On the Role of Mathematical Abstractions for
Scientific Computing®

Krister Ahlander Magne Haveraaen Hans Munthe-Kaas
July 12, 2000

Abstract

A distinguished feature of scientific computing is the necessity to de-
sign software abstractions for approximations. The approximations are
themselves abstractions of mathematical models, which also are abstrac-
tions.

In this paper, the relation between different mathematical abstraction
levels and scientific computing software is discussed, in particular with
respect to the simulation of partial differential equations (PDEs).

It is found that software based on continuous abstractions have more
chances of being modular, than software based on discrete approximations
of the continuous abstractions. Moreover, it is stated that coordinate-free
abstractions are a solid foundation for the simulation of PDEs.

1 Introduction

Applications in the area of scientific computing span a wide range of problem
domains, and each domain exhibits its own challenges to be addressed. However,
one distinctive feature of scientific computing applications is the need to deal
with approximations of continuous abstractions. The obvious example is that
the infinite number of reals on any interval must be approximated on a computer,
normally by floating point numbers of appropriate precision. But even this basic
example shows that scientific computing is a science where nothing is certain,
since it is also possible to use, say, integers to represent real values, as is often
done in image processing. Another example of a continuous approximation is the
abstraction of an angle. In order to become a useful component, this abstraction
must recognize that different real numbers, say 7 and 3w, may represent the
same angle, and also that different units may be used. These facts are of a
different nature than the fact that the same real number may be approximated

*Draft paper submitted to the IFIP WG 2.5 Working Conference on Software Architec-
ture for Scientific Computing Applications, 2-6 October 2000 in Ottawa, Canada. Research
funded via a grant from the Norwegian research council. Email of corresponding author:
krister@Qii.uib.no

by different discrete representations. The understanding of approximations and
the abstraction of approximations is a key aspect for scientific computing, in
order to obtain modular software architectures.

In this paper, we promote the philosophy that the design of applications for
scientific computing shall be built firstly upon continuous abstractions, where
appropriate, and secondly on approximation abstractions. This is nicely illus-
trated by the angle abstraction having some continuous features, independent
of a particular choice of approximation for real numbers. Moreover, the angle
abstraction shall be general with respect to choice of units. This situation is
similar to the recognition that physical quantities, for instance velocity, shall
not depend on certain units or a certain choice of coordinates. Consequently we
identify two different mathematical abstraction levels, a continuous abstraction
level and a coordinate-free abstraction levels. Both levels can be used as input
for software architecture design. The aim of this paper is to discuss the role
mathematical abstraction levels have concerning the modularity of the software
architecture, particularly with respect to simulations of partial differential equa-
tions (PDEs). The problem domain of PDE solvers is an area within the main
stream of scientific computing, and it includes the need to evaluate approxi-
mate solutions of mathematical models, a demand for high performance, and
the necessity to utilize physically motivated simplifications where possible. We
find that a design which is based upon continuous abstractions can be modu-
lar in many aspects, but we emphasize that a software architecture based on
coordinate-free abstractions have additional flexibility.

When designing scientific computing software, there are many different as-
pects to take into account. Today, there seems to be a trend towards prob-
lem solving environments, interactive environments, and distributed applica-
tions. Since we find mathematical abstractions, in particular when based on
coordinate-free formulations, are beneficial for designing the core of PDE solvers,
we believe that it would be of interest to study the role of mathematical ab-
stractions in other problem areas. We think that specifications of mathematical
abstractions might have an impact also in problem areas like visualisation and
communication between distributed components.

2 Motivation

As a motivating example, we take the wave equation for an elastic medium. It is
relevant as an industrial application, for instance when modeling oil reservoirs.
It is a standard equation from mathematical physics, and may be found in any
text book on the subject, for instance [8]. In its most compact version, the
coordinate-free form, it may be stated as:

poE = V.ot f(t)
o = A(e) (1)
e = Lug.

Here, p is a scalar field, u is the displacement vector to be simulated, f is a
time-dependent forcing function, and o, e and A are tensors of order two (o and
e) and four (A). A tensor of order n needs n indices. The equations also involve
derivation with respect to time, %, and the derivations V- and £,. In order to
find suitable abstractions for design, we may simplify the equations assuming
Cartesian coordinates, and the equations may be rewritten in component form

as:

82 i a L
Pa;é = Zj%ﬁ‘fi(@
oij = Y Nijkier (2)
o 1 (0w 4 Ou
€j = 2\ 0z; T B)

where the component indices ¢ and j and the summation indices k and [vary
over the number of space dimensions.

It is not difficult to implement a program simulating a discretized version of
these equations in a language that support simple array or matrix abstractions.
The continuous abstraction v may for instance be discretized on an equidis-
tant square grid, and the continuous derivatives may be approximated with
finite differences. But, some of the questions that we want to pose are: What
happens when the mathematical model changes? When the numerical method
becomes more sophisticated? When the geometry gets more complicated? In
these situations we would probably have little or no use of the previous, quick,
implementation of the simple model. If a more modular application is wanted,
we argue that the software architecture should be designed according to the
levels of the underlying mathematical abstractions.

