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Abstract

In this paper we survey parts of group theory, with emphasis on struc-

tures that are important in design and analysis of numerical algorithms

and in software design. In particular, we provide an extensive introduc-

tion to Fourier analysis on locally compact abelian groups, and point to-

wards applications of this theory in computational mathematics. Fourier

analysis on non-commutative groups, with applications, is discussed more

briefly. In the final part of the paper we provide an introduction to multi-

variate Chebyshev polynomials. These are constructed by a kaleidoscope

of mirrors acting upon an abelian group, and have recently been applied

in numerical Clenshaw–Curtis type numerical quadrature and in spec-

tral element solution of partial differential equations, based on triangular

and simplicial subdivisions of the domain.

1.1 Introduction

Group theory is the mathematical language of symmetry. As a mature

branch of mathematics, with roots going almost two centuries back, it

has evolved into a highly technical discipline. Many texts on group theory

and representation theory are not readily accessible to applied mathe-

maticians and computational scientists, and the relevance of group the-

oretical techniques in computational mathematics is not widely recog-

nized.
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Nevertheless, it is our conviction that knowledge of central parts of

group theory and harmonic analysis on groups is invaluable also for

computational scientists, both as a language to unify, analyze and gen-

eralize computational algorithms and also as an organizing principle of

mathematical software construction.

The first part of the paper provides a quite detailed self contained in-

troduction to Fourier analysis in the language of compact abelian groups.

Abelian groups are fundamental structures of major importance in com-

putations as they describe spaces with commutative shift operations.

Both continuous and discrete abelian groups are omnipresent as compu-

tational domains in applied mathematics. Classical Fourier analysis can

be understood as the theory of linear operators which commute with

translations in space; examples being differential operators with con-

stant coefficients, and other linear operators which are invariant under

change of time or space. A central theme in computation is the interplay

between continuous and discrete structures, between continuous mathe-

matical models and their discretizations. Many aspects of discretizations

can be understood via subgroups and sub-lattices of continuous abelian

groups. The duality between time/space and frequency/wave numbers

provided by the Fourier transform is another central topic which math-

ematically is expressed via Pontryagin duality of abelian groups.

Symmetries is a core topic of all group theory. Translation invariance

of linear operators is one type of symmetry. Another kind of symmetry

is invariance of operators under isometries acting upon the domain, e.g.

reflection symmetries. In the second part of this paper we will discuss

the importance of certain kaleidoscopic groups generated by a set of

mirrors acting upon a domain. We will review basic properties of mul-

tivariate versions of Chebyshev polynomials, which are constructed by

the folding of exponential functions under the action of kaleidoscopes.

Theoretically these have remarkable properties, both from an approxi-

mation theoretical point of view and also with respect to computational

complexity. However, until recently they have not been applied in com-

putations, probably due to the quite complicated underlying theory. We

will briefly review recent work where multivariate Chebyshev polynomi-

als are applied in numerical quadrature and in spectral element solution

of PDEs, and discuss some advantages and difficulties in this line of

work.
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1.2 Fourier analysis on groups

Classical Fourier analysis is intimately connected with the theory of lo-

cally compact abelian groups. In mathematical analysis this view allows

a unified presentation of the Fourier transform, Fourier series and the dis-

crete Fourier transform [31]. In computational science, some understand-

ing of the group structures underlying discrete and continuous Fourier

analysis is invaluable both as a language to discuss computational as-

pects of Fourier transforms and sampling theory, as well as an organizing

principle of mathematical software [14]. In this section we provide a self-

contained review of Fourier analysis on abelian groups. We conclude this

section with a brief discussion on generalized Fourier transforms on non-

abelian groups and point to some applications of representation theory

in computational science. We refer to [5, 7, 11, 15, 16, 27, 31, 33] for

more details on the topics of this chapter.

1.2.1 Locally compact abelian groups

A Locally Compact Abelian group (LCA) is a locally compact topolog-

ical space G which is also an abelian group. Thus G has an identity

element 0, a group operation + and a unary − operation, such that

a+ b = b+a, a+(b+ c) = (a+ b)+ c and a+(−a) = 0 for all a, b, c ∈ G.

For our discussion it suffices to consider the elementary LCAs and groups

isomorphic to one of these:

Definition 1.1 The elementary LCAs are:

• The reals R under addition, with the standard definition of open sets.

• The integers Z under addition (with the discrete topology). This is

also known as the infinite cyclic group.

• The 1-dimensional torus, or circle T = R/2πZ defined as [0, 2π) ⊂ R
under addition modulo 2π, with the circle topology.

• The cyclic group of order k, Zk = Z/kZ, which consists of the integers

0, 1, . . . , k − 1 under addition modulo k (with the discrete topology).

• Direct products of the above spaces, G×H, in particular Rn (real

n-space), Tn (the n-torus) and all finitely generated abelian groups.

It is often convenient to consider these groups in their isomorphic

multiplicative form. E.g. the multiplicative group of complex numbers

of modulus 1, denoted T = { z ∈ C | |z| = 1 } is isomorphic to T via the

exponential map T 3 θ 7→ exp(iθ) ∈ T. More generally, ifG is an additive

abelian group with elements λ, we denote a corresponding multiplicative
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group as eG with elements eλ, multiplicative group operation eλeλ
′

=

eλ+λ′ and unit 1 = e0. The exponential notation is here just a formal

change of notation, a ‘syntactic sugar’ to simplify certain calculations.

An LCA with a finite subset of generators is called a Finitely Gen-

erated Abelian group (FGA). These, and in particular the finite ones,

are the basic domains of computational Fourier analysis and the Fast

Fourier Transform. A complete classification of these is simple and very

useful:

Theorem 1.2 (Classification of FGA) If G is an FGA, then G is

isomorphic to a group of the form

Zn×Zpn0
0
×Zpn1

1
×· · ·×Z

p
nk−1
k−1

(1.1)

where pi are primes, p0 ≤ p1 ≤ · · · ≤ pn−1 and ni ≤ ni+1 whenever

pi = pi+1. Furthermore G is also isomorphic to a group of the form

Zn×Zm0
×Zm1

×· · ·×Zm`−1
(1.2)

where mi divides mi+1. In both forms the representation is unique, i.e.

two FGA are isomorphic iff they can be transformed into the same canon-

ical form1.

1.2.2 Dual groups and the Fourier transform

Group homomorphisms are fundamental in describing sampling theory,

fast Fourier transforms and convolution theorems.

Definition 1.3 For two LCA H and G, we let hom(H,G) denote the

set of continuous homomorphisms from H to G, i.e. all continuous maps

φ : H → G such that

φ(h+ h′) = φ(h) + φ(h′) for all h, h′ ∈ H.

In particular χ ∈ hom(G,T) are homomorphisms into the multiplica-

tive group of complex numbers with modulus 1, defined as χ(x) = eiθ(x),

where θ ∈ hom(G,R). These homomorphisms χ are called the charac-

ters of G. The characters are always given by exponential maps and form

the basis for the Fourier transform. For two characters χ, χ′ it is clear

that the product (χχ′)(g) = χ(g)χ′(g) is also a character, and also the

complex conjugate χ is a character, which is the multiplicative inverse

of χ. Thus hom(G,T) is an abelian group called the dual group of G,

1 The isomorphisms are provided by the Chinese remainder theorem.
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denoted Ĝ. With the compact-open topology Ĝ is also an LCA, thus,

we can define the double dual
̂̂
G. Pontryagin’s duality theorem states

that G and
̂̂
G are isomorphic LCAs. Due to this symmetry, we adopt a

slightly different definition of dual LCAs. In the following, we consider

both G and Ĝ as additive abelian groups and define the duality between

these via a dual pairing.

Definition 1.4 (Dual pair) Two LCAs G and Ĝ are called a dual pair

of LCAs if there exists a continuous function 〈·, ·〉 : Ĝ×G→ T such that

hom(G,T) =
{
〈k, ·〉 | k ∈ Ĝ

}
hom(Ĝ,T) = { 〈·, x〉 | x ∈ G }.

The definition implies that

〈k + k′, x〉 = 〈k, x〉·〈k′, x〉 (1.3)

〈k, x+ x′〉 = 〈k, x〉·〈k, x′〉 (1.4)

〈0, x〉 = 〈k, 0〉 = 1 (1.5)

〈k, x〉 = 〈−k, x〉 = 〈k,−x〉. (1.6)

Furthermore, if 〈k, x〉 = 1 for all k, then x = 0, and if 〈k, x〉 = 1 for all x

then k = 0. If we work with pairings on different groups G,H, we write

〈·, ·〉G and 〈·, ·〉H to distinguish them.

Every LCA has a translation invariant Haar measure, yielding an in-

tegral
∫
G
f(x)dµ which is uniquely defined up to a scaling. For Rn and

Tn, this is the standard integral, and for the discrete Zk and Z, it is the

sum over the elements. The characters are orthogonal under the inner

product defined by the Haar measure. L2(G) denotes square integrable

functions on G.

Definition 1.5 (Fourier transform) The Fourier transform is a uni-

tary2 map ̂ : L2(G)→ L2(Ĝ) given as

f̂(k) =

∫
G

〈−k, x〉f(x)dx. (1.7)

There exists a constant C such that the inverse transform is given as

f(x) =
1

C

∫
Ĝ

〈k, x〉f̂(k)dk. (1.8)

Sometimes we will write F(f) or FG(f) instead of f̂ .

2 Unitary up to a scaling.
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Note that Ĝ is discrete if and only if G is compact. In this case the

inversion formula becomes a sum, and C =
∫
G

1dx = vol(G). The fol-

lowing table presents the dual pairs for the elementary groups R, T , Z
and Zn.

