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Abstract

We consider pairs of Lie algebras g and ḡ, defined over a common
vector space, where the Lie brackets of g and ḡ are related via a post-
Lie algebra structure. The latter can be extended to the Lie enveloping
algebra U(g). This permits us to define another associative product on
U(g), which gives rise to a Hopf algebra isomorphism between U(ḡ) and a
new Hopf algebra assembled from U(g) with the new product.

For the free post-Lie algebra these constructions provide a refined un-
derstanding of a fundamental Hopf algebra appearing in the theory of
numerical integration methods for differential equations on manifolds. In
the pre-Lie setting, the algebraic point of view developed here also pro-
vides a concise way to develop Butcher’s order theory for Runge–Kutta
methods.

Keywords: Rooted trees; combinatorial Hopf algebras; post-Lie algebras; uni-

versal enveloping algebras; numerical Lie group integration; geometric numerical inte-

gration; Butcher’s order theory.

1 Introduction

Classical numerical integrators aim at approximating flows of vector fields given
by differential equations

ẏ(t) = F (y(t)), y(0) = y0,

∗ICMAT, Calle Nicolás Cabrera 13-15, Campus de Cantoblanco, UAM, Madrid,
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where F is a vector field on Rn. The so-called Lie-group integrators are gener-
alizations to differential equations evolving on manifolds M. Given a Lie group
G acting in a transitive manner on M, the Lie group integrators approximate
differential equations written in the form

ẏ(t) = F (y(t)) = f(y(t)) · y(t), y(0) = y0, (1)

where f : M → g represents the vector field F via a map to g, the Lie algebra of
G. The basic problem of numerical Lie group integration is the approximation
of the exact solution by computations in g, the exponential exp: g → G and the
action of G on M. See [IMKNZ00] for a comprehensive review.

Answering questions related to order conditions for Lie group integrators
relies on an understanding of the algebraic structure of non-commuting vector
fields on M generated from the vector field f . Our work addresses such al-
gebraic and combinatorial aspects underlying the theory of Lie–Butcher series
[MK95]. More precisely, we describe the setting of an important commutative
Hopf algebra of planar rooted trees [MKW08], and the corresponding group and
Lie algebra of characters and infinitesimal characters, respectively. In a nutshell,
the theory of Lie–Butcher series results from merging Lie theory with the theory
of Butcher’s B-series. The latter is well-known, and plays a prominent role in
the theory of numerical integration for differential equations on vector spaces
[But72, But08, HLW06].

The underlying context is the following: We have a Lie algebra g = (V , [−,−])
over a field k of characteristic zero. In addition, the vector space V is equipped
with a binary product ⊲ : V ⊗ V → V , such that the bracket

Jx, yK := x ⊲ y − y ⊲ x+ [x, y]

defines a second Lie algebra ḡ = (V , J−,−K) on V . The Lie algebra g together
with the appropriate relations between its Lie bracket and the product ⊲ :
V ⊗ V → V define what is called a post-Lie algebra [MKL13, Val07]. It reduces
to a pre-Lie algebra [Car10, Man11] if the Lie algebra g is abelian.

Post-Lie algebras appear in algebra, geometry, and combinatorics, and can
be introduced by means of an archetypal example from differential geometry.
Recall that a Koszul connection on the space of smooth vector fields X (M) on
a manifold M is a map ∇ : X (M)× X (M) → X (M) satisfying ∇fxy = f∇xy
and ∇x(fy) = df(x)y+ f∇xy for any x, y ∈ X (M) and scalar field f : M → R.
It yields a (non-commutative and non-associative) R-bilinear product on X (M),
which we denote x⊲y := ∇xy. The torsion of the connection is a skew-symmetric
tensor T: TM∧ TM → TM defined as

T(x, y) = x ⊲ y − y ⊲ x− Jx, yKJ , (2)

where J·, ·KJ denotes the Jacobi–Lie bracket of vector fields, defined such that
Jx, yKJ (φ) = x(y(φ)) − y(x(φ)) for all vector fields x, y and scalar fields φ. The
curvature tensor R: TM∧ TM → End(TM) is defined as

R(x, y)z = x ⊲ (y ⊲ z)− y ⊲ (x ⊲ z)− Jx, yKJ ⊲ z

= a⊲(x, y, z)− a⊲(y, x, z) + T(x, y) ⊲ z, (3)
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where a⊲(x, y, z) := x ⊲ (y ⊲ z) − (x ⊲ y) ⊲ z is the associator with respect to
the product ⊲. The relationship between torsion and curvature is given by the
Bianchi identities

∑

	

(T(T(x, y), z) + (∇xT)(y, z)) =
∑

	

(R(x, y)z) (4)

∑

	

((∇xR)(y, z) + R(T(x, y), z)) = 0,

where
∑

	
denotes the sum over the three cyclic permutations of (x, y, z). If a

connection is flat R = 0 and has constant torsion ∇xT = 0, then (4) reduces
to the Jacobi identity

∑
	
(T(T(x, y), z)) = 0. Hence the torsion defines a Lie

bracket [x, y] := −T(x, y), which is related to the Jacobi–Lie bracket by (2). The
covariant derivation formula ∇x(T(y, z)) = (∇xT)(y, z)+T(∇xy, z)+T(y,∇xz)
together with ∇xT = 0 then imply

x ⊲ [y, z] = [x ⊲ y, z] + [y, x ⊲ z]. (5)

On the other hand, (3) together with R = 0 imply

[x, y] ⊲ z = a⊲(x, y, z)− a⊲(y, x, z). (6)

In Section 2 relations (5) and (6) are formalized to the notion of post-Lie al-
gebras. Note that for a connection which is both flat, R = 0, and torsion free,
T = 0, equation (3) implies that a⊲(x, y, z) − a⊲(y, x, z) = 0, and we obtain a
(left) pre-Lie algebra.

Pre-Lie algebras are also well-known in algebra, geometry, combinatorics and
control theory, and appear under various names. We refer the reader to [Bur06,
Car10, Man11] for details. Note that pre-Lie algebras are Lie admissible. That
is, by skew-symmetrizing the product ⊲ one obtains a Lie algebra. The class
of Lie admissible algebras is however larger than the class of pre-Lie algebras,
making the designation “pre-Lie algebra” somewhat misleading. For example,
a torsion free connection with nonzero constant curvature gives rise to a Lie-
admissible algebra [MKL13, GR04].

The free pre-Lie algebra can be described as the space of non-planar rooted
trees with product given by grafting of trees [CL01]. This structure is the
foundation of John Butcher’s theory of B-series. An interesting historical note:
a description of the enveloping algebra of a free pre-Lie algebra in terms of rooted
trees already appeared in the 1850s, in the work of Arthur Cayley [Cay57].