3 Different mathematical abstraction levels

In order to create modular software, it is important to divide the software into
different layers and partitions. For scientific software, that deals with mathe-
matical abstractions, it is natural to divide the software architecture into layers
that correspond to the mathematical abstractions. For our problem domain of
PDE solvers, the following levels may be identified:

Manifold abstractions The abstraction of the computational domain corre-
sponds to a mathematical manifold. In software, this is normally repre-
sented as a Grid. Grids may be structured or unstructured, adaptive,
curvilinear, or overlapping. It is very common that software projects in
this field are very tightly coupled to the choice of manifold abstraction.
Consequently, it is often difficult to combine abstractions from different
projects. Within the same project, there are many examples of modularity
between manifold abstractions. For instance, it is common with a serial
and a parallel version of the same manifold abstraction.

Field abstractions On the field abstraction level we find abstractions that are
based on equation (2) in our motivating example, for instance scalar fields,
vector fields, and partial derivatives with respect to space coordinates. In

software, common names for the key abstraction on this level are Grid
Function (see, e.g., [2, 11]) or Field (see., e.g., [3, 9]).

Coordinate-free abstractions On the coordinate-free abstraction level we
find abstractions that are based on equation (1). Here, we also take into
account the dependence of the coordinate system. In current software
projects, apart from Sophus [5, 6], this level seems to be less developed.

Other levels of abstraction We may also identify higher levels of abstrac-
tion, for instance for time discretisations, and for the equations them-
selves. In [1], a framework design which addresses the modularity of these
abstractions is proposed. These issues have also, to some extent, been
treated with respect to ordinary differential equations, see e.g., [4].

In the remainder of this paper we will concentrate on a the field and the
coordinate-free abstraction levels.

4 Field studies

The field concept is central for PDE codes. To illustrate the importance of
continous abstractions, we discuss various issues regarding the representations

of fields.

4.1 Scalar fields

Consider a scalar field u = u(z1,22),2 € M C R2. Depending on context, the
following representations may be plausible:

1. Cartesian coordinates u = u(z,y) may be good for simple geometries.

2. Cylindrical coordinates u = u(r, #) may be used for axi-symmetric geome-
tries.

3. Curvi-linear coordinates where several mappings are used to cover the
domain: u = wu(¢i(r,s)), I = 1...L. These concepts can be used for
instance when to define differentiable manifolds, see for instance [10].

4. Infinite linear combinations of basis functions: u = Zfil V.

This list is not exhaustive, but it illustrates that the continuous abstraction
level leads to different abstractions. Table 1 suggests corresponding discrete
data structures. One may observe two mechanisms of discretisation for fields,
either by discretising the underlying manifold, i.e. rounding, or by terminating
an infinite series, i.e. truncation. In order to find modular software abstractions,
it is obviuos that different implementations of the same discrete representation
shall be exchangeable. But, already if we study the continuous abstraction
level, it is clear that the first three representations can be summarized as u =
u(p),p € M. The manifold abstraction is then recognized as a separate module,

Continuous Discrete

u(x) = u(x,y) ui; = w(xs, yj;)

u(x) = u(r,0) wj = u(rs, 0;)

u(x) = u(gu(r, s)) Uiji = U(qﬁﬁv(?“i, si))
1(x) = Z?i1 a¥i(x) u(x)=> 1, a¥(x)

Table 1: Different continous abstractions lead to different discrete abstractions.

L
~

and the exchangability between different field representations can be increased.
The discrete version is then v = u(p),p € My, where M,, is a discretisation
of M. The relation between the fourth example and the three others are not
as obviuos, particularly on the discrete level. Here, the emphasis is on the
basis functions ¥;, and only indirectly on the manifold. Still, the description
u=u(p),p € My, is valid. It may therefore be taken as a definition of the scalar
field, independent of the representation.

4.2 Tensor fields

Real scalar fields relate a real value to every point on a manifold. Similarly, com-
plex scalar fields relate a complex value to every point on a manifold. Therefore,
using a C++4 template notation, we may express a scalar field as an abstraction
over a type, Field<T>. In this section, we will discuss how to extend scalar
fields to vector fields, or, more generally, tensor fields.

First, we consider a two-dimensional vector in a point p: v = (v1,v2). The
vector may be real-valued or complex-valued, and a vector may then be con-
structed over a type: Vector<T>. Note that the discrete components of a vector
is intrinsic in the mathematical abstraction, and has nothing to do with any
approximation. A generalisation of a vector is a tensor, where several indices
are used to index a tensor component, as in equation (2).

Now, consider a vector field on a two-dimensional manifold M,

u(zy, r2) = (u1(r1, v2), u2(71, 72)).