G Ĝ 〈·, ·〉 f̂(·) f(·)
x ∈ R ω ∈ R e2πiωx

∫∞
−∞ e−2πiωxf(x)dx

∫∞
−∞ e2πiωxf̂(ω)dω

x ∈ T k ∈ Z e2πikx
∫ 1

0
e−2πikxf(x)dx

∑∞
k=−∞ e2πikxf̂(k)

j ∈ Zn k ∈ Zn e
2πikj
n

∑n−1
j=0 e

−2πikj
n f(j) 1

n

∑n−1
k=0 e

2πikj
n f̂(k)

Multidimensional versions are given by the componentwise formulae:

x = (x1, x2) ∈ G = G1×G2

k = (k1, k2) ∈ Ĝ = Ĝ1×Ĝ2

〈k, x〉 = 〈k1, x1〉·〈k2, x2〉

f̂(k1, k2) =

∫
G1

∫
G2

〈−k1, x1〉〈−k2, x2〉f(x1, x2)dx1dx2

f(x1, x2) =
1

C1C2

∫
Ĝ1

∫
Ĝ2

〈k1, x1〉〈k2, x2〉f(k1, k2)dk1dk2.

We end this section with a brief discussion of shifts and the convolu-

tion theorem. For a finite group G, we let CG denote the group algebra

(or group ring). This is the complex vector space of dimension |G|, where

each element in G is a basis vector, and with a product given by con-

volution. The convolution is most easily computed if we write the basis

vector for λ ∈ G in the multiplicative form eλ. Then f ∈ CG is repre-

sented by the vector f =
∑
λ∈G f(λ)eλ and we obtain the convolution

f ∗g of f, g ∈ CG by computing their product and collecting equal terms

fg =
∑
λ∈G

f(λ)eλ
∑
λ′∈G

g(λ′)eλ
′

=
∑
λ∈G

(f ∗ g)(λ)eλ,

where

(f ∗ g)(λ) =
∑
λ′∈G

f(λ′)g(λ− λ′). (1.9)

For a continuous group G, we can similarly understand CG as a func-

tion space of complex valued functions on G. Care must be taken in

order to define a suitable function space for which convolutions make

sense, but these issues will not be discussed in this paper, see [31]. All

results tacitly assume that we define an appropriate function space, e.g.

L2(G), where operations such as convolutions and Fourier transforms

are well-defined.
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The continuous convolution is given for f, g ∈ CG as

(f ∗ g)(x) =

∫
x′∈G

f(x′)g(x− x′)dx′. (1.10)

Arguably the most important property of the Fourier transform is that

it diagonalizes the convolution, i.e.

(f̂ ∗ g)(ξ) = f̂(ξ)ĝ(ξ) for all ξ ∈ Ĝ. (1.11)

The proof is a straightforward computation. It is worthwhile to notice

that it relies upon the property that the group characters are homomor-

phisms, i.e. 〈ξ, x+x′〉 = 〈ξ, x〉〈ξ, x′〉, and upon the translation invariance

of the integral.

Similar results hold for more general non-commutative groups, in

which case the characters are replaced by group representations. Irre-

ducible group representations are matrix valued group homomorphisms

which form an orthogonal basis for L2(G), stated by the Frobenius the-

orem for finite G and Peter–Weyl theorem for compact G. Applications

of such generalized Fourier transforms in numerical linear algebra are

discussed in [2].

1.2.3 Subgroups, lattices and sampling

A subgroup of G, written H < G, is a topologically closed subset H ⊂ G
that is closed under the group operations + and −.

Definition 1.6 For a subgroup H < G we define the annihilator sub-

group H⊥ < Ĝ as

H⊥ =
{
k ∈ Ĝ | 〈k, h〉G = 1 for all h ∈ H

}
.

Note that if k, k′ ∈ Ĝ are such that k − k′ ∈ H⊥, then 〈k, h〉G =

〈k′, h〉G for all h ∈ H. This phenomenon is called aliasing in signal

processing, the two characters corresponding to k and k′ are indistin-

guishable when restricted to H.

Since G is abelian we can always form the quotient group K = G/H,

where the elements of K are the cosets H + g with the group operation

(H + g) + (H + g′) = H + g + g′, and the identity element of K is H.

Similarly, we can form the quotient Ĥ/H⊥, where each coset H⊥ + k

consists of a set of characters aliasing on H.

Definition 1.7 A lattice in G is a discrete subgroup H < G such that

G/H is compact.
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An example is G = R, H = Z and K = R/Z = T . Also Z×Z < R×R
is a lattice. However, Z × 0 < R × R is not a lattice since the quotient

T ×R is not compact. If G is a finite group, then any H < G is a lattice.

As another example, consider G = Z with the lattice 2Z < G consist-

ing of all even integers. Theorem 1.2 states that 2Z is isomorphic to Z
as an abstract group, thus it seems natural to define H = Z and identify

H with a subgroup of G via a group homomorphism φ0 ∈ hom(H,G)

given as φ0(j) = 2j. Similarly the quotient is K = Z2, identified with

the cosets of H in G via φ1 ∈ hom(G,K) given as φ1(j) = j mod 2,

where two elements j, j′ ∈ G belong to the same coset iff φ1(j− j′) = 0.

It is in general easy to define which properties of φ1 ∈ hom(H,G)

and φ2 ∈ (G,K) are necessary and sufficient for H to be (isomor-

phic to) a subgroup of G with quotient (isomorphic to) K. Recall that

the kernel and image of φ ∈ hom(G1, G2) are defined as ker(φ) =

{x ∈ G1 | φ(x) = 0 } and im(φ) = φ(G1) ⊂ G2. A (co)chain complex

is a sequence {Gj , φj} of homomorphisms between abelian groups φj ∈
hom(Gj , Gj+1) such that im(φj) ⊂ ker(φj+1) for all j, in other words

φj+1◦φj = 0 for all j. The sequence is exact if ker(φj+1) = im(φj). A

short exact sequence is an exact sequence of five terms of the form

0 // H
φ0 // G

φ1 // K // 0 . (1.12)

The leftmost and rightmost arrows are the trivial maps 0 7→ 0 and

K 7→ 0. A short exact sequence defines a subgroup H < G with quo-

tient K = G/H, or more precisely φ0 is a monomorphism (injective

homomorphism) identifying H with a subgroup φ0(H) < G and φ1 an

epimorphism (surjective homomorphism) identifying G/φ0(H) with K.

Henceforth we will always define H as a subgroup of G with quotient K

by explicitly defining a short exact sequence and the maps φ0 and φ1.

Although this homological algebra point of view is ubiquitous in many

areas of pure mathematics, it is not a commonly used language in ap-

plied and computational mathematics. However, this presentation is also

very important from a computational point of view. First of all, this lan-

guage allows for a general and unified discussion of sampling, interpola-

tion and Fast Fourier Transforms. Furthermore, from an object oriented

programming point of view, it is an advantage to characterize mathe-

matical objects in terms of categorical diagrams. Classes in an object

oriented program consist of an internal representation of a certain ab-

straction as well as an interface defining the interaction and relationship

between different objects. Category theory and homological algebra is
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thus a language which is important in defining classes in object oriented

programming. We will not discuss implementations further here, but re-

fer to [1, 14] for examples of this line of ideas within numerical analysis.

To understand sampling theory and the FFT in a group language, we

need to define adjoint homomorphisms, similarly to adjoints of linear

operators.

Definition 1.8 Given two LCAs H and G with dual pairings 〈·, ·〉H
and 〈·, ·〉G. The adjoint of a homomorphism φ ∈ hom(H,G) is φ̂ ∈
hom(Ĝ, Ĥ) defined such that

〈ξ, φ(x)〉G = 〈φ̂(ξ), x〉H for all ξ ∈ Ĝ and x ∈ H.

The following fundamental theorem is proven by standard techniques

in homological algebra.

Theorem 1.9 A short sequence of LCAs

0 // H
φ0 // G

φ1 // K // 0 .

is exact if and only if the adjoint sequence

0 Ĥoo Ĝ
φ̂0oo K̂

φ̂1oo 0oo .

is exact.

Note that K̂ is a subgroup of Ĝ with quotient Ĝ/K̂ = Ĥ. Furthermore,

for any x ∈ H and for any k ∈ K̂, we have that 〈φ̂1(k), φ0(h)〉G =

〈k, φ1◦φ0(x)〉K = 〈k, 0〉K = 1, since the composition of any two adjacent

arrows is 0. The exactness of the adjoint sequence implies that if ξ ∈ Ĝ
is such that 〈ξ, φ0(h)〉G = 0 for all h ∈ H, then ξ = φ̂1(k) for some

k ∈ K̂. Thus Theorem 1.9 implies the fundamental dualities

H < G, K = G/H,

Ĥ = Ĝ/K̂, K̂ = H⊥ < Ĝ.

For many computational problems it is necessary to choose represen-

tative elements from each of the cosets in the quotient groups G/H and

Ĝ/K̂. E.g. in sampling theory, all characters in a coset K̂ + ξ ⊂ Ĝ alias

on H, but physical relevance is usually given to the character ξ′ ∈ K̂+ ξ

which is closest to 0 (the lowest frequency mode). Similarly, we often

represent G/H by picking a representative from each coset, e.g. R/2πZ
can be represented by [0, 2π) ⊂ R. The quotient map φ1 : G→ K assigns

each coset to a unique element in K, and we need to decide on a right

inverse of this map.
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Definition 1.10 (Transversal of coset map) Given the short exact

sequence (1.12), a function σ : K → G is called a transversal of the

quotient map φ1 : G→ K if φ1◦σ = IdK .

Note that in general we cannot choose σ as a group homomorphism

(only if G = H × K), but it can be chosen as a continuous function.

In most applications G has a natural norm (e.g. Euclidean distance)

and we can choose σ such that the coset representatives are as close

to the origin as possible, i.e. such that ||σ(k)|| ≤ ||σ(k) − h|| for all

h ∈ φ0(H). This choice is called a Voronoi transversal. It is usually

not uniquely defined on the boundary, and the treatment of points on

the boundary must be done with some care in many applications. If

H is a lattice in a continuous group G, then the closure of the image

σ(K) ⊂ G is a polyhedron limited by hyperplanes halfway between 0

and its neighbouring lattice points. In sampling theory one usually picks

out the coset representatives for aliasing characters in Ĝ/K̂ by letting

σ̂ : Ĥ → Ĝ be the Voronoi transversal of φ̂0 with respect to the L2 norm

on Ĝ.

In the rest of this section, we assume that H,G and K form a short

exact sequence as in (1.12), where H is a lattice, i.e. H is discrete and

K is compact. Then Ĥ is compact and K̂ = H⊥ is discrete, so H⊥ is a

lattice in Ĝ, called the reciprocal lattice. For a function f ∈ CG, we let

fH = f◦φ0 ∈ CH denote the function f downsampled to the lattice H.