Pre-Lie structures on non-planar rooted trees lead to Hopf algebras of com-
binatorial nature. Combinatorial Lie and Hopf algebras, in particular those
defined on rooted trees, have recently attracted a great deal of attention [CK98,
GL89, Hof03, Mur06].

The basic setting for Lie–Butcher series is provided by a combinatorial Hopf
algebra on planar rooted trees, which accompanies a post-Lie structure on the
trees [MKW08]. One of the main goals of this work is to provide a precise
description of this connection in the context of the free post-Lie algebra. Our
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approach follows Guin and Oudom [OG08] by extending the post-Lie structure
on a Lie algebra g to the corresponding Lie enveloping algebra U(g). This
permits us to define another associative product on U(g), compatible with its
usual coalgebra. The Hopf algebra assembled from U(g) and the new product
is isomorphic to the Hopf algebra U(ḡ), where ḡ is the Lie algebra defined over
the same vector space as g, whose Lie bracket is defined in terms of a post-Lie
algebra structure.

Once the combinatorial Hopf algebra for Lie–Butcher series has been un-
folded we explore some applications, in particular to the order theory of numer-
ical methods on manifolds.

The outline of the paper is as follows. In the next section we recall the
definition of pre- and post-Lie algebra. Section 3 restates some important result
from [OG08], i.e. the extension of post-Lie structures to universal enveloping
Lie algebras, and a Hopf algebra isomorphism between two enveloping algebras.
In section 4 we study numerical integration on pre- and post-Lie algebras.

2 Pre- and post-Lie algebras

We begin by defining pre-Lie algebras, see [Car10, Man11] for further details.
A field k of characteristic zero, e.g. k ∈ {R,C}, is fixed once and for all. Let P
be a vector space equipped with a bilinear product ⊲ : P × P → P , satisfying
the left pre-Lie relation

(x ⊲ y) ⊲ z − x ⊲ (y ⊲ z) = (y ⊲ x) ⊲ z − y ⊲ (x ⊲ z). (7)

We call (P , ⊲) a left pre-Lie algebra. Note that identity (7) can be written as

ℓ[x,y]⊲(z) = [ℓx⊲, ℓy⊲](z),

where the linear map ℓx⊲ : P → P is defined by ℓx⊲y := x ⊲ y. The bracket on
the left-hand side is defined by [x, y] := x ⊲ y − y ⊲ x. As a consequence this
bracket satisfies the Jacobi identity, turning P into a Lie algebra.

The notion of post-Lie algebras was discovered from two distinct directions
[MKW08, Val07]. We follow the definition given in [MKL13]. The associator is
defined by a⊲(x, y, z) := x ⊲ (y ⊲ z)− (x ⊲ y) ⊲ z.

Definition 2.1. [MKL13] A post-Lie algebra (A, [−,−], ⊲) is a Lie algebra g =
(A, [−,−]) together with a bilinear product ⊲ : A × A → A such that for all
x, y, z ∈ A

x ⊲ [y, z] = [x ⊲ y, z] + [y, x ⊲ z]

[x, y] ⊲ z = a⊲(x, y, z)− a⊲(y, x, z).

Proposition 2.2. Let (A, [−,−], ⊲) be a post-Lie algebra. The bracket

Jx, yK = x ⊲ y − y ⊲ x+ [x, y] (8)

satisfies the Jacobi identity for all x, y ∈ A.
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Remark 2.3. If (A, [−,−]) is an abelian Lie algebra, then (A, ⊲) reduces to a
left pre-Lie algebra with corresponding Lie bracket (8).

Post-Lie algebras always come in pairs, called adjoint post-Lie algebras. In
the case of vector fields on Lie groups they correspond to left- and right trivial-
ization of the vector fields.

Proposition 2.4. Let (A, [−,−], ⊲) be a post-Lie algebra. Define the product �

as
x� y := x ⊲ y + [x, y], (9)

then (A,−[−,−],�) is also a post-Lie algebra.

3 Universal Lie enveloping algebras of a post-

Lie algebra

Recall that we consider a post-Lie algebra as two Lie algebras g := (A, [−,−])
and ḡ := (A, J−,−K) defined over the vector space A, related via the post-Lie
product (8) in Proposition 2.2

Jx, yK = x ⊲ y − y ⊲ x+ [x, y].

It is natural to explore this relation on the level of universal Lie enveloping
algebras. This is analogous to the approach in [OG08], where the universal Lie
enveloping algebra of a pre-Lie algebra was studied. In [OG08] it was shown
that the universal Lie enveloping algebra of the Lie algebra obtained by an-
tisymmetrization of a pre-Lie algebra λ is isomorphic as a Hopf algebra to
the symmetric algebra S(λ) on λ, equipped with a certain associative product
∗ : S(λ) ⊗ S(λ) → S(λ) defined using the pre-Lie structure.

Let P := (A, [−,−], ⊲) be a post-Lie algebra, and U(g) the universal en-
veloping algebra of the Lie algebra g := (A, [−,−]). We generalize the results
of [OG08] to universal Lie enveloping algebras built on Lie algebras related via
the post-Lie relation (8).

The post-Lie product can be extended to a product on U(g). We first extend
it to a product mapping g⊗U(g) to U(g) Later, in Proposition 3.1, it is extended
to all of U(g). Let x, t1, . . . , tn ∈ g, and define

x ⊲ 1 := 0 x ⊲ (t1 · · · tn) :=
n∑

i=1

t1 · · · ti−1(x ⊲ ti)ti+1 · · · tn.

Note that this extension yields a left post-Lie P-module structure on U(g)

x ⊲ (y ⊲ K)− (x ⊲ y) ⊲ K − y ⊲ (x ⊲ K) + (y ⊲ x) ⊲ K = [x, y] ⊲ K

for K ∈ U(g) and x, y ∈ g.
Recall that U(g) with concatenation as product is a non-commutative, co-

commutative Hopf algebra. The coshuffle coproduct is defined for x ∈ g ⊂ U(g)
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by ∆(x) := x ⊗ 1 + 1 ⊗ x, and extended multiplicatively to all of U(g). We
use Sweedler’s notation for the coproduct: ∆(T ) =: T(1) ⊗ T(2). The counit is
denoted by ǫ : U(g) → k.

For convenience, the remainder of this section contains the statements and
some of the proofs from [OG08, Section 2], slightly modified to match our set-
ting.

Proposition 3.1. Let A,B,C ∈ U(g) and x, y ∈ g. There is a unique extension
of the post-Lie product ⊲ from g to U(g) given by

1 ⊲ A = A

xA ⊲ y = x ⊲ (A ⊲ y)− (x ⊲ A) ⊲ y

A ⊲ BC = (A(1) ⊲ B)(A(2) ⊲ C). (10)

Proof. As in [OG08, Proposition 3.7].

