =25 a; and d; = Zj= a;¢;. Compute the coefficients (my, mz, ms) by
solving the linear system

Ca C% 2d2
(m1 ma m3} ( C3 C% 2d3) —_(1 00)
Ca C?; 2d4
The fourth order scheme is then given by
Yo=p
forn=0,1,2,...
I =k =f( yn)
fori=2,....8
ui=nh Ej:% a.jk_,-
= u; — 2, i
ki = f(exp(i:) - y»)

end
I, = (mi(ka— 1) + ma(ks— 1)) + ma(ka— 1))/ h
v=h3-1bk;

F=v—all, v] =5l v]
yn+ 1= C’Kp(l?) h yn
end
where I, k;, u;, d;, v, vegandy; € G.

Note that Crouch-Grossman methods are constructed for general differentiable
manifolds, which in particular include the Lie groups, while Munthe-Kaas methods are
constructed for Lie groups only. There should, however, be no major problems with
generalizing the Munthe-Kaas methods.
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2.4. Newmark methods
The Hilber-Hughes-Taylor method (Hilber, Hughes and Taylor 1977) for solving
the linearized version of the initial value problem
Y=gy, ¥ y(t)=yo,  y'(to)=ys, 2
ie.
My'+Cy' +Ky=F(1),  y(t)=yo,  y'(to)=ys,
where M C and K are m X m matrices and M is non-singular, may be written as

d:ri 1 =dn+hv” + hz((% - ﬂ)aPl + ﬁaﬂ+ |)

Vit =V, +h((1 —p)a, + ya,+))
where @, is computed from
Ma, .+ C((1 +a)v,.—av,) + K((1 + )dp+1—ad,) = F(t,+, + oh).

Here, d, and v, are approximations to y(r,) and y'(t,), respectively. The classical
Newmark method is obtained with & = 0.

Note that (2) may be written as a first order system (1), and the explicit Runge-Kutta
method is applicable also for second order initial value problems. Solution of (2) by
Runge-Kutta-Nystrom methods is discussed in Hairer, Norsett and Wanner (1993).

3. Numerical experiments

In this section we present numerical experiments showing some properties of the
new methods. Let the methods be defined as follows.

RK4: the classical fourth order Rynge-Kutta method given by the Butcher tableau

0
172 | 172

1721 0 12
| 0O 0 |

1/6 2/6 2/6 1/6

CG3: a third order Crouch-Gross method given by the Butcher tableau

0
— 1724 | —1/24
17/24 | 161/24 —6

1 —2/3 2/3

MK3: a third order Munthe-Kaas method given by the same Butcher tableau as method
CG3.

MK4: a fourth order Munthe-Kaas method given by the same Butcher tableau as
method RK4.

N: a Newmark method with « =0, f=1/4 and y = 1/2.
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Figure 4. The picture shows how well the solution stays on the manifold. The two lower lines

are produced by the CG3 and MK3 methods, while the upper line is produced by the RK4
method. The stepsize used in the simulation was 0.01.

Test Case 1:

The first test problem we solve is a first order system of differential equations (see
Crouch and Grossman 1993),

R=S(f(R))R, R e GL(3)CR¥*3, Q)

where f(R) = (fi (R), f2(R), f+(R))" and f; are real-valued functions on GL(3), the
group of nonsingular 3 X 3 matrices. S(a) is the skew symmetric matrix,

0 as —ds
S(a)=| —as O a;
a, —a, 0
where a=(ai, az, a3)"eR® It is not difficult to show that when S is
skew-symmetric, every solution of (3) satisfies
RT(1)R(t)=R{Ro, with R(0)=R,.
In the case R, € SO(3), the solution of (3) evolves on SO(3). Note that by defining

the vector fields
0 0 0 00 —1 0 10
Ex(R)=|0 0 1|R, ExR)=100 0 |[R, Es(R)= —100|R,
0 —10 10 0

0 00
problem (3) may be rewritten in the form
3
R=3 f(R)EAR)
i=1

In this test case, we have chosen f; to be the Frobenius norm of R, 2 to be the 3-norm
of R and f; to be the 4-norm of R.

We are not primarily interested in the solution to this problem, but rather in how well
the methods stay on the constraint manifold and the methods” order when solving the
problem.