It can be regarded as an array with three indices. The first is discrete and picks
out the component, and the other two “indices” are the continuous coordinates.
A discrete representation, based on for instance Cartesian coordinates, might
be a three-dimensional array structure: w;; = wy (24, yj). It seems as if we have
two equivalent ways to construct vector or tensor fields:

Field<Tensor<Scalar>>, (3)

and
Tensor<Field<Scalar>>. (4)

In other words, we can either construct a Tensor Field as a Field over a Ten-
sor or as a Tensor over a Scalar Field. If we only base our design on the
abstraction levels of field representations, both these choices seem plausible.

But if we also consider derivatives, there are important differences. Differen-
tiation of scalar fields is quite straight forward. For vector fields, it is more
complicated, because we can not subtract two vectors in different points from
each other. However, if the geometry of the manifold is taken into account,
vector differentiation may be formulated in terms of the geometry, and in terms
of partial derivatives of the components, the scalar fields. Coustruct (3) yields
therefore an awkward implementation. Construct (4) is more suitable, since
implementation of vector differentiation can now be stated in terms of partial
derivatives. Tensor and vector differentiation are important tools, in order to
formulate PDEs in a coordinate-free form, as equation (1). See [7] for more
discussions on these aspects.

The implication for software modularity is best illustrated with an example.
In many physical situations, it is essential to utilize symmetries in order to
reduce the problem to something simpler. For instance, it may be appropriate
to use cylindrical coordinates for the wave equation. In this case, equation (2)
must be rewritten into cylindrical coordinates. Equation (1), on the other hand,
remains intact. Thus, if the software supports coordinate-free abstractions, a
change of coordinates may be done without affecting the module that defines
the equations.

5 Concluding remarks

The role of mathematical abstractions have been discussed, and we argue that
the correct treatment of these are important in order to design modular software
architectures for scientific computing.

Particularly, we investigate the role of mathematical abstractions in the con-
text of simulating partial differential equations, that is PDE solvers. We identify
several levels of mathematical abstractions and we point out that the modular-
ity of the software depends upon which levels are chosen as the input for the
design. For our problem domain, we argue that coordinate-free abstractions
shall be used.

We find that mathematical abstractions are important for designing PDE
solvers. It would also be of interest to investigate the role of mathematical
abstractions in other contexts. For example, we believe that the usage of math-
ematical abstractions can be pursued further when designing more user-friendly
scientific software, such as problem solving environments, or distributed appli-
cations.

References

[1] K. Ahlander. An Object-Oriented Framework for PDE Solvers. PhD thesis,
Uppsala University, Dept. of Scientific Computing, Uppsala, Sweden, 1999.

[2] D. Brown, W. Henshaw, and D. Quinlan. Overture: An object-oriented
framework for solving partial differential equations. In Y. Ishikawa,

R. Oldehoeft, J. Reynders, and M Tholburn, editors, Scientific Comput-
ing in Object-oriented Parallel Environments, pages 177-184, Berlin, 1997.
Springer-Verlag.

Are Magnus Bruaset and Hans Petter Langtangen. A comprehensive set of
tools for solving partial differential equations; Diffpack. In Morten Daehlen
and Aslak Tveito, editors, Numerical Methods and Software Tools in In-
dustrial Mathematics, pages 61-90. Birkh&user, Boston, 1997.

K. Engg, A. Marthinsen, and H. Z. Munthe-Kaas. DiffMan — an object
oriented MATLAB toolbox for solving differential equations on manifolds.
Technical Report No. 164, Dept Comp. Sc., University of Bergen, 1999. See
also http://www.ii.uib.no/diffman.

Phil Grant, Magne Haveraaen, and Mike Webster. Coordinate free pro-
gramming of computational fluid dynamics problems. Scientific Program-
ming, 2000. Accepted for publication.

Magne Haveraaen. Abstractions for programming parallel machines. Sci-
entific Programming, 2000. Accepted for publication.

Magne Haveraaen, Helmer André Friis, and Tor Arne Johansen. Formal
software engineering for computational modeling. Nordic Journal of Com-
puting, 6(3):241-270, 1999.

Jerrold E. Marsden and Thomas J. R. Hughes. Mathematical Foundations
of FElasticity. Prentice-Hall, 1983.

J. Reynders et al. Pooma: A framework for scientific simulations on parallel
architectures. In G. Wilson and P. Lu, editors, Parallel Programming using
C++, pages 553-594. MIT Press, 1996.

Bernard Schutz. Geometrical Methods of Mathematical Physics. Cambridge
University Press, 1980.

M Thuné, E Mossberg, P Olsson, J Rantakokko, K Ahlander, and K Otto.
Object-oriented construction of parallel PDE solvers. In E. Arge, A. M.
Bruaset, and H. P. Langtangen, editors, Modern Software Tools for Scien-
tific Computing, pages 203—226. Birkh&user, 1997.