Proposition 3.2. Let A,B,C ∈ U(g) and x ∈ g. We have

A ⊲ 1 = ǫ(A) (11)

ǫ(A ⊲ B) = ǫ(A)ǫ(B) (12)

∆(A ⊲ B) = (A(1) ⊲ B(1))⊗ (A(2) ⊲ B(2)) (13)

xA ⊲ B = x ⊲ (A ⊲ B)− (x ⊲ A) ⊲ B (14)

A ⊲ (B ⊲ C) = (A(1)(A(2) ⊲ B)) ⊲ C (15)

Proof. The proofs of (11), (12), (13), (14) are straightforward. We prove Equa-
tion (15) by induction on the length of A.

xA ⊲ (B ⊲ C) = x ⊲ (A ⊲ (B ⊲ C))− (x ⊲ A) ⊲ (B ⊲ C)

= x ⊲ (A(1)(A(2) ⊲ B) ⊲ C) − (x ⊲ A) ⊲ (B ⊲ C) (16)

= (xA(1)(A(2) ⊲ B)) ⊲ C + (x ⊲ (A(1)(A(2) ⊲ B))) ⊲ C (17)

− (x ⊲ A) ⊲ (B ⊲ C)

= (xA(1)(A(2) ⊲ B)) ⊲ C + (A(1)(x ⊲ (A(2) ⊲ B))) ⊲ C (18)

+ (x ⊲ A(1))(A(2) ⊲ B) ⊲ C − (x ⊲ A) ⊲ (B ⊲ C)

= (xA(1)(A(2) ⊲ B)) ⊲ C + (A(1)(x(A(2) ⊲ B))) ⊲ C (19)

+ ((A(1) ⊲ A(2)) ⊲ B) ⊲ C + (x ⊲ A(1))(A(2) ⊲ B) ⊲ C

− (x ⊲ A) ⊲ (B ⊲ C)

= (xA(1)(A(2) ⊲ B)) ⊲ C + (A(1)(xA(2) ⊲ B)) ⊲ C+ (20)

(A(1)((x ⊲ A(2)) ⊲ B)) ⊲ C + (x ⊲ A(1))(A(2) ⊲ B) ⊲ C

− (x ⊲ A)(B ⊲ C).

Here (16) follows by induction, (17) from (14), (18) from (10) in Proposition
3.1, (19) from (14), and (20) from (14). We have

(x ⊲ A) ⊲ (B ⊲ C) = (x ⊲ A)(1)((x ⊲ A)(2) ⊲ B) ⊲ C

= (x ⊲ A(1))(A(2) ⊲ B) ⊲ C +A(1)((x ⊲ A(2)) ⊲ B) ⊲ C,
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so that

xA ⊲ (B ⊲ C) = (xA(1)(A(2) ⊲ B)) ⊲ C + (A(1)(xA(2) ⊲ B)) ⊲ C

= (xA)(1)((xA)(2) ⊲ B)) ⊲ C.

Proposition 3.3. On (U(g), ⊲) the product:

A ∗B := A(1)(A(2) ⊲ B) (21)

is associative. Moreover, (U(g), ∗,∆) is a Hopf algebra.

Proof. From 3.2 we have

A ∗ (B ∗ C) = A(1)

(
A(2) ⊲ (B(1)(B(2) ⊲ C))

)

= A(1)

(
(A(2) ⊲ B(1))(A(3) ⊲ (B(2) ⊲ C))

)
(22)

= A(1)

(
(A(2) ⊲ B(1))((A(3)(A(4) ⊲ B(2))) ⊲ C)

)
(23)

= A(1)

(
(A(3) ⊲ B(1))((A(2)(A(4) ⊲ B(2)))) ⊲ C

)
(24)

= (A(1)(A(2) ⊲ B)) ⊲ C

= (A ∗B) ∗ C,

where (22) follows from (10), (23) from (15), and (24) from cocommutativity.
The compatibility between (21) and the coproduct ∆ follows from (10)

Note that for a and b in g, we have ∆(a) = a⊗ I + I ⊗ a, so

a ∗ b = a ⊲ b + ab.

Note also that the product ∗ can equivalently be defined in terms of the adjoint
post-Lie product (9), as

A ∗B := (A(1) �B)A(2). (25)

The following results from a slight modification of an argument in [OG08].
Recall that ḡ := (A, J−,−K) is related to g via (8) in Proposition 2.2.

Theorem 3.4 ([OG08]). The Hopf algebra (U(g), ∗,∆) is isomorphic to the
enveloping algebra U(ḡ).

3.1 Planar trees and the Grossman–Larson product

We turn to the free post-Lie algebra, which is generated by planar rooted trees
[MKL13, Val07]. The product (21) constructed in Section 3 corresponds to
the Grossman–Larson product on planar rooted trees [GL89]. The dual of this
product (21) is the coproduct ∆MKW defined in [MKW08], and we remark that
the constructions of Section 3 provide a new perspective on the Hopf algebra
HMKW underlying Lie–Butcher theory.
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We restate a few facts about the free post-Lie algebra. More details can be
found in [MKL13]. The free post-Lie algebra

gF = PostLie( )

on one generator is the free Lie algebra over the set OT of planar rooted trees,
equipped with a post-Lie product y called left grafting. The first few elements
of OT are

OT =





, , , , , , , , , . . .





.

The left grafting operation on two trees τ1 y τ2 is the sum of all trees
resulting from attaching the root of τ1 to all the nodes of τ2 from the left.

y = + + .

On brackets the operation acts as a derivation from the left, and as a difference
of associators from the right. See [MKL13, Proposition 3.1].

The post-Lie operation y has a unique extension to the universal enveloping
algebra U(gF ) by Proposition 3.1. The elements of U(gF ) are the ordered finite
words in the alphabet OT, including the empty word I, and is called the set OF
of ordered forests.

OF =




I, , , , , , , , , · · ·




 .

The result of left grafting a forest ω = τ1τ2 on a forest ν is a sum of words
obtained by left grafting τ2 to all the nodes in ν, then τ1 to all the nodes not
originally from τ2.

Using the left grafting operation one can define the important Grossman-
Larson product :

ω1 ◦ ω2 = B−(ω1 y B+(ω2)).

Proposition 3.5. In U(gF ), the product ∗ defined in Proposition 3.3 is the
Grossman-Larson product ◦.