Similarly, f̂H⊥ = f̂◦φ̂1 ∈ CH⊥.

Lemma 1.11 (Poisson summation formula) Given a lattice H < G

with reciprocal lattice H⊥ < Ĝ, there exists a constant C such that∑
H

fH =
1

C

∑
H⊥

f̂H⊥ . (1.13)

If G is compact, then C = vol(G/H). With our normalization of the

Fourier transform on R, C = vol(G/H) also when G = Rn.

Proof Consider the group G/H via its set of coset representatives V :=

σ(K) ⊂ G. The characters of this group are {〈φ̂1(k), ·〉G}k∈K̂ . Thus by

Fourier inversion in G/H there exists a constant C such that

f(0) = C
∑
k∈K̂

∫
V

f(x)〈φ̂1(k), x〉Gdx.

We write x ∈ G as x = y + φ0(h), where y ∈ V , use 〈φ̂1(k), φ0(h)〉 ≡ 1
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and the result above to obtain:∑
k∈K̂

f̂◦φ̂1(k) =
∑
k∈K̂

∫
G

f(x)〈φ̂1(k), x〉Gdx

=
∑
k∈K̂

∑
h∈H

∫
V

f(y + φ0(h))〈φ̂1(k), φ0(h) + y〉Gdy

=
∑
h∈H

∑
k∈K̂

∫
V

f(y + φ0(h))〈φ̂1(k), y〉Gdy

= C
∑
h∈H

f◦φ0(h).

If G is compact, we set f = 1 and compute f̂ = vol(G)δ0. Since |H| =

vol(G)/vol(V ) we find C = vol(V ). The constant is computed for G =

Rn by considering the Fourier transform of f(x) = e−x
T x, which under

an appropriate scaling, is invariant under the Fourier transform on Rn.

1.2.4 Heisenberg groups and the FFT

More material on topics related to this section is found in [4, 5, 35].

We can act upon f ∈ CG with a time-shift Sxf(t) := f(t + x) and

with a frequency shift χξf(t) := 〈ξ, t〉f(t). These two operations are dual

under the Fourier transform, but do not commute:

Ŝxf(ξ) = χxf̂(η) (1.14)

χ̂ξf(η) = S−ξ f̂(η) (1.15)

(Sxχξf) (t) = 〈ξ, x〉 · (χξSxf) (t). (1.16)

The full (non-commutative) group generated by time and frequency

shifts on CG is called the Heisenberg group of G.

The Heisenberg group of Rn is commonly defined as the multiplicative

group of matrices of the form 1 xT s

0 In ξ

0 0 1

 ,

where ξ, x ∈ Rn, s ∈ R. This group is isomorphic to the semidirect

product Rn × Rn oR where

(ξ′, x′, s′) · (ξ, x, s) = (ξ′ + ξ, x′ + x, s′ + s+ x′T ξ).
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We prefer to instead consider Rn×RnoT (where T is the multiplicative

group consisting of z ∈ C such that |z| = 1) with product

(ξ′, x′, z′) · (ξ, x, z) = (ξ′ + ξ, x′ + x, z′ze2πix′T ξ).

More generally:

Definition 1.12 For an LCA G we define the Heisenberg group

HG = Ĝ×Go T with the semidirect product

(ξ′, x′, z′) · (ξ, x, z) = (ξ′ + ξ, x′ + x, z′ · z · 〈ξ, x′〉).

We define a left action HG × CG→ CG as follows

(ξ, x, z)·f = z · χξSxf. (1.17)

To see that this defines a left action, we check that (0, 0, 1) · f = f and

(ξ′, x′, z′) · ((ξ, x, z) · f) = ((ξ′, x′, z′) · (ξ, x, z)) · f.

Lemma 1.13 Let HG = Ĝ × G o T and HĜ = G × Ĝ o T act upon

f ∈ CG and f̂ ∈ CĜ as in (1.17). Then

F((ξ, x, z) · f) = z · 〈−ξ, x〉 · χxS−ξ f̂ = (x,−ξ, z · 〈−ξ, x〉) · f̂

Proof This follows from (1.14)–(1.16).

We will henceforth assume that H,G and K form a short exact se-

quence as in (1.12), with H discrete and K compact.

Definition 1.14 (Weil–Brezin map) The Weil–Brezin map WH
G is

defined for f ∈ CG and (ξ, x, s) ∈ HG as

WH
G f(ξ, x, z) =

∑
H

((ξ, x, z) · f)H .

A direct computation shows that the Weil–Brezin map satisfies the

following symmetries for all (h′, h, 1) ∈ H⊥×H×1 ⊂ HG and all z ∈ T:

WH
G f ((h′, h, 1) · (ξ, x, s)) =WH

G f(ξ, x, s) (1.18)

WH
G f(ξ, x, z) = z · WH

G f(ξ, x, 1). (1.19)

Lemma 1.15 Γ = H⊥×H×1 is a subgroup of HG. It is not a normal

subgroup, so we cannot form the quotient group. However, as a manifold

the set of right cosets is

Γ\HG = Ĥ ×K × T.
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The Heisenberg group has a right and left invariant volume measure

given by the direct product of the invariant measures of Ĝ, G and T.

Thus we can define the Hilbert spaces L2(HHG ) and L2(Ĥ ×K ×T). By

Fourier decomposition in the last variable (z-transform), L2(Ĥ×K×T)

splits into an orthogonal sum of subspaces Vk for k ∈ Z, consisting of

those g ∈ L2(Ĥ ×K × T) such that

g(ξ, x, z) = zkg(ξ, x, 1) for all z = e2πiθ.

It can be verified that WH
G is unitary with respect to the L2 inner

product. Together with (1.18)–(1.19) this implies:

Lemma 1.16 The Weil–Brezin map is a unitary transform

WH
G : L2(G)→ V1 ⊂ L2(Ĥ ×K × T).

Note that the Weil–Bezin map on Ĝ, with respect to the reciprocal

lattice H⊥, is

WH⊥

Ĝ
: L2(G)→ V1 ⊂ L2(K × Ĥ × T).

The Poisson summation formula (Lemma 1.11) together with Lemma 1.13

implies that these two maps are related via

WH
G f(ξ, x, z) =WH⊥

Ĝ
f̂(x,−ξ, z · 〈ξ, x〉).

Defining the unitary map J : L2 ⊂ L2(Ĥ ×K oT)→ L2(K × Ĥ ×T) as

Jf(x,−ξ, z · 〈ξ, x〉) = f(ξ, x, z), (1.20)

we obtain the following fundamental theorem.

Theorem 1.17 (Weil–Brezin factorization) Given an LCA G and a

lattice H < G. The Fourier transform on G factorizes in a product of

three unitary maps

FG =
(
WH⊥

Ĝ

)−1

◦J◦WH
G . (1.21)

The Zak transform. Given a lattice H < G and transversals σ : K →
G and σ̂ : Ĥ → Ĝ. The Zak transform is defined as

ZHG f(ξ, x) :=WH
G f(ξ, x, 1) for ξ ∈ σ̂(Ĥ), x ∈ σ(K). (1.22)

The Zak transform can be computed as a collection of Fourier transforms

on H of f shifted by x, for all x ∈ σ(K). The definition of the Fourier

transform yields:

ZHG f(−ξ, x) = FH ((Sxf)H) (φ̂0(ξ)). (1.23)



14 H. Munthe-Kaas et. al.

We see that the Zak transform is invertible when ZHG f(−ξ, x) is com-

puted for all ξ ∈ σ̂(Ĥ) and all x ∈ σ(K). Written in terms of the Zak

transform, the Weil–Brezin factorization (1.21) becomes

ZH
⊥

Ĝ
f̂(x, ξ) = 〈ξ, x〉ZHG f(−ξ, x). (1.24)

The factor 〈ξ, x〉 is called a twiddle factor in the computational FFT

literature.

In the special case where G = H×K, then also K < G and Ĥ = K⊥.

Thus in this case it is possible to choose σ and σ̂ as group homomor-

phisms, resulting in 〈ξ, x〉 ≡ 1 for all ξ ∈ σ̂(Ĥ) and x ∈ σ(K). This

choice is called a twiddle free factorization. However, by other choices of

the transversals, the twiddle factors also enter into the formula in this

case.

Due to the symmetries (1.18)–(1.19), the Weil–Brezin map is trivially

recovered from the Zak transform. The Zak transform is the practical

way of computing the Weil–Brezin map and its inverse. However, since

the invertible Zak transform cannot be defined canonically, indepen-

dently of the transversals σ and σ̂, the Weil–Brezin formulation is more

fundamental.

The Fast Fourier Transform. Cooley–Tukey style FFT algorithms

are based on recursive use of (1.24), where a Fourier transform on G

is computed by a collection of Fourier transforms on H composed with

inverse Fourier transforms on H⊥. We choose transversals σ and σ̂. If G

is finite, then σ̂(Ĥ) and σ(K) are finite. The Cooley–Tukey factorization

follows from (1.24):

• For each x ∈ σ(K) compute:

ZHG f(−ξ, x) = FH(Sxf)(φ̂0(ξ)) for all ξ ∈ σ̂(Ĥ) .

• For each ξ ∈ σ̂(Ĥ) compute:

f̂(ξ + φ̂1(κ)) = F−1
H⊥

(
〈ξ, σ(·)〉ZHG f(−ξ, σ(·))

)
(κ) for all κ ∈ H⊥,

where the inverse Fourier transform F−1
H⊥

is with respect to the vari-

able · ∈ K.

The Fast Fourier Transform is obtained by recursive application of this

splitting. This general formulation allows for Cooley–Tukey kind FFTs

based on any decomposition of G with respect to a lattice H. In par-

ticular this is useful for functions with symmetries, in which case it is

important to choose lattices H that preserve the symmetries in order to
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take advantage of all the symmetries in the FFT. We return to this issue

in Section 1.3.4.