Fig. 4 shows how well the solution stays on the manifold. The two lower lines show

the results from the CG3 and MK3 methods, while the upper line shows the result from

the

RK4 method. Note that CG3 and MK3 stay on the manifold within the order of

accuracy of the computer, while RK4 drifts off with an error of order 10°°.
In order to compute the order of the methods, we first compute the “correct” solution
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Figure 5.  The pictures show the computed order of the CG3 method (left) and MK3 method
(right). The order is computed with (4). The x-axis denotes i ( describing the stepsize) and
the y-axis denotes the computed order, pi.

with a high order numerical method with a strict error tolerance (10 12). We then run
the other methods with stepsizes /1, = h (the whole interval), h, =h/2,....h,=hi2"",
and compute the error, e;, i = 1,..., n, relative to the “correct” solution. A sequence of
approximations to the order of the method is found by computing

_ log(ei-1/ei)
P tog(hi_ by

In these test cases, we have put n = 10.

Fig. 5 shows that the approximations from the CG3 and MK3 methods
asymptotically approach order three.

Fig. 6 shows the result after applying the coefficients of the RK4 method in the
Crouch-Grossman setting to the same test problem. By construction, all coefficients that
satisfy the classical order conditions of order two will generate numerical schemes of
order two in the Crouch-Grossman and the Munthe-Kaas settings. This is due to the
fact that for first and second order methods the order conditions for classical and the
new methods coincide. For third and higher order methods the classical order conditions
are only a subset of the new methods’ order conditions (see Marthinsen and Owren
1996).

i=2,...,n. @)

%]

computed order
L] (] £

h
(=]

5 10
i

Figure 6. The picture shows the computed order of the Crouch-Grossman method with the
coefficients from the RK4 method. The order is computed with (4). The x-axis denotes
i (describing the stepsize) and the y-axis denotes the computed order, Pi-
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Figure 7. A schematic picture of the humming top in local and global coordinates.

Test Case 2:

The second test problem we solve is a second order problem modelling a humming
top. A schematic picture is shown in Fig. 7.

The position of the humming top can be described by matrix B(#) € SO(3). This
matrix transforms local to global coordinates, i.e. a point with local coordinates
O (Q constant) on the humming top has global coordinates ¢ (#) = B(t)O. The
angular velocity @ e 0(3) is identified with a vector & = (w1, @2, w3)T e R?

through
(] 0 —ws
| € w3 0 =y |-
3 — W2 N 0

The configuration space of the problem is thus the Lie group
% =TSO(3) =SO(3) X s0(3) and its Lie algebra g is TTSO(3) =s0(3) X s0(3).
The operations on the Lie group and its Lie algebra are:

Product in %: (a,v)-(b,w)=(a-b,v+tw).
Addition in g: (u, vVY+ (i, v)=(u+i,v+v).
Multiplication by scalar in g: o(u, v) = (o, av).

Lie bracket in g: [(u, v), (i@, V)1=(u, il, 0).
Exponential map in g: exp(u, v) = (exp(u), v).

Here, on the right hand side of the definitions, - is the multiplication in SO(3), +
is the addition in $0(3), [ , ] is the bracket (commutator) on so(3) and exp is the
exponential map on s0(3).

The differential equation describing the motion of the humming top is given by

(B(1),w(1))" = F(B(1), ©(1)) - (B(1),(1)),
where B(f) € SO(3), w(t) € g and (B(1), (?)) € ¥, and F:%— g is defined by
F:(B, 0)—>(w, o),

and @’ is given by ' = a[w, f] (or, alternatively, &' = o( @ X f)). Here, o isascalar
and fis the external force. In this test case, we have assumed that oo =1 and that
the gravitational force (mg: = 1, where m = 1, is the mass of the humming top) is
the only external force:

0 01 0
f=( 0)<—>f={—1 0 0)
-1 0 0 o0f.
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Figure 8. The pictures show the computed order of the CG3 method (left) and MK3 method
(right) (first component, B(z)). The order is computed with (4). The x-axis denotes i
(describing the stepsize) and the y-axis denotes the computed order, p;.

The initial conditions used in the computations are

1 0 0 00 08 —10
BO)=B,=|0 12V3 12 |and w(0)=wo=| —0.8 00 1.1
0 —12 1”7V3 10 —-1.1 00

The model described above is only valid if the spin of the humming top is very large.
When solving the problem with the Runge-Kutta and the Newmark method, we
formulate the problem in the following way:

B(n)\ _ [ (t)B(1) _ ~ o )
(co(t)) —(&'[cu(t),ﬂ) with B(0)=B, and B’(0)=w(0)=wq.