In [MKW08] the Hopf algebra HMKW underlying Lie–Butcher theory and
numerical integration on Lie groups and homogeneous manifolds was introduced.
It was shown that it is the dual of the Hopf algebra (U(gF ), ◦,∆), and, as
mentioned, the discussion in Section 3 provides an alternative point of view for
HMKW.

Note that all the above constructions can be generalized to multiple gener-
ators by considering labelled trees and forests [MKL13].

Since it is established that ◦ and y coincide with the general post-Lie op-
erations ∗ and ⊲, we will in the sequel use the symbols ∗ and ⊲ also on forests.
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3.2 Lie–Butcher series

We consider infinite series in the free post-Lie algebra, and the interpretation of
these as vector fields and flows on manifolds. Consider U(gF ) as a vector space
graded by the number of nodes in the forests, and let

U(gF )
∗ = lim

←

n

(U(gF ))n

denote the graded dual vector space, i.e. U(gF )
∗ consists of all infinite sums

in U(gF ) with the inverse limit topology, whose open sets are generated by
sequences agreeing up to order n. We let the dual pairing 〈·, ·〉 : U(gF )

∗ ×
U(gF ) → k be defined such that the ordered forests form an orthonormal set

〈ω, ω′〉 =

{
0 if ω 6= ω′

1 if ω = ω′.

Definition 3.6 (Universal Lie–Butcher series). A universal LB series is an
element α ∈ U(gF )

∗. This can be written as an infinite sum

α =
∑

ω∈OF

〈α, ω〉ω.

Of particular importance are two special subspaces of U(gF )
∗:

Definition 3.7. The infinitesimal characters cF ⊂ U(gF )
∗ and the characters

CF ⊂ U(gF )
∗ are defined as

cF := {α ∈ U(gF )
∗ | ∆(α) = I ⊗ α+ α⊗ I }

CF := {α ∈ U(gF )
∗ | ∆(α) = α⊗ α },

where ∆ is the coshuffle coproduct.

Note that ∆ preserves the grading, thus the definitions are induced from the
same conditions on all finite components. Note also that cF is the same as the
graded dual of gF . The concatenation product conc and the Grossman–Larson
product ∗ defined on U(gF ) extend to U(gF )

∗, since their duals preserve the
grading. We define exponentials with respect to these products for f ∈ U(gF )

∗

as

exp∗(f) = 1 + f +
1

2
f ∗ f +

1

6
f ∗ f ∗ f + · · ·

exp(f) = 1 + f +
1

2
ff +

1

6
fff + · · · .

It can be shown that the exponentials restricted to cF are bijections exp∗, exp: cF →
CF . The two Lie brackets J·, ·K and [·, ·] defined on gF extend to cF , turning the
infinitesimal characters cF into a post-Lie algebra. The characters CF form a
group with both the products ∗ and conc, with inverses exp∗(f) 7→ exp∗(−f)
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and exp(f) 7→ exp(−f), respectively. More explicit formulas for the inverses are
given by the antipode in HMKW and the antipode in the concatenation–deshuffle
Hopf algebra [MKW08]. The following characterization of the two group prod-
ucts will later be given concrete interpretation in terms of composition of flows
on manifolds.

Proposition 3.8. The two group products ∗ and conc on CF are related as

exp(f) ∗ exp(g) = exp(f) (exp(f) ⊲ exp(g)) .

Proof. Since exp(f) is a character, ∆(exp(f)) = exp(f)⊗ exp(f) and the result
follows from (21).

We have the following characterization of the two exponentials in terms of
differential equations:

Proposition 3.9. For an infinitesimal character f ∈ cF , the curve y(t) =
exp∗(tf) ∈ CF solves the differential equation

y′(t) = y(t) (y(t) ⊲ f) , y(0) = I, (26)

while the curve z(t) = exp(tf) ∈ CF solves

z′(t) = z(t)f, z(0) = I. (27)

Proof. Differentiating y(t) = exp∗(tf) =
∑
∞

j=0
tj

j! f
j∗, we get y′(t) = y(t) ∗ f .

Using ∆(y(t)) = y(t)⊗ y(t) and (21), we obtain (26). Differentiation of z(t) =
exp(tf) yields z′(t) = z(t)f .

Note: For y(t) ∈ CF , the expression y(t) ⊲ f is on a manifold interpreted as
the parallel transport (by the connection ⊲) of the vector field f along the flow
of y(t). Thus (26) is an abstract version of (1). The reason for this opposite
ordering in the abstract setting versus the concrete manifold formulation is that
the abstract group CF represents pullback of functions on a manifold, and hence
the product ∗ maps contravariantly to composition of diffeomorphisms. We
could alternatively use the other post-Lie product � defined in Proposition 2.4,
which from (25) yields y′(t) = (y(t) � f) y(t). However, the connection � on
the manifold is obtained from left trivialization, in which case (1) also takes the
opposite form form y′(t) = y(t) · f(y(t)).

Several characterizations of the solution operator f 7→ exp∗(tf) are known in
the literature. For most purposes it is sufficient to characterize exp∗( ), since the
exponential of a general tf ∈ cF can be recovered from this from the substitution
law 7→ tf , see [LMK13]. The explicit form

exp∗( ) = I +
1

2!
+

1

3!
( + ) +

1

4!
( + + 2 + + )

+
1

5!
( + + 2 + 3 + + + 3 + 3 + 3 +

+ + 2 + + ) +
1

6!
( + · · · ) + · · ·
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is derived with recursion formulas for the coefficients in [OM99] and also dis-
cussed in [LMK11], where the coefficients are related to non-commutative Bell
polynomials [SR96, EFLM14].

The following result is of fundamental importance in many applications:

Proposition 3.10. The two exponentials exp∗, exp: cF → CF are related as

exp∗(f) = exp(θ(1)),

where θ(t) ∈ cF satisfies the differential equation

θ′(t) = d exp−1
θ(t) (exp(θ(t)) ⊲ f) , θ(0) = 0,

and where d exp−1θ denotes the inverse left trivialized differential of the expo-
nential map, given as an infinite series in terms of the Bernoulli numbers Bk

as

d exp−1θ (θ′) =

∞∑

k=0

Bk

k!
adkθ(θ

′) = θ′ +
1

2
[θ, θ′] +

1

12
[θ, [θ, θ′]] + · · · .

Proof. By differentiating y(t) = exp∗(tf) = exp(θ(t)) and using d/dt exp(θ) =
exp(θ)d expθ(θ

′), we obtain

y′(t) = y(t) (y(t) ⊲ f) = y(t)d expθ(θ
′),

from which the result follows by inverting the linear operator d expθ.

3.3 Vector fields and flows on manifolds

We briefly discuss post-Lie algebras appearing in differential geometry, providing
concrete interpretations of the abstract notions discussed above.