Shannon’s sampling theorem. By setting x = 0 in (1.24), we obtain

the important dual relationship between downsampling and periodiza-

tion:

FH(fH)(φ̂0(ξ)) =
∑

k∈φ̂1(K̂)

FG(f)(k + ξ). (1.25)

A function f ∈ CG is band limited with respect to the reciprocal lattice

H⊥ if its Fourier transform is zero outside the Voronoi polyhedron, i.e.

if supp(f̂) ⊂ σ̂(Ĥ), where σ̂ is a Voronoi transversal of φ̂0. If f is band

limited, the terms on the right hand side of (1.25) are zero for k 6= 0 and

ξ ∈ σ̂(Ĥ). This yields

FG(f)(ξ) = FH(fH)(φ̂0(ξ)),

thus we obtain Shannon’s celebrated result that a band limited f can

be exactly recovered from its downsampling fH .

Lattice rules. For general functions f ∈ CG, the error between the

Fourier transform of the true and the sampled function is given as

FH(fH)(φ̂0(ξ))−FG(f)(ξ) =
∑

k∈φ̂1(K̂)\{0}

FG(f)(k + ξ).

The game of Lattice rules is, given f with specific properties, to find a

lattice H < G such that the error is minimised. We now assume that

the original domain is periodic G = Tn. Lattice rules are designed such

that the nonzero points in H⊥ neighbouring 0 are pushed as far out as

possible with respect to a given norm, depending on f . If f is spheri-

cally symmetric, H should be chosen as a densest lattice packing (with

respect to the 2-norm) [10], e.g. hexagonal lattice in R2 and face centred

cubic packing in R3 (as the orange farmers know well). In dimensions

up to 8, these are given by certain root lattices [30]. The savings, com-

pared to standard tensor product lattices, are given by the factors 1.15,

1.4, 2.0, 2.8 4.6, 8.0 and 16.0 in dimensions n = 2, 3, . . . , 8. This is im-

portant, but not dramatic, e.g. a camera with 8.7 megapixels arranged

in a hexagonal lattice has approximately the same sampling error as a

10 megapixel camera with a standard square pixel distribution. How-

ever, these alternative lattices have other attractive features, such as

larger spatial symmetry groups, yielding more isotropic discretizations.



16 H. Munthe-Kaas et. al.

A hexagonal lattice picture can be rotated more uniformly than a square

lattice picture.

Dramatic savings can be obtained for functions belonging to the Ko-

robov spaces. This is a common assumption in much work on high di-

mensional approximation theory. Korobov functions are functions whose

Fourier transforms have energy concentrated along the axis directions in

Ĝ, the so-called hyperbolic cross mass distribution. Whereas the tensor

product lattice with 2d points in each direction contains (2d)n lattice

points in Tn, the optimal lattice with respect to the Korobov norm con-

tains only O(2nd(log(d))n−1) points, removing exponential dependence

on d.

The group theoretical understanding of lattice rules makes software

implementation very clean and straightforward. In [29], numerical exper-

iments are reported on lattice rules for FFT-based spectral methods for

PDEs. Note that whereas the choice of transversal σ̂ : Ĥ → Ĝ is irrele-

vant for lattice integration rules, it is essential for pseudospectral deriva-

tion. The Laplacian ∇2f is computed on Ĝ as f̂(ξ) 7→ c|ξ|2f̂(ξ), whereas

the corresponding computation on Ĥ must be done as FH(fH)(η) 7→
c|σ̂(η)|2FH(fH)(η) for η ∈ Ĥ, and we must choose the Voronoi transver-

sal to minimise aliasing errors.

Polyhedral Dirichlet kernels. The theoretical understanding of lat-

tice sampling rules depends on the analytical properties of polyhedral

Dirichlet kernels. Let σ̂ : Ĥ → Ĝ be the Voronoi transversal. The per-

fect low-pass filter D̂H ∈ CĜ is defined as

D̂H(ξ) =

{
1 if ξ ∈ σ̂(Ĥ)

0 otherwise
.

The polyhedral Dirichlet kernel DH ∈ CG is defined as

DH = F−1
G (D̂H).

This function plays the same role as the classical Dirichlet kernel in the

1–dimensional sampling theory, e.g. low-pass reconstruction of a down

sampled function is done by convolution with DH . Detailed analysis of

these functions is done in [34, 36]. In particular it is important that they

in general have Lebesque constants scaling like O(logn(N)), where n is

the dimension of G, and N measures the number of sampling points in

H.
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1.2.5 Fourier analysis on non-commutative groups

In this section we will briefly discuss computational aspects of Fourier

techniques on non-commutative groups. We will be much less detailed

than in the previous section, since this material is covered in detail

elsewhere, e.g. [3, 2, 30].

A starting point of the LCA discussion was the definition of the group

ring CG and the existence of a translation invariant measure, which

led to convolutions in the group ring. For non-commutative groups the

situation is a bit more complicated, since invariance with respect to

left and right translations might not yield the same measure. Groups

for which there exist a (unique up to scaling) measure which is both

left and right invariant is called unimodular. For such groups a lot of

the previous theory carries over, with some modifications. Groups which

are not unimodular are considerably more complicated and will not be

discussed here.

Important examples of unimodular groups are:

• Abelian groups.

• Finite groups.

• Compact groups.

• Semidirect product of compact and abelian groups, e.g. the Euclidean

motion group consisting of translations and rotations.

• Semisimple and nilpotent Lie groups.

Finite groups. Let CG denote the group ring, the complex vector space

of dimension |G|, where each element in G is a basis vector, so, as before,

f ∈ CG is given as f =
∑
g∈G f(g)g, where f(g) ∈ C. The right and left

invariant Haar measure is given as the sum over the elements∫
G

fdµ =
∑
x∈G

f(x).

The product in G yields a convolution product in CG

(f ∗ g)(y) =
∑
x∈G

f(x)g(x−1y) =
∑
x∈G

f(yx)g(x−1).

This is, however, not a commutative product on CG, f ∗ g 6= g ∗ f .

In the abelian case, the Fourier transform diagonalizes the convolution

because the exponential basis consists of group homomorphisms (into

T). In the non-commutative case, it cannot be possible to diagonalize

the convolution using just hom(G,T) because the convolution is not
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commutative. The idea of Schur and Frobenius in the late 19th cen-

tury was to look for a basis for CG in terms of group representations,

defined as elements of hom(G,U(n)), where U(n) is the set of unitary

n × n matrices. (Note that U(1) = T.) An n-dimensional representa-

tion is thus a function R : G → U(n) satisfying R(xy) = R(x)R(y)

and R(x−1) = R(x)−1 = R(x)†, where R(x)† is the complex conjugate

transpose. Let dR = n denote the dimension of the representation. For

each representation R, we may define Fourier coefficients of a function

f ∈ CG as a complex dR × dR matrix defined as

f̂(R) =
∑
x∈G

f(x)R(x)†.

A computation using the homomorphism property and shift invariance

of the sum, shows that the representations may be used to (block-

)diagonalize the convolution:

f̂ ∗ g(R) = ĝ(R)f̂(R). (1.26)

However, we need a basis for CG, and we need an inversion formula for

this generalised Fourier transform.

The concepts of equivalent and reducible representations are crucial

for constructing a suitable basis. Two representations R and R̃ are equiv-

alent if there exists an invertible matrix V such that R(x) = V R̃(x)V −1

for all x. A representation is reducible if it is equivalent to a represen-

tation which is block-diagonal. In that case the representation can be

seen as a direct sum of smaller representations (one for each diagonal

block). Frobenius found that there always exists a complete list of non-

equivalent irreducible representations which forms an orthogonal basis

for CG.

Theorem 1.18 (Frobenius) For a finite group G there exists a com-

plete list of non-equivalent irreducible representations R = {R1, . . . , Rk}
such that

∑
R∈R d

2
R = |G|. Define the generalized Fourier transform of

f ∈ CG as

f̂(R) =
∑
x∈G

f(x)R(x)† for all R ∈ R.

Then f is reconstructed by the formula

f(x) =
1

|G|
∑
R∈R

dR trace(f̂(R)R(x)).
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As an example, we consider the computation of the convolution of

f, g ∈ CG when G < O(3) is the icosahedral group, the collection of

the 120 orthogonal matrices which leave the icosahedron in R3 invari-

ant. This group has a complete list of irreducible representations of di-

mensions {1, 1, 3, 3, 3, 3, 4, 4, 5, 5}. A direct computation of the convolu-

tion involves 1202 multiplications. Instead, computing the convolution in

Fourier space involves the multiplication of matrices of size 1, 1, 3, 3, . . .,

which requires only 120 multiplications, saving a factor 120. For the com-

putation of matrix exponentials and eigenvalues, the savings are more

dramatic; a direct computation costs 1203 operations, while the equiva-

lent computation in Fourier space costs 2+4·33 +2·43 +2·53 operations,

which is cheaper by a factor of about 3500.

A source of computational problems leading to group convolutions

is linear problems with spatial symmetries. Given a linear operator L
which commutes with a finite group of isometries acting upon the do-

main (e.g. the Laplacian on the sphere commutes with any group of

isometries, e.g. the discrete icosahedral group). Let L be discretized in a

symmetry preserving manner, such that the discrete L commutes with

the isometries in G. Then L can be described as a block-convolution, i.e.

L belongs to a group ring of the form Cm×mG. The blocks represent the

interaction between different orbits of the action of G on the domain. As

an example, if the space of spherical functions is discretized with 12,000

degrees of freedom, the full space splits into about 12, 000/120 = 100 dif-

ferent orbits under the action of the icosahedral group. The Laplacian

can then be represented as a block-convolution in C100×100G. Under the

generalized Fourier transform, the matrix becomes block-diagonal, with

blocks of sizes 100dR for dR ∈ {1, 1, 3, 3, . . . , 5}.
The use of the generalized Fourier transform is important in various

computational tasks, such as eigenvalue problems, solutions of linear

equations and computations of matrix exponentials. Experience shows

that symmetry preserving discretizations and algorithms are not only

much faster than direct algorithms, but they are also often more ac-

curate, since preservation of symmetry tends to diminish the effect of

numerical round-off errors.

Compact groups. Compact groups, such as, for example, the group

of rotations SO(3), are in many respects quite similar to finite groups.