The pictures in Fig. 8 show that the approximations from the CG3 and MK3
methods asymptotically approach order three. The pictures in Fig. 9 show the results
for the N and RK4 methods and Fig. 10 shows the results for the MK4 method.

Note that RK4 is supposed to be of order four (it is a classical fourth order method),
but as we see in Fig. 11, the method does not generate approximations that stay on the
manifold. If we, as in Test Case 1, had used the RK4 coefficients in the
Crouch-Grossman setting, the order of the method would have been only two. The N

N RK4
45 4.5
L4 34005365990
gs,s T35
® 3
H i
52.5 g£25
8
2f —5 oo -o-oo6—-—-6-—> 2
o
1.5 15
0 5 10 0 5 10

Figure 9. The pictures show the computed order of the N method (left) and RK4 method (right)
(first component, B(t)). The order is computed with (4). The x-axis denotes i (describing
the stepsize) and the y-axis denotes the computed order, p,.
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Figure 10. The picture shows the computed order of the MK4 method (first component, B(?)).
The order is computed with (4). The x-axis denotes i (describing the stepsize) and the y-axis
denotes the computed order, p;.

method generates a solution of order two, but this method also fails to produce solutions
that stay on the manifold. On the other hand, we see that the CG3 and MK3 methods
behave as anticipated.

Only vector space operations are performed in the second component in the
formulation on %, and hence the Crouch and Grossman or Munthe-Kaas methods with
coefficients of a classical method will be of the same order as the classical method. This
is, however, not true for the first component, B.

4. Conclusion

We have described two quite new approaches for integrating ordinary differential
equations on manifolds and presented numerical comparisons with the classical
Runge-Kutta and Newmark methods. These new methods are especially useful in
problems where certain quantities should be conserved. If we view SO(3) as embedded
in R?, we may, as we did in Test Case 1, apply classical nu merical methods to a problem
with SO(3) as configuration space. In this case the new methods are in general more
computationally expensive than classical methods, but the numerical experiments show
a qualitative improvement of the solution.

The Crouch-Grossman and the Munthe-Kaas methods differ in cost per step from
the classical Runge-Kutta methods. Classical methods with s stages roughly use s
function evaluations in addition to a number of linear combinations. s-stage
Crouch-Grossman methods use s function evaluations, s(s + 1)/2 exponentiations and

—4
n 10 /_,’———"_
2107

10

E10® "

107"
% 10
T e
0 05 1
intagration time

Figure 11. The picture shows how well the solution stays on the manifold. The three lower lines
are produced by the CG3, MK3 and MK4 methods, while the two upper lines are produced
by the RK4 and N methods (the upper line is N). The stepsize used in the simulation was
0.01.
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a number of linear combinations. The s-stage Munthe-Kaas methods of order three
involve s — 1 function evaluations, s exponentiations, 1 commutator and a number of
linear combinations. The s-stage Munthe-Kaas methods of order four involve s—1
function evaluations, s exponentiations, s + I commutators and a number of linear
combinations.

Computing commutators between matrices and matrix exponentials are very time
consuming operations. In the case of general 3 X 3 matrices, the commutator may be
computed with a total of 117 floating point operations. In the 3 X 3 skew-symmetric
case, the number of operations may be reduced to 9. For general 3 X 3 matrices one
needs 823 floating point operations (counted by Matlab) to compute the exponential,
but if we consider v € s0(3), the Euler and Rodrigues formula (see e.g. Simo and Wong
1991) yields

. . o,
e =1+20% 4 g [S‘EZ] v, where a = ||v||/V?2,
o 2 3
which computes the exponential by 41 floating point operations (we have counted the
evaluation of sine and square root as one operation).

An alternative to the exact computation of the exponential is to use rational
approximations, e.g. Padé approximants. The diagonal Pade approximants maps so(n)
analytically to SO(n) for all n, but there may not always exist functions, analytical in
a neighbourhood of 0, other than exp, from the Lie algebra to the Lie group that in
addition satisfies f(0) =1 and f’(0) = 1. An example of such a case is that exp is the
only analytical function from sl(n) to SL(n) satisfying the requirements when n > 2.

For special problems a significant qualitative improvement of the solution has been
demonstrated. One future challenge is, however, to find a clever way to choose frames.
It should be noted that the new methods are generalizations of the classical methods,
and a trivial choice of frames in R" reduces the new methods to the classical ones.
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