A prime example of a post-Lie algebra in differential geometry is the set
of vector fields on a Lie group, with the connection given by the (right or
left) Maurer–Cartan form. We will use this example to concretize the abstract
operations discussed above. This example generalizes to the concept of post-Lie
algebroids, defined in [MKL13] as Lie algebroids equipped with a flat connection
with constant torsion.

Let (g, [·, ·]g) be a finite-dimensional Lie algebra with a corresponding Lie
group G and write exp

g
: g → G for the classical Lie exponential. For example,

if G is a matrix Lie group, then exp
g
denotes the matrix exponential. Vector

fields on G can be trivialized by either left or right multiplication. This gives
rise to two adjoint post-Lie algebras. We choose right trivialization here.

Consider the vector bundle g×G→ G, the left Lie algebra action L : g×G→
G and the anchor map λ : g×G→ TG defined as

L(V, x) := exp
g
(V ) · x (28)

λ(V, x) ≡ V · x :=
∂

∂t

∣∣∣∣
t=0

L(tV, x). (29)

11



Let gG denote functions from G to g and let X (G) denote the vector fields
on G. A smooth f ∈ gG is identified with a section of the vector bundle
x 7→ (f(x), x) : G→ g×G, and the section maps to a vector field F ∈ X (G) by
composition with the anchor λ,

F (x) = λ(f(x), x) = f(x) · x,

which we write compactly as F = λ(f). In the case of Lie groups, the identifi-
cation f 7→ F is a bijection, since f is recovered from F by right trivialization
(composition of f with the right Maurer–Cartan form). For more general post-
Lie algebroids over homogeneous spaces, this identification is not injective. On
gG we define a Lie bracket and a connection

[f, g](x) := [f(x), g(x)]g

f ⊲ g := λ(f)(g) ⇒ (f ⊲ g)(x) =
∂

∂t

∣∣∣∣
t=0

g(exp
g
(f(x)) · x).

For the rest of this section we put L := (gG, [·, ·], ⊲).

Proposition 3.11. L = (gG, [·, ·], ⊲) is post-Lie. The anchor map λ maps the
bracket J·, ·K defined in Proposition 2.2 to the Jacobi bracket of vector fields on
G, hence (gG, J·, ·K, λ) is a Lie algebroid.

Proof. See [MKL13].

Let U(L) denote the enveloping algebra of L. We can identify this with
U(L) = (U(g)G, conc), the set of maps from G to U(g) where the product
conc(f, g) ≡: fg is given as

(fg)(x) = f(x)g(x) for f, g ∈ L and x ∈ G.

With this product U(L) is a graded algebra and we can form the graded comple-
tion U(L)∗. As in Definition 3.7 we have the infinitesimal characters c ⊂ U(L)∗

and the characters C ⊂ U(L)∗. The infinitesimal characters represent vector-
fields on G, while the characters represent diffeomorphisms. Note, however,
that these are formal series defined in the inverse topology, and will not neces-
sarily converge in the analytical sense. In applications, the remedy for a lack
of convergence is truncation of the infinite series and estimates of exponential
closeness [HLW06].

In [MKW08, MKL13] it is shown that for any post-Lie algebra L and any
assignment gF ∋ 7→ f ∈ L, there exists a unique post-Lie morphism Ff : gF →
L such that Ff ( ) = f , which extends to a unique morphism Ff : U(gF ) → U(L).
Therefore, for any universal Lie–Butcher series there corresponds an infinite
series we call a Lie–Butcher series in L

Bf (α) :=
∑

ω∈OF

〈α, ω〉Ff (ω).

For α ∈ cF we have Bf (α) ∈ c and for α ∈ CF we have Bf (α) ∈ C.

12



The post-Lie algebra L acts on F(G), the ring of scalar functions on G, via
a derivation defined as

f ⊲ φ := λ(f)(φ), for f ∈ L, φ ∈ F(G).

The derivation satisfies, for all f, g ∈ L and φ, φ̃ ∈ F(G),

f ⊲ (φφ̃) = (f ⊲ φ)φ̃ + φ(f ⊲ φ̃)

[f, g] ⊲ φ = f ⊲ (g ⊲ φ)− (f ⊲ g) ⊲ φ− g ⊲ (f ⊲ φ) + (g ⊲ f) ⊲ φ. (30)

Equation (30) defines F(G) as a left post-Lie module. This is equivalent to

f ⊲ (g ⊲ φ)− g ⊲ (f ⊲ φ) = Jf, gK ⊲ φ = (f ∗ g − g ∗ f) ⊲ φ.

The post-Lie action is extended to ⊲ : U(L)×F(G) → F(G) as in Proposition 3.1,
where the rightmost elements in the equations are taken from F(G).

An important issue is the identification of the exponentials exp∗(f) and
exp(f), as diffeomorphisms on the domain G. Since the product ∗ in U(L)
models the composition of differential operators (Lie derivations onG), it follows
from elementary Lie theory that exponentials act as pullback on the function
ring:

Proposition 3.12. Let ψtf : G → G denote the time-t flow of the vector field
λ(f) ∈ X (G) and ψ←tf φ the pullback of a scalar function φ ∈ F(G), defined as
(ψ←tf φ)(x) = φ(ψtf (x)). Then

ψ←tf φ = exp∗(tf) ⊲ φ.

Proof. From f ⊲ φ := ∂
∂t

∣∣
t=0

ψ←tf φ it follows that ∂
∂t
ψ←tf φ = ψ←tf (f ⊲ φ). Iterating

this, we find the Taylor series of the pullback

ψ←tf φ = φ+ tf ⊲ φ+
t2

2
f ⊲ (f ⊲ φ) +

t3

3!
f ⊲ (f ⊲ (f ⊲ φ)) · · ·

= φ+ tf ⊲ φ+
t2

2
(f ∗ f) ⊲ φ+

t3

3!
(f ∗ f ∗ f) ⊲ φ · · · = exp∗(tf) ⊲ φ.

Note that the pullbacks compose in a contravariant fashion

ψ←g ◦ ψ←f = (ψf ◦ ψg)
←
.

This is the why the symbolic differential equation (27) appears in opposite order
compared to the manifold equation (1).

The flow ψtf : G → G can be found from exp∗(f) ⊲ φ, by choosing φ as
coordinate maps on G, and we obtain a well-defined action of the post-Lie
characters exp∗(f) on G

exp∗(tf) · x := ψtf (x) for x ∈ G. (31)

13



Note that this is a right action: exp∗(f) · (exp∗(g) · x) = (exp∗(g) ∗ exp∗(f)) · x.
To understand the geometric difference between exp∗(f) and exp(f) we de-

fine frozen sections. For any f ∈ gG and x0 ∈ G there exist an fx0
∈ gG called

f frozen at x0, defined as

fx0
(x) = f(x0) for all x ∈ G.