There exists a bi-invariant Haar measure and a space of functions L2(G)

with a convolution product. The Peter–Weyl theorem guarantees that

there exist a discrete, infinite family of irreducible unitary represen-
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tations forming an orthogonal basis for L2(G). The Fourier transform

becomes an integral over G and the inversion formula is similar to the

finite case, although the sum here is over an infinite list R.

The representation theory of orthogonal groups has numerous applica-

tions in computational science and technology, an example being recent

work on Cryo-Electron microscopy [18, 19]. The basic problem here is

the reconstruction of a 3D molecular structure from a large collection of

2D projections of the molecule seen from unknown angles. Representa-

tion theory provides an important tool to analyze numerical algorithms

for this problem.

Euclidean motions. The Euclidean motion group of translations and

rotations on R3 is important in many technological applications. The

group E(3) = SO(3) oR3 is the semidirect product of a compact group

and an abelian group. Such groups are always unimodular, and the repre-

sentation theory is relatively simple. The irreducible representations on

E(3) are induced from the representations of the compact part, SO(3),

by a standard method called the method of small groups [33]. An exam-

ple of an application of Fourier analysis on E(3) is the problem of medical

image registration; Find the Euclidean motion which best matches two

different 3-D images of an object. This can be phrased as the question of

computing the maximum of the cross correlation (or phase correlation)

of the two images. The cross correlation is very similar to a convolution

and can be cheaply computed in Fourier space.

1.3 Multivariate Chebyshev polynomials in
computations

Univariate (classical) Chebyshev polynomials are ubiquitous in numeri-

cal analysis and computational science, due to their in many ways opti-

mal approximation properties and the tight relationship between Cheby-

shev approximations and fast cosine transforms. First and second kind

Chebyshev polynomials {Tk}∞k=0 and {Uk}∞k=0 are defined as

x = cos(θ)

Tk(x) = cos(kθ)

Uk(x) = sin((k + 1)θ)/ sin(θ).

In this section we will discuss the connection between Chebyshev ap-
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proximations and group theory. Once the group theoretical view is es-

tablished, it will become clear that there exist certain interesting multi-

variate generalizations of Chebyshev polynomials. These share most of

the favorable properties of the univariate polynomials, and they are or-

thogonal on domains related to triangles and simplices. Bivariate Cheby-

shev polynomials were constructed independently by Koornwinder [25]

and Lidl [26] by folding exponential functions. Multidimensional gener-

alizations (the A2 family) appeared first in [13]. In [21] a general fold-

ing construction was presented. Characterization of such polynomials as

eigenfunctions of differential operators is found in [6, 25].

Our interest in these polynomials originates from their potential appli-

cations in computational approximation methods, in particular spectral

element methods and multidimensional quadrature. We have developed

the theory of their discrete orthogonality, triangular based Clenshaw–

Curtis type quadrature formulae, recursion formulae for computing spec-

tral derivations as well as software for the application of multivariate

Chebyshev polynomials in approximation, quadrature and PDE solu-

tion. Our exposition here will aim at giving an overview of the main

ideas. More detailed presentations are found in [30, 32, 9].

Spectral element methods are computational techniques for solving

PDEs where the domain of the equation is divided into a fixed collec-

tion of regularly shaped subdomains. On each subdomain a high order

polynomial space is constructed, and a global solution is obtained by

patching together local solutions, either in a strong sense by imposing

continuity conditions across subdomain boundaries, or in a weak sense by

variational formulations (discontinuous Galerkin methods). The advan-

tage of spectral element methods compared to its competitors (finite el-

ements, finite differences and finite volume methods) is the phenomenon

called spectral convergence. When an analytic function is approximated

by an Nth order polynomial, one may achieve errors decaying as e−N .

Thus spectral methods are particularly attractive when high accuracy is

important.

The drawbacks of spectral element methods are that high order poly-

nomial approximations must be constructed with care. Jim Wilkinson

famously demonstrated that high order polynomial interpolation in equi-

spaced points is a highly unstable process, due to the fact that the

Lebesgue constant of equi-spaced interpolation points grows exponen-

tially in N . Interpolation in Chebyshev zeros, or Chebyshev extremal

points, is on the other hand near optimally stable, as the Lebesque con-

stant in such points grows as O(log(N)). Another problem with spectral
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element methods is inflexibility with respect to sub-domain divisions.

High order polynomial approximations are easy to construct on rectan-

gular subdomains (by tensor products of univariate polynomials), but

high order approximation theory based on triangular and tetrahedral

subdivisions is far less developed. The most common practice is there-

fore rectangular subdivision methods. Triangular and tetrahedral sub-

division schemes are far more flexible, if they can be implemented in an

efficient and stable manner. A singular mapping technique from squares

to triangles [12] is a possible solution, but has drawbacks in breaking of

triangular symmetries as well as other problems. Nodal spectral Galerkin

methods are another approach where good collocation nodes are com-

puted by numerical optimization (e.g. Fekete points). But in this ap-

proach one has no direct connection to Fourier analysis, and fast trans-

forms are not available [17, 20]. This makes spectral element methods

based on multivariate Chebyshev polynomials an attractive alternative.

We start with a discussion of particular eigenfunctions of the Laplacian

on simplices.

1.3.1 What is the sound of a triangular drum?

Bases for high order approximation spaces are usually obtained as eigen-

functions of Sturm–Liouville problems, truncated to a given order. Can

we find Sturm–Liouville problems on triangles and simplices, that yield

good approximation spaces? It is known that the eigenfunctions of the

Laplacian (with Dirichlet or Neumann boundary conditions) can be ex-

plicitly constructed on certain triangular domains in 2D and some par-

ticular simplices in all higher dimensions. An illustrative example is the

construction of Laplacian eigenfunctions on an equilateral triangle, with

Dirichlet or Neumann boundary conditions.

The equilateral triangle has the particular property that if we set up

a kaleidoscope with three mirrors at the three edges, then the reflec-

tions of the triangle tile the plane in a periodic pattern, shown as the

shaded domain in the right part of Figure 1.2 (labelled A2). Without

loss of generality, we assume that the triangle has corners in the origin

[0; 0], λ1 = [1/
√

2; 1/
√

6] and λ2 = [0;
√

2/
√

3]. Let {sj}3j=1 denote re-

flections of R2 about the edges of the triangle. Let W̃ denote the full

group of isometries of R2 generated by {sj}3j=1. This is an example of a

crystallographic group3, a group of isometries of Rd where the subgroup

3 More specifically it is an affine Weyl group, to be defined below.
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of translations form a lattice in Rd. From this fact we will derive the

Laplacian eigenfunctions on the triangle, which we denote by 4.

The translation lattice of W̃ is L = spanZ{α1, α2} < R2 generated

by the vectors α1 = (
√

2, 0) and α2 = (−1/
√

2,
√

3/
√

2). The unit cell

of L can be taken as either the rhombus spanned by α1 and α2 or the

hexagon 9 indicated in Figure 1.2. The hexagon is the Voronoi cell of

the origin in the lattice L, its interior consists of the points in R2 that

are closer to the origin than to any other lattice points. As a first step in

our construction of triangular eigenfunctions, we consider the L-periodic

eigenfunctions of the Laplacian ∇2. Since (λj , αk) = δj,k, the reciprocal

lattice is L⊥ = spanZ{λ1, λ2} and the periodic eigenfunctions are

∇2
t 〈λ, t〉 = −(2π)2||λ||2〈λ, t〉 for all λ ∈ L⊥, t ∈ R2/L,

where 〈λ, t〉 = e2πi(λ,t) is the dual pairing on R2. We continue to find the

Laplacian eigenfunctions on 4 by folding the exponentials. Let W < W̃

be the subgroup which leaves the origin fixed (the symmetries of 9):

W = {e, s1, s2, s1s2, s2s1, s1s2s1},

where e is the identity and si, i ∈ {1, 2} act on v ∈ R2 as siv = v −
2(αi, v)/(αi, αi). We define even and odd (cosine and sine-type) foldings

of the exponentials

cλ(t) =
1

|W |
∑
w∈W

〈λ,wt〉 =
1

|W |
∑
w∈W

〈
wTλ, t

〉
(1.27)

sλ(t) =
1

|W |
∑
w∈W

det(w) 〈λ,wt〉 =
1

|W |
∑
w∈W

det(w)
〈
wTλ, t

〉
,(1.28)

where, in our example, |W | = 6. The Laplacian commutes with any

isometry, in particular ∇2(f ◦w) = (∇2f) ◦w for w ∈W . Hence, the re-

flected exponentials and the functions cλ(t) and sλ(t) are eigenfunctions

with the same eigenvalue:

Lemma 1.19 The eigenfunctions of ∇2 on the equilateral triangle 4
with Dirichlet (f = 0) and Neumann boundary conditions (∇f · ~n = 0)

are given respectively as

∇2
t cλ(t) = −(2π)2||λ||2cλ(t)

∇2
t sλ(t) = −(2π)2||λ||2sλ(t),

for λ ∈ spanN{λ1, λ2}, the set of all non-negative integer combinations

of λ1 = [1/
√

2; 1/
√

6] and λ2 = [0;
√

2/
√

3].
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The set spanN{λ1, λ2} ⊂ L⊥ contains exactly one point from each W -

orbit, and is called the positive Weyl chamber. An important question

is how good (or bad!) these eigenfunctions are as bases for approximat-

ing analytic functions on 4. It is well known from the univariate case

that the similar construction, yielding the eigenfunctions cos(kθ) and

sin(kθ) on [0, π] are not giving a basis converging at a super-algebraic

speed. For an analytic function f(θ) where f(0) = f(π) = 0, the even

2π-periodic extension is piecewise smooth, with only C0 continuity at

θ ∈ {0, π}. Hence the Fourier-cosine series converges only as O(k−2).

There are several different ways to achieve the desired O(exp(−ck))

spectral convergence rate for analytic functions. One possible solution

is to approximate f(θ) in a frame (not linearly independent) consisting

of both {cos(kθ)}k∈Z and {sin(kθ)}k∈Z+ [22]. Another possibility is to

employ a change of variable x = cos(θ), yielding (univariate) Chebyshev

polynomials with spectral convergence. Here we will discuss a gener-

alization of the latter approach leading to the multivariate Chebyshev

polynomials.

1.3.2 Through the kaleidoscope

Recall that the main trick for finding eigenfunctions of the Laplacian on

the triangle was in using the fact that the domain is a polyhedron with

the property that the group generated by the boundary reflections is a

crystallographic group, defined as a group of isometries on Rn such that

the subgroup of translations form a lattice L < Rn. Crystallographic

groups is a classical topic of mathematics, physics and chemistry. A

classification of such groups starts with the fundamental crystallographic

restriction: For any crystallographic group, the only allowed rotations

are 2-fold, 3-fold, 4-fold and 6- fold4. A general group generated just

by reflections, as in a kaleidoscope, is called a Coxeter group, and the

Coxeter groups which comply with the crystallographic restriction are

called affine Weyl groups. These are classified in terms of their root

systems, where the roots are orthogonal to the mirrors passing through

the origin.

Root systems. Let V be a finite dimensional real Euclidean vector

space with standard inner product (·, ·). The construction above can

4 The 5-fold symmetry is not allowed in proper crystals, but is seen in
quasicrystals, related to Penrose tilings. This discovery was the topic of the 2011
Nobel prize in chemistry.
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Figure 1.1 Dynkin diagrams for irreducible root systems

be generalized to all those simplices 4 ⊂ V with the property that

the group of isometries W̃ generated by reflecting 4 about its faces is

a crystallographic group. All such simplices are determined by a root

system, a set of vectors in V which are perpendicular to the reflection

planes of W passing through the origin. We review some basic definitions

and results about root systems. For more details we refer to [8].

Definition 1.20 A root system in V is a finite set Φ of non-zero

vectors, called roots, that satisfy:

1. The roots span V.

2. The only scalar multiples of a root α ∈ Φ that belong to Φ are α and

−α.

3. For every root α ∈ Φ, the set Φ is invariant under reflection through

the hyperplane perpendicular to α. I.e. for any two roots α and β,

the set Φ contains the reflection of β,

sα(β) := β − 2
(α, β)

(α, α)
α ∈ Φ.

4. (Crystallographic restriction): For any α, β ∈ Φ we have

2
(α, β)

(α, α)
∈ Z.

Condition 4 implies that the obtuse angle between two different re-

flection planes must be either 90◦, 120◦, 135◦ or 150◦. The rank of the

root system is the dimension d of the space V. Any root system contains

a subset (not uniquely defined) Σ ⊂ Φ of so-called simple positive roots.

This is a set of d linearly independent roots Σ = {α1, . . . , αd} such that

any root β ∈ Φ can be written either as a linear combination of αj with
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non-negative integer coefficients, or as a linear combination with non-

positive integer coefficients. We call Σ a basis of the root system Φ. A

root system is conveniently represented by its Dynkin diagram. This is a

graph with d nodes corresponding to the simple positive roots. Between

two nodes j and k no line is drawn if the angle between αj and αk is

90◦, a single line if it is 120◦, a double line for 135◦ and a triple line for

150◦. It is only necessary to understand the geometry of irreducible root

systems, where the Dynkin diagram is connected. Disconnected Dynkin

diagrams (reducible root systems) are trivially understood in terms of

products of irreducible root systems. For irreducible root systems, the

roots are either all of the same length or have just two different lengths.

In the latter case a marker < or > on an edge indicates the separation of

long and short roots (short < long). Since the work of W. Killing and E.

Cartan in the late 19th century it has been known that Dynkin diagrams

of irreducible root systems must belong to one of four possible infinite

cases An (n > 0), Bn (n > 1), Cn (n > 2), Dn (n > 3) or five special

cases E6, E7, E8, F4, G2 shown in Figure 1.1. We say that two root

systems are equivalent if they differ only by a scaling or an isometry. Up

to equivalence there corresponds a unique root system to each Dynkin

diagram.

A root system Φ is associated with a dual root system Φ∨ defined

such that a root α ∈ Φ corresponds to a co-root α∨ := 2α/(α, α) ∈ Φ∨.

If all roots have equal lengths then Φ∨ = Φ (upto equivalence), i.e. the

root system is self dual. For the cases with two root lengths we have

B∨2 = B2, B∨n = Cn (n > 2), F∨4 = F4 and G∨2 = G2.

Weyl groups and affine Weyl groups. Given a d-dimensional root

system Φ with dual root system Φ∨, for the roots α ∈ Φ, consider the

reflection sα : V → V given by

sα(t) = t− 2(t, α)

(α, α)
α = t− (t, α∨)α.

For the dual roots α∨ ∈ Φ∨, we define translations τα∨ : V → V as

τα∨(t) = t+ α∨.

The Weyl group of Φ is the finite group of isometries on V generated by

the reflections sα for α ∈ Σ:

W = 〈{sα}α∈Σ〉 .

An important example of Weyl groups is the infinite family An. The
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Weyl group W of An is isomorphic to the symmetric group Sn+1. This

is a group of order |Sn+1| = (n + 1)!, consisting of all permutations

of n + 1 objects, and is also isomorphic to the symmetry group of the

regular n-simplex. In particular the Weyl group of A2 has order 6 and

can be identified with the symmetries of the regular triangle.

The dual root lattice L∨ is the lattice spanned by the translations τα∨

for α∨ ∈ Σ∨. We identify this with the abelian group of translations on

V generated by the dual roots

L∨ = 〈{τα∨}α∨∈Σ∨〉 .

The affine Weyl group W̃ is the infinite crystallographic symmetry group

of V generated by the reflections sα for α ∈ Σ and the translations τα∨

for α∨ ∈ Σ∨, thus it is the semidirect product of the Weyl group W with

the dual5 root lattice L∨

W̃ = 〈{sα}α∈Σ, {τα∨}α∨∈Σ∨〉 = W o L∨.

Let Λ = (L∨)
⊥

denote the reciprocal lattice of L∨. The lattice Λ is

spanned by vectors {λj}dj=1 such that (λj , α
∨
k ) = δj,k for all α∨k ∈ Σ∨.

The vectors λj are called the fundamental dominant weights of the root

system Φ, and Λ is called the weights lattice.

The positive Weyl chamber C+ is defined as the closed conic subset

of V containing the points with nonnegative coordinates with respect to

the dual basis {λ1, . . . , λd}, in other words

C+ = {t ∈ V : (t, αj) ≥ 0}.

This is a fundamental domain for the Weyl group acting on V. The

boundary of C+ consists of the hyperplanes perpendicular to {α1, . . . , αd}.
The affine Weyl group contains reflection symmetries about affine planes

perpendicular to the roots, shifted a half integer multiple of the length

of a co-root away from the origin, i.e. for each α∨ ∈ Φ∨ and each

k ∈ Z there is an affine plane consisting of the points Pk,α∨ = {t ∈
V : 2(t, α∨) = k(α∨, α∨)} = {t ∈ V : (t, α) = k}, and this affine plane is

invariant under the affine reflection τkα∨ · sα. A connected closed subset

of V limited by such affine planes is called an alcove and is a fundamental

domain for the affine Weyl group W̃ .

The situation is particularly simple for irreducible root systems, where

5 Since the Weyl groups of Φ and of Φ∨ are identical, it is no problem to instead

define W̃ = W o L as the semidirect product of the Weyl group with the primal
root lattice. We have, however, chosen to follow the most common definition
here, which leads to a slightly simpler notation for the Fourier analysis.
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the alcoves are always d-simplices. Recall that all roots α ∈ Φ can be

written as α =
∑d
k=1 nkαk where all nk = 2(α, λk)/(αk, αk) are either

non-negative or all non-positive integers. A root α̃ strictly dominates

another root α, written α̃ � α, if ñk ≥ nk for all k, with strict inequality

for at least one k. Irreducible root systems have a unique dominant root

α̃ ∈ Φ such that α̃ � α for all α 6= α̃. The dominant root α̃ is the

unique long root in the Weyl chamber (possibly on the boundary). The

basic geometric properties of affine Weyl groups are summarized by the

following lemma:

Lemma 1.21

1 If Φ is irreducible with dominant root α̃ then a fundamental domain

for W̃ is the simplex 4 ⊂ V given as

4 = {t ∈ V : (t, α̃) ≤ 1 and (t, αj) ≥ 0 for all αj ∈ Σ},

where 4 has corners in the origin and in the points λj/(λj , α̃) for

j = 1, . . . , d.

2 The affine Weyl group is generated by the affine reflections about

the boundary faces of the fundamental domain 4. For irreducible Φ

these are

W̃ = 〈
{
sαj
}d
j=1

, τα̃ · sα̃〉.

3 If Φ is reducible then a fundamental domain for the affine Weyl

group is given as the Cartesian product of the fundamental domains

for each of its irreducible components.

The simplest rank d root system is the reducible system A1×· · ·×A1,

where the Dynkin diagram consists of d non-connected dots. Figure 1.2

shows A1×A1. The solid black square is the fundamental domain of the

root lattice, and the small shaded square the fundamental domain of the

affine Weyl group W̃ .

The right part of Figure 1.2 and Figure 1.3 shows the irreducible 2-d

cases with roots α (large dots), dominant root α̃ (circle), simple positive

roots (α1, α2), and fundamental dominant weights (λ1, λ2). The roots

are normalized such that the longest roots have length
√

2, thus for long

roots α∨ = α. For short roots we have for B2 that α∨ = 2α and for G2

that α∨ = 3α. The fundamental domain of the dual root lattice (Voronoi

region of L∨) is indicated by 9, � and 7, and the fundamental domain

for the affine Weyl group (an alcove) is indicated by shaded triangles.

Figure 1.4 shows the A3 case (self dual), where the fundamental do-

main (Voronoi region) of the root lattice is a rhombic dodecahedron,
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Figure 1.2 Reducible root system A1×A1 and irreducible system A2
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Figure 1.3 The irreducible root systems B2 and G2

a convex polyhedron with 12 rhombic faces. Each of these faces (com-

posed of two triangles) is part of a plane perpendicular to one of the 12

roots, halfway out to the root (roots are not drawn). The fundamental

domain of the affine Weyl group is the tetrahedron with an inscribed

octahedron. The corners of this tetrahedron constitute the origin and

the fundamental dominant weights λ1, λ2, λ3. The regular octahedron

drawn inside the Weyl chamber is important for applications of multi-

variate Chebyshev polynomials in domain decompositions [9].
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Figure 1.4 Fundamental domains of A3 root system

1.3.3 Laplacian eigenfunctions on triangles, tetrahedra

and simplices.