The freezing extends to all of U(L) as

(fg)x0
:= fx0

gx0
for f, g ∈ L.

It is easy to verify that the freezing operation f 7→ fx0
satisfies the following

relations for all f, g ∈ L ≃ gG:

g ⊲ fx0
= 0 for all g ∈ gG (32)

(fx0
)x1

= fx0
(33)

(f ⊲ g)x0
= (fx0

⊲ g)x0
(34)

[f, g]x0
= [fx0

, gx0
]. (35)

In particular (32) implies that fx0
⊲ fx0

= 0, thus a frozen section is invariant
under parallel transport by itself. Equations (33)-(34) show that f 7→ fx0

is
projection onto the frozen sections tangent to f at x0, and (35) shows that the
torsion bracket is defined fiber-wise on the sections.

Hence the flow of a frozen section fx0
is a geodesic tangent to f at the point

x0. The concatenation exponential exp(f) models the exact flow of a geodesic
tangent to f :

Proposition 3.13. For all f ∈ L we have

exp(f)x0
= exp∗(fx0

), (36)

the action of the character exp(f) on G, defined in (31), is given as

exp(f) · x0 = exp
g
(f(x0)) · x0

and parallel transport (pullback) of any section A ∈ U(L) ≃ U(g)G along the
tangent geodesic to f at x0 is given as

(exp(f) ⊲ A) (x0) = A
(
exp

g
(f(x0)) · x0

)
.

Proof. Since fx0
∗ fx0

= fx0
fx0

+ fx0
⊲ fx0

= fx0
fx0

, we obtain (36). From (28)-
(29) it follows that the geodesic tangent to f in x0 is

exp(tfx0
) · x0 = exp

g
(tf(x0)) · x0.

The pullback formula follows similarly to the proof of Proposition 3.12.
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3.4 Vector fields and flows on Rn

The post-Lie algebra on a Lie group described in the previous section becomes
particularly simple in the euclidean case Rn. As a Lie algebra we have G = g =
R

n and exp
g
(f) = f . The canonical connection on R

n is given as

(
f i ∂

∂xi

)
⊲

(
gj

∂

∂xj

)
:= f i ∂g

j

∂xi
∂

∂xj
,

which is a flat connection with zero torsion [f, g] = 0, and hence defines a pre-Lie
algebra on the set of vector fields. In this case Proposition 3.13 becomes

Proposition 3.14. The action of the character exp(f) on Rn, defined in (31),
is

exp(f) · x0 = f(x0) + x0,

and parallel transport of a section A ∈ U(L) ≃ U(g)G is given as

(exp(f) ⊲ A) (x0) = A (f(x0) + x0) .

4 Numerical integration on post-Lie algebras

Lie group integrators generalize traditional numerical integrators of differential
equations from vector spaces to more general manifolds. Since the initial devel-
opments of these methods in the 1990s, it has been clear that two different Lie
algebras are important for their formulation and analysis. The standard formu-
lation of Lie group integrators is based on the full Lie algebra of all vector fields
on a Lie group and the sub-algebra of (right or left) invariant vector fields. The
algorithms are formulated by defining the operation of freezing a general vec-
tor field at a given point on the group, which means replacing a general vector
field by an invariant vector field tangent at the given point. Basic motions used
to formulate the methods are obtained by exponentiating this “frozen” vector
field. A problem with the standard formulation is that it is difficult to give an
abstract algebraic meaning to the operation of freezing a general vector field at
a point. It is not an operation that can be defined on an abstract post-Lie alge-
bra, without imposing additional structure. For this reason Lie group methods
and classical Runge–Kutta methods have so far always been formulated in a
concrete setting of vector fields on a manifold (or vector space).

In the present formulation, we follow a different but equivalent approach.
Recall that post-Lie algebras involve two Lie algebras, ḡ and g, where g is not a
sub-algebra of ḡ. The two are defined over the same set, with two different Lie
brackets and two different enveloping algebras. Hence we can define two different
exponential maps: with respect to the product in U(ḡ) and with respect to the
product in U(g). We have seen that in the case of vector fields on a Lie group,
exponentiation of a general vector field using the product in U(g) is equivalent
to computing the flow of a vector field frozen at a point, whereas the exponential
with respect to the product in U(ḡ) corresponds to following the exact flow of
the vector field.
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This reformulation provides a fresh and fruitful point of view. The algo-
rithms are formulated without the process of evaluating vector fields at a given
point, and without the freezing approximation. As a result the methods can
be abstracted to algorithms on pre- and post-Lie algebras. The evaluation at
a given point on a manifold reappears only when the abstract algorithm is in-
terpreted in the concrete setting of flows on manifolds. The formulation and
analysis of the methods, on the other hand, can be pursued entirely at an ab-
stract algebraic level, without involving the point-evaluation operation.

In the sequel we will formulate Runge–Kutta methods and Lie group inte-
grators abstractly on pre-Lie and post-Lie algebras. As a byproduct we present
a surprisingly short derivation of the classical Butcher order theory for Runge–
Kutta methods on pre-Lie algebras. We hope that this will pave the way for a
simplified exposition and analysis of general classes of Lie group integrators.

4.1 Integration on post-Lie algebras

We let L = (L, [·, ·], ⊲) denote a post-Lie algebra, with infinitesimal characters
c ⊂ U(L)∗, characters C ⊂ U(L)∗ and exponentials exp, exp∗ : c → C. We have
seen in the example of vector fields over a Lie group that the map f 7→ exp∗(f)
can be interpreted as the solution operator of a differential equation with vector
field f , whereas exp(f) is interpreted as the flow of a frozen vector field and
exp(f) ⊲ g is the parallel transport of g along a frozen vector field. The flow
and parallel transport along frozen vector fields, as well as the computation of
commutators [·, ·] in g, are assumed to be basic operations that can be computed
exactly. The basic approximation problem of Lie group integration can be stated
in a post-Lie algebra as follows:

Problem 4.1 (The fundamental problem of numerical integration). Given a
post-Lie algebra L, approximate the exponential exp∗ : c → C in terms of linear
combinations in L, the bracket [·, ·] on L, the exponential exp: c → C, products
of such exponentials, and parallel transport of the form exp(f) ⊲ g for f, g ∈ L.

If L is a post-Lie algebra, a solution to this approximation problem yields
a Lie group integration algorithm. If L is a pre-Lie algebra, then [·, ·] = 0 and
solutions of the approximation problem are classical integrators.

The simplest reasonable solution to this problem is Euler’s method, defined
as the approximation

Ψe(f) := exp(f).