In this section we will consider real or complex valued functions on V
respecting symmetries of an affine Weyl group. Consider first L2(T), the

space of complex valued L2-integrable periodic functions on the torus

T = V/L∨, i.e. functions f such that f(y + α∨) = f(y) for all y ∈ V
and α∨ ∈ L∨. Since the weights lattice Λ is reciprocal to L∨, the Fourier

transform and its inverse are given for f ∈ L2(T) as

f̂(λ) = F(f)(λ) =
1

vol(T)

∫
T

f(t)〈−λ, t〉dt, (1.29)

f(t) = F−1(f̂)(t) =
∑
λ∈Λ

f̂(λ)〈λ, t〉. (1.30)

We are interested in functions which are both periodic under translations

in L∨ and also respect the other symmetries in W̃ , e.g. functions with

odd or even symmetry6 with respect to the reflections in W̃ . Due to the

semi-direct product structure W̃ = W o L∨ it follows that any W̃ ∈ W̃
can be written W̃ = w · τα∨ , where w ∈ W and α∨ ∈ L∨. Thus on the

space of periodic functions L2(T), the action of W̃ and the finite group

W are identical. We define subspaces of symmetric and skew-symmetric

6 There are other possible symmetries as well, related to other representations of
the Weyl group [9].
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periodic functions as follows

L2
∨(T) = {f ∈ L2(T): f(wt) = f(t) for all w ∈W , t ∈ T}

L2
∧(T) = {f ∈ L2(T): f(wt) = (−1)|w|f(t) for all w ∈W , t ∈ T},

where |w| denotes the length, defined as |w| = `, where w = sαj1 · · · sαj`
is written in the shortest possible way as a product of reflections about

the simple positive roots αj ∈ Σ. Thus (−1)|w| = det(w) = ±1 depend-

ing on whether w is a product of an even or an odd number of reflections.

We define L2 orthogonal projections πW∨ and πW∧ on these subspaces as

πW∨ f(t) =
1

|W |
∑
w∈W

f(wt), (1.31)

πW∧ f(t) =
1

|W |
∑
w∈W

(−1)|w|f(wt). (1.32)

Orthogonal bases for these subspaces are obtained by projecting the

exponentials, yielding the cosine and sine type basis functions

cλ(t) := πW∨ exp 2πi(λ, t) (1.33)

sλ(t) := πW∧ exp 2πi(λ, t). (1.34)

Note that these are not all distinct functions. Since they possess sym-

metries

cλ(t) = cwλ(t),

sλ(t) = (−1)|w|swλ(t),

for every w ∈W , we need only one λ from each orbit of W . The weights

in the Weyl chamber, Λ+ = C+ ∩ Λ, form a natural index set of orbit

representatives, and we find L2 orthogonal bases by taking the corre-

sponding cλ(t) and sλ(t). Lemma 1.19 holds also in this more general

case.

Lemma 1.22 Given a rank d root system φ with weights lattice Λ, let

W be the Weyl group and 4 denote the fundamental domain of the affine

Weyl group W̃ = W o L∨. The functions {cλ(t)}λ∈Λ+
and {sλ(t)}λ∈Λ+

form two distinct L2 orthogonal bases for L2(4). These basis functions

are eigenfunctions of the Laplacian ∇2 on 4 satisfying homogeneous

Neumann and Dirichlet boundary conditions, as in Lemma 1.19.

Truncations of these bases do not, unfortunately, form spectrally con-

vergent approximation spaces for analytic functions on 4. Approxima-

tion of a function f , defined on 4, in terms of {cλ(t)} is equivalent to
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Fourier approximation of the even extension of f in L2
∨(T), and we do in

general only observe quadratic convergence due to discontinuity of the

gradient across the boundary of4. A route to spectral convergence is by

a change of variables which turns the trigonometric polynomials {cλ(t)}
and {sλ(t)} into multivariate Chebyshev polynomials of first and second

kind.

1.3.4 Multivariate Chebyshev polynomials

Recall that classical Chebyshev polynomials of first and second kind,

Tk(x) and Uk(x) are obtained from cos(kθ) and sin(kθ) by a change of

variable x = cos(θ) as

Tk(x) = cos(kθ),

Uk(x) =
sin((k + 1)θ)

sin(θ)
.

We want to understand this construction in the context of affine Weyl

groups. We recognize cos(kθ) and sin(kθ) as the symmetrized and skew-

symmetrized exponentials. The cos(θ) used in the change of variables

is the 2π-periodic function that is symmetric, non-constant and has

the longest wavelength (as such, uniquely defined up to a constant).

In other words cos(θ) = π∨ exp(λ1θ), where λ1 = 1 is the generator

of the weights lattice. Any periodic band limited even function f has

a symmetric Fourier series of finite support on the weights lattice, and

must hence be a polynomial in the variable x = cos(θ). The denomina-

tor sin(θ) is similarly the odd function of longest possible wavelength.

Any periodic band limited odd function f has a skew-symmetric Fourier

series on the weights lattice. Dividing out by sin(θ) results in a band

limited even function which again must map to a polynomial under

our change of variables. The denominator, which in this special case is

sin(θ), is called the Weyl denominator. It plays an important role in rep-

resentation theory of compact Lie groups as the denominator in Weyl’s

character formula, a cornerstone of representation theory. We will detail

these constructions in the sequel.

As before, we let Φ be a rank d root system on V = Rd, with Weyl

group W , co-root lattice L∨ and affine Weyl group W̃ = W o L∨. Let

T = V/L∨ be the torus of periodicity and Λ = spanZ{λ1, . . . , λd} the

reciprocal lattice of L∨. It is convenient to write the group Λ in multi-

plicative form, where we let {eλ}λ∈Λ denote the elements of the multi-
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plicative group, understood as formal symbols such that for λ, µ ∈ Λ we

have eλ · eµ = eλ+µ.

Let E = E(C) ⊂ L2(Λ) denote the free complex vector space over the

symbols eλ. This consists of all formal sums a =
∑
λ∈Λ a(λ)eλ where

the coefficients a(λ) ∈ C and all but a finite number of these are non-

zero. An element a ∈ E is identified with a trigonometric polynomial

f(t) = F−1(a)(t) on the torus T (i.e. a band limited periodic function)

through the Fourier transforms given in (1.29)–(1.30).

Let EW∨ ⊂ E denote the symmetric subalgebra of those elements that

are invariant under the action of the Weyl group W on E . This consists

of those a ∈ E where a(λ) = a(wλ) for all λ and all w ∈ W . Similarly,

EW∧ ⊂ E denotes those a ∈ E that are alternating sign under reflections

sα, i.e. where the coefficients satisfy a(λ) = (−1)|w|a(wλ). Projections

πW∨ : E → E∨ and πW∧ : E → E∧ are defined as in (1.31)–(1.32).

The algebra E is generated by {eλj}dj=1 ∪ {e−λj}dj=1 where λj are the

fundamental dominant weights. EW∨ is the subalgebra generated by the

symmetric generators {zj}dj=1 defined as

zj = πW∨ e
λj =

1

|W |
∑
w∈W

ewλj =
2

|W |
∑

w∈W+

ewλj , (1.35)

where W+ denotes the even subgroup of W containing those w such

that |w| is even. The latter identity follows from sαjλj = λj , thus it is

enough to consider only w of even length. The action of W+ on λj is

free and effective.

It can be shown that EW∨ is a unique factorization domain over the

generators {zj}, i.e. any a ∈ EW∨ can be expressed uniquely as a polyno-

mial in {zj}dj=1.

The skew subspace EW∧ does not form an algebra, but this can be

corrected by dividing out the Weyl denominator. Define the Weyl vector

ρ ∈ Λ as

ρ =

d∑
j=1

λj =
1

2

∑
α∈Φ+

α.

We define the Weyl denominator D ∈ EW∧ as

D =
∑
w∈W

(−1)|w|ewρ.

Proposition 1 Any a ∈ EW∧ is divisible by D, i.e. there exist a unique

b ∈ EW∨ such that a = bD.
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Proof See [8] Prop. 25.2.

Any a ∈ EW∨ can be written as a polynomial in z1, . . . , zd, hence the

following polynomials are well defined.

Definition 1.23 For λ ∈ Λ we define multivariate Chebyshev polyno-

mials of first and second kind Tλ and Uλ as the unique polynomials that

satisfy

Tλ(z1, . . . , zd) = πW∨ e
λ =

1

|W |
∑
w∈W

ewλ, (1.36)

Uλ(z1, . . . , zd) =
|W |πW∧ eλ+ρ

D
=

∑
w∈W (−1)|w|ew(ρ+λ)∑
w∈W (−1)|w|ewρ

. (1.37)

By a slight abuse of notation, we will also consider zj as W -invariant

functions in CT as

zj(t) = F−1(zj)(t) =
2

|W |
∑

w∈W+

〈wλj , t〉T . (1.38)

The functions zj(t) may be real or complex. If there exist an w ∈ W+

such that wλj = λj then zj = zj is real. Otherwise there must exist

an index j 6= j and a w ∈ W+ such that wλj = λj and we have

zj = zj . In the latter case we can replace these with d real coordinates

xj = 1
2 (zj + zj), xj = 1

2i (zj − zj).
We remark that (1.37) is exactly the same formula as Weyl’s character

formula, giving the trace of all the irreducible characters on a semisim-

ple Lie group [8]. These characters form an L2 orthogonal basis for the

space of class functions on the Lie group. Thus, expansion in terms of

second kind multivariate Chebyshev polynomials is equivalent to ex-

pansion in terms of irreducible characters on a Lie group. In a similar

way, the basis given by the irreducible representations block-diagonalize

equivariant linear operators on a Lie group, it is also such that one may

use the irreducible characters to obtain block diagonalizations, see [24].

Thus, our software, which is primarily constructed to deal with spectral

element discretizations of PDEs, may also have important applications

in computations on Lie groups. This opens up a whole area of possible

applications of these approximations.