For vector fields on a Lie group, this spells out more explicitly as

xn+1 = Ψe(hf) · xn = exp(hf) · xn = exp
g
(hf(xn)) · xn,

where h ∈ R is the stepsize, f ∈ gG a map from the Lie group G to the Lie
algebra g, and exp

g
: g → G denotes the classical Lie exponential. For vector

fields on Rn (pre-Lie case), this is the classical Euler method

xn+1 = Ψe(hf) · xn = exp(hf) · xn = xn + hf(xn),
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where f : Rn → Rn.
Since f ∗ f = ff + f ⊲ f , we find exp∗(f) − exp(f) = 1

2f ⊲ f + · · · . Thus,
with a stepsize h→ 0, we have Ψe(hf)− exp∗(hf) = O(h2), i.e. Eulers method
is a first order approximation. Runge–Kutta (RK) methods define higher order
approximations.

Definition 4.2 (Runge–Kutta method (RK)). An s-stage RK method ΨRK(f)
is defined in terms of s2 + s real coefficients {aij}

s
i,j=1, {bi}

s
i=1 as follows

Ki = exp

(
s∑

j=1

aijKj

)
⊲ f, i = 1, . . . , s,

ΨRK(f) = exp

(
s∑

j=1

bjKj

)
,

where f,Ki ∈ L and ΨRK(f) ∈ C ⊂ U(L)∗. If aij is a strictly lower triangular
matrix the method is called explicit, otherwise Ki are found by solving implicit
equations.

In the pre-Lie case of vector fields on Rn the methods xn+1 = ΨRK(hf) ·xn
become classical RK-methods:

Ki = hf

(
xn +

s∑

j=1

aijKj

)
, i = 1, . . . , s,

xn+1 = xn +

s∑

j=1

bjKj ,

Classical Runge–Kutta methods can obtain arbitrary high order, provided the
coefficients {aij}

s
i,j=1, {bi}

s
i=1 satisfy Butcher’s order conditions up to the given

order, see below.
In the general post-Lie setting the methods ΨRK are in general at most sec-

ond order exact, see [MK98]. There are several ways of obtaining higher order
methods in a general post-Lie algebra [MK98, OM99, CMO03]. As an example,
the RKMK class of methods [MK98] are of order p on arbitrary post-Lie alge-
bras, provided the coefficients satisfy the classical Butcher order conditions up
to order p.

Definition 4.3 (RKMK methods). We define f 7→ ΨRKMK(f) : c → C as:

for i = 1, . . . , s

Ui =
∑

j

aijKj

Ki = d exp−1Ui
(exp(Ui) ⊲ f)

end

ΨRKMK(f) := exp

(
∑

i

biKi

)
,
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where Ui,Ki ∈ c and where d exp−1 : c× c → c is the inverse differential of exp,
given as an infinite series with Bernoulli numbers Bk as coefficients

d exp−1U (V ) =

∞∑

k=0

Bk

k!
adkU (V ) = V −

1

2
[U, V ] +

1

12
[U, [U, V ]] + · · · .

The expansion of dexp−1 can be truncated to the order of the underlying RK
method.

4.2 Pre-Lie algebras and Butcher’s order theory

In this section L is a pre-Lie algebra, and U(L) = (S(g), conc, ⊲), where conc is
now the symmetric product, written as a commutative concatenation. We briefly
recall the basic definitions of B-series, arising from the general case of post-
Lie algebras and Lie–Butcher series discussed above in the special case where
[·, ·] ≡ 0. We then present a short outline of Butcher’s order theory for (classical)
Runge–Kutta methods [But63, But72] in the setting of pre-Lie algebras. We
remark that very recently B-series have been characterized geometrically as
a unique and universal Taylor expansion of families of local mappings which
preserve all affine symmetries between the affine spaces {Rn}∞n=1, [MMMKV14,
MKV13].

Due to the pre-Lie relation (7), the free pre-Lie algebra [CL01] is spanned
by non-planar rooted trees (where the ordering of the branches is neglected).
Let T denote the (infinite) alphabet of non-planar rooted trees

T =





, , , , , , , , . . .




,

and T = VecR(T ) the R-vector space spanned by finite linear combinations of
elements in T . The pre-Lie product ⊲ : T ⊗ T → T is defined in terms of the
grafting of rooted trees, e.g.

⊲ = + + = + 2 .

The free pre-Lie algebra (in one generator) is gF = {T , ⊲}.
Let F denote the set of forests, i.e. all finite words in letters from T , where

the ordering of the letters in a word is neglected. The empty word is I ∈ F .
We write F = VecR(F ) for the R-vector space spanned by elements in F . With
the symmetric product of forests we have F = S(T ) = U(gF ). The pre-Lie
product ⊲ extends uniquely from T to F . Note that F and T are in natural 1–1
correspondence via the operations of adding and removing roots, i.e., B+ : F →
T and B− : T → F .
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Let F∗ = Lin(F ,R) be the dual space of F , consisting of all infinite R-linear
combinations of trees and forests. The dual pairing 〈·, ·〉 : F∗×F → R is defined
for ω, ω′ ∈ F such that

〈ω, ω′〉 =

{
σ(ω) if ω = ω′

0 else,

where the integer σ(ω) counts the size of the symmetry group of the forest ω.
It is defined by

σ(I) = 1,

σ(t1t2 · · · tk) = σ(t1) · · ·σ(tk)µ1!µ2! · · ·µk!, for all t1, . . . , tk ∈ T ,

σ(ω ⊲ ) = σ(ω), for all ω ∈ F ,

where µ1, µ2, . . . , µk count the number of equal trees for each of the different
shapes among t1, . . . , tk. Thus the symmetry factor counts the number of planar
forests which are identified by the pre-Lie relation, see [MKW08] for a detailed
discussion of this factor.

We define a B-series as an element α ∈ F∗. It can be represented as an
infinite series

α =
∑

ω∈F

〈α, ω〉

σ(ω)
ω.

In this case the infinitesimal characters and characters are defined as:

Definition 4.4 (Character). A B-series α ∈ C ⊂ F∗ is a character if and only
if 〈α, I〉 = 1 and for all ω, ω′ ∈ F

〈α, ωω′〉 = 〈α, ω〉〈α, ω′〉.

Definition 4.5 (Infinitesimal character). A B-series α ∈ c ⊂ F∗ is an in-
finitesimal character if and only if 〈α, I〉 = 0 and for all ω, ω′ ∈ F\{I}

〈α, ωω′〉 = 0.