We will briefly summarize important properties of the multivariate

Chebyshev polynomials which are presented in detail in [28, 30, 32, 9],

and we will be a bit more detailed on some properties which are not

detailed in these references.
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(a) (b)

Figure 1.5 The equilateral domain ∆ in (a) maps to the Deltoid δ in
(b) under t 7→ z(t).

Continuous orthogonality. Let Φ be an irreducible root system on

V = Rd with an alcove 4 being the simplex defined in Lemma 1.21.

The corresponding family of multivariate Chebyshev polynomials are

orthogonal on the domain

δ = z(4), (1.39)

with respect to the inner product

(f, g) =

∫
δ

f(z)g(z)
1√
DD

dz, (1.40)

where D is the Weyl denominator. Figure 1.5 shows 4 and δ in the

A2 case. Here δ is a deltoid, a domain with cusps in each corner. For

the A3 case, 4 is shown in Figure 1.4 and δ in Figure 1.6. It poses a

problem for applications that the domains δ are not simplices. However,

in the A2 case, there is a hexagon inside 4 which maps to an equilateral

triangle inscribed in δ, whereas in the A3 case there is an octagon in 4
which maps to a tetrahedron inscribed in δ. Note that the tetrahedron

is not regular, but has two sides of length 1 and four sides of length√
17/18. In our spectral element methods we have applied overlapping

δ-subdomains such that the inscribed triangles form a simplicial (non-

overlapping) subdivision.
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Figure 1.6 The deltoid domain δ in case A3. The inscribed tetrahe-
dron is the image of the regular octahedron inscribed in the Weyl
chamber of 4, see Figure 1.4.

Discrete orthogonality and sampling. Pulled back to t-coordinates,

polynomials in z become band limited symmetric functions f ∈ L2
∨(T).

Due to the Shannon sampling theorem, any band limited function f ∈
L2(T) can be exactly reconstructed from sampling on a sufficiently fine

lattice S < T. To preserve periodicity, we require that

S⊥ < Λ, (1.41)

and in addition, we also require that the sampling lattice is W invariant,

WS = S. (1.42)

Such a lattice S leads to exact discrete orthogonality formulae and dis-

crete quadrature rules for polynomials such that f(t) satisfies the Shan-

non criterion

supp(f̂) ⊂ σ̂(Ŝ), (1.43)

where σ̂ is a Voronoi transversal. There are several ways to construct

such a lattice. In [30, 32] we work with down scalings of the co-root

lattice,

S =
1

m
L∨,

where the integer m is chosen large enough for S to satisfy the Shannon

criterion in the polynomial space where we want to perform approxi-

mations. This lattice is shown in Figure 1.5 in the A2 case with circles

for m = 12 and dots for m = 48. The resulting approximation space is

the span of the multivariate polynomials up to degree m/2, except one
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particular polynomial of degree m/2 which aliases to 0 on S. In addition

the space contains some particular polynomials of degree up to 2
3m.

Another lattice, which in many respects is more elegant, is the down-

scaling of the weights lattice

S =
1

m
Λ, for m ∈ N. (1.44)

With this discretization we obtain a perfect symmetry between primal

space and Fourier space. The primal space is the periodic domain T =

Rn/L∨, sampled in S = 1
mΛ. The sampling turns the Fourier space into

the periodic domain Rn/S⊥ = Rn/mL∨. On the other hand, periodicity

under translation with L∨ in primal space is equivalent to sampling in

Fourier space at the lattice (L∨)
⊥

= Λ. Thus, the discretized periodic

domain is self dual up to the scaling with m.

The sampling at S = 1
mΛ is perfect also in the sense that we, for the

An Weyl groups, obtain an approximation space consisting of exactly

the n-variate polynomials up to degree m and nothing else. The space

of n-variate m-degree polynomials has dimension
(
m+n
m

)
. The alcove 4

of the affine Weyl group An is a simplex with corners in the origin and

in λj , the principal dominant weights. Hence S is a downscaling of a

simplex containing
(
m+n
m

)
points, in particular these are the triangle

numbers for n = 2 and the pyramidal numbers for n = 3. In Fourier

space the situation is the same, the discrete space contains exactly the

n-variate Chebyshev polynomials of degree up to and including m.

Lebesgue numbers. The elegant sampling results above are useless

unless we can guarantee small Lebesque numbers and hence stable sam-

pling. Fortunately, the following result holds for the An family sampled

at the downscaled weights lattice.

Theorem 1.24 Let λ be the weights lattice in the affine Weyl group

An and let S = 1
mΛ. Let z : 4 → δ be the coordinate change in (1.35).

The Lebesgue number of the points z(S) grows as

O(logn(m)). (1.45)

Similar results hold for other lattices (e.g. downscaled roots lattice)

and other affine Weyl groups. To prove this theorem, we must first show

that the Lagrangian interpolating polynomials in the nodal set z(S) are

given as

`j(z(t)) = c
∑
w∈W

DS(w(t− tj)) for all tj ∈ S,
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where DS(t) is the polyhedral Dirichlet kernel. The result follows from

general bounds on Lebesgue numbers of the polyhedral Dirichlet ker-

nels [34, 36]. We omit the details. Similar results are shown for special

cases in [37].

Symmetric FFTs and fast Chebyshev expansions. In this para-

graph we let Φ be the root system An with Weyl group W ' Sn+1

with |W | = (n+ 1)!. Let S = 1
mΛ and let G be the finite abelian group

G = S/L∨. Under the action of W on G, the fundamental domain is

4m = 4 ∪ S, where 4 is the n-simplex with corners in the origin and

in the fundamental dominant weights λj . Thus 4m consists of
(
m+n
m

)
points. The Weyl group also acts on Ĝ via the adjoint 〈ξ, wx〉 = 〈ŵξ, x〉,
with fundamental domain 4̂m. Note that this case is self dual, so we

can identify 4m and 4̂m.

Let p(z) be a real n-variate polynomial of degree m and let f =

p(z(4m)) be the sampling of p(z). The Fourier transform is defined as

f̂(λ) = FG(πW∨ f)(λ) for λ ∈ 4m. (1.46)

The Chebyshev expansion of p(z) is

p(z) =
∑
λ∈4̂m

f̂(λ)Tλ(z). (1.47)

How fast can this Chebyshev expansion be computed? One possibility

is to extend f to CG and apply an FFT here. The number of points in

G is approximately N ≈ (n + 1)!
(
m+n
m

)
. Counting both multiplications

and additions, a complex FFT on N points costs 5N log2(N) floating

point operations (flops).

It is, however, possible to improve the speed of this computation by

a factor 2|W | = 2(n + 1)! by using a symmetric FFT, as in [28]. The

factor 2 comes from the assumption that p(z) is real, not complex, and

the factor (n+1)! by carefully exploiting all the symmetries. This can be

implemented as a Cooley–Tukey style FFT computation. Letting m = 2k

we have a sequence of sub-lattices

S1 < S2 < S4 < · · · < S2k = Sm.

We know that Cooley–Tukey can be formulated with respect to arbi-

trary decompositions in sub-lattices. All the sub-lattices preserve all the

symmetries ofW , thus by organizing the computations carefully, it is suf-

ficient to compute in the fundamental domains of the action of W . How-

ever, the Cooley–Tukey splitting is not just a splitting in sub-lattices, it
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also involves computations in the cosets of the sub-lattices. The cosets

may lose some symmetries of W , and for such cosets the fundamental

domain becomes larger. However, in that case the lost symmetry will

map one coset to another coset, and we may discard the cosets that

are equivalent to some other coset by a symmetry. In the dual space Ĝ,

the situation is similar, W acts by the adjoint action and we can simi-

larly exploit all the symmetries. In addition we have the real symmetry

expressed as f̂(λ) = f̂(−λ).

To make a rather complicated story short, by carefully paying atten-

tion to exploiting all the symmetries, it can be shown:

Theorem 1.25 Let πnm be the space of n-variate real polynomials of de-

gree m, a real vector space of dimension N =
(
m+n
m

)
. The An Chebyshev

expansion of p(z) ∈ πnm can be computed in a stable manner by sampling

p(z) in the N points z(4m). The cost of this computation is 5
2N log2(N)

floating point numbers, counting both additions and multiplications.

Recurrence formulae. Practical computations with Chebyshev ex-

pansions rely on the availability of fast transforms between ‘nodal’ and

‘modal’ representation, i.e. between sampled values and Chebyshev ex-

pansion coefficients. Products of polynomials can be computed fast in

the nodal domain, while other operations such as integration and deriva-

tion can be done fast in the modal domain. Also, in the multivariate case,

there exist recursion formulae similar to the univariate case.

From the convolution product in EW∨ , one finds that the Tλ satisfy the

recurrence relations

T0 = 1, (1.48)

Tλj = zj , (1.49)

Tλ = Twλ for w ∈W, (1.50)

T−λ = Tλ, (1.51)

TλTµ =
1

|W |
∑
w∈W

Tλ+wµ. (1.52)

These reduce to classical three-term recurrences for A1 and four term

recurrences for A2, see [30].

There also exist linear recurrence relations which compute the Cheby-

shev expansion of ∇p(z) from the Chebyshev expansion of p(z), see [32].
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1.4 Conclusions

We have discussed various aspects of group theory as a tool for analyz-

ing numerical algorithms and for developing new computational algo-

rithms. In particular, we have focused on algorithms related to sampling

in regular lattices and algorithms related to applications of reflection

groups and kaleidoscopes. Group theory provides an important concep-

tual framework both for understanding the fundamental structure of

the algorithms and also for structuring the implementation of numerical

software.

Connections between group theory and Chebyshev approximations

have been discussed in detail. This is a connection which goes much

deeper than what has been presented in this paper. Weyl’s character

formula for the irreducible characters on simple Lie groups is essentially

identical to the definition of second kind multivariate Chebyshev poly-

nomials. Chebyshev approximation theory is therefore intimately linked

to approximation theory on Lie groups.

Another topic, which has not been discussed in this paper, is the

application of group theory in the development of algorithms for com-

puting time evolution of dynamical systems. Lie group integrators are

general numerical methods built around Lie group actions on the phase

space of the dynamical system [23]. Lie group integrators rely upon ex-

act computations of operator exponentials. The interplay between Lie

group integrators for time evolution and Chebyshev based spectral el-

ement methods for spatial discretizations is an active area of research

where all these techniques come together.
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