Note 4.6. Infinitesimal characters are expressible in terms of an infinite series
in trees

α ∈ c ⇔ α =
∑

τ∈T

〈α, τ〉

σ(τ)
τ,

thus c = T ∗, the dual of T . Most authors reserve the term “B-series” for the
infinitesimal characters. However, in that case the exponentials do not map B-
series to B-series, and the distinction between the infinitesimal (vector fields)
and the finite (flows and numerical methods) becomes obscured. In fact, several
results in the literature actually exploit character properties of B-series, often
without naming them as such, while still using the term B-series. Consequently,
we choose to extend the definition of B-series to all of F∗.
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We will derive the classical order conditions of Runge–Kutta methods due
to Butcher [But63, But72]. To simplify the discussion, we define operations on
s-fold tuples. Let Fs := F ×F × · · · ×F and define cs, Cs, Ts and F∗s similarly.
Define the s-fold exponential exps : cs → F∗s , s-fold pairing 〈·, ·〉s : F

∗

s × F →
R

s and s-fold grafting ⊲s : F
∗

s × F → F∗s componentwise, that is, for K :=
(K1, . . . ,Ks) ∈ F∗s

exps(K) = exps((K1, . . . ,Ks)) := (exp(K1), . . . , exp(Ks))

〈K, ω〉s = 〈(K1, . . . ,Ks), ω〉s := (〈K1, ω〉, . . . , 〈Ks, ω〉)

K ⊲s ω = (K1, . . . ,Ks) ⊲s ω := (K1 ⊲ ω, . . . ,Ks ⊲ ω).

For a square matrix A = (aij) ∈ Rs×s and a line vector b = (bi) ∈ R1×s we
define linear maps A : F∗s → F∗s and b : F∗s → F∗ as

AK = A (K1, . . . ,Ks) :=




s∑

j=1

a1jKj ,

s∑

j=1

a2jKj , . . . ,

s∑

j=1

asjKj





bK = b (K1, . . . ,Ks) :=

s∑

j=1

bjKj .

We now define Runge–Kutta (RK) methods using this algebraic setting.

Definition 4.7 (Runge–Kutta method). A RK method applied to ∈ c is

K = exps(AK) ⊲s

ΨRK( ) = exp (bK) ,

where K ∈ cs.

This yields a map ΨRK : c → C, and in particular the Runge–Kutta character
ΨRK( ) ∈ C. We want to compare the RK-character with the exact solution
character exp∗( ) ∈ C, explicitly given as

exp∗( ) =

∞∑

k=0

1

k!
k∗ = I+ +

1

2
∗ +

1

6
∗ ∗ + · · ·

= I+ +
1

2
( + ) +

1

6



 + 3 + +



+ · · · ,

Lemma 4.8. The exact solution character exp∗( ) ∈ C is given as

〈exp∗( ), τ〉 =
1

τ !
for all τ ∈ T , (37)

where τ ! denotes the tree factorial

τ ! = |τ |τ1!τ2! · · · τp! for all τ = B+(τ1τ2 · · · τp) ∈ T .

20



Proof. We prove this by induction, using ∗ = + ⊲ and the fact that
exp∗( ) is a character. Assuming (37) holds for all |τ ′| < k, we find for |τ | = k,
τ = B+(τ1 · · · τp) that

〈exp∗( ), τ〉 =
1

k!
〈 k∗, τ〉 =

1

k!
〈 (k−1)∗ ∗ , τ〉 =

1

k!
〈 (k−1)∗ ⊲ , τ〉

=
1

k

1

(k − 1)!
〈 (k−1)∗, τ1 · · · τp〉 =

1

k
〈exp∗( ), τ1 · · · τp〉 =

1

k

1

τ1!
· · ·

1

τp!
.

Together with 〈exp∗( ), I〉 = 1, the result follows.

Lemma 4.9. The Runge–Kutta character is given by the recursions

〈ΨRK( ), τ〉 = b〈K, τ〉s (38)

〈K, 〉s = 1 := (1, 1, . . . , 1)T ∈ R
s (39)

〈K, B+(τ1τ2 · · · τp)〉s = A〈K, τ1〉s ·A〈K, τ2〉s · · ·A〈K, τp〉s, (40)

where b : Rs → R, A : Rs → Rs and · : Rs×Rs → Rs denotes pointwise product
of vectors (known as Hadamard or Schur product).

Proof. From the definition of the s-fold pairing we find

〈bK, τ〉 = b〈K, τ〉s

〈AK, τ〉s = A〈K, τ〉s.

We also verify that an s-fold character C = (C1, . . . , Cs) ∈ Cs satisfies

〈C, τ1τ2 · · · τp〉s = 〈C, τ1〉s · 〈C, τ2〉s · · · 〈C, τp〉s,

where · : Rs × Rs → Rs denotes pointwise product of vectors in Rs. For an
infinitesimal character K ∈ c we have the single exponential 〈exp(K), I〉 = 1
and 〈exp(K), τ〉 = 〈K, τ〉. Thus for s-fold exponentials we have

〈exps(K), I〉s = 1

〈exps(K), τ〉s = 〈K, τ〉s.

Since 〈exp(K) ⊲ ,B+(τ1τ2 · · · τp)〉 = 〈exp(K), τ1τ2 · · · τp〉, we find

〈K, B+(τ1τ2 · · · τp)〉s = 〈exps(AK) ⊲s , B+(τ1τ2 · · · τp)〉s = 〈exps(AK), τ1τ2 · · · τp〉s

= 〈exps(AK), τ1〉s · · · 〈exps(AK), τp〉s = A〈K, τ1〉s · · ·A〈K, τp〉s,

establishing (40). Equations (38)–(39) are verified in a similar way.

We have established a classical result in a pre-Lie setting:

21



Theorem 4.10. A Runge–Kutta method in a pre-Lie algebra has order p if for
all τ ∈ T such that |τ | ≤ p we have

〈ΨRK( ), τ〉 =
1

τ !
,

where ΨRK( ) is given by (38)–(40).

The conditions up to order 4 are (in compact and componentwise notation):

τ Compact Componentwise
b1 = 1

∑
i bi = 1

bA1 = 1
2

∑
ij biai,j =

1
2

b(A1 ·A1) = 1
3

∑
ijk biaijaik = 1

3

bA21 = 1
6

∑
ijk biaijajk = 1

6

b(A1 ·A1 ·A1) = 1
4

∑
ijkl biaijaikail =

1
4

b(A1 · A21) = 1
8

∑
ijkl biaijaikakl =

1
8

bA(A1 · A1) = 1
12

∑
ijkl biaijajkajl =

1
12

bA31 = 1
24

∑
ijkl biaijajkakl =

1
24

4.3 Order conditions for RKMK on post-Lie algebras

The order conditions for Lie group methods are extensively studied in the liter-
ature [MK98, OM99, CMO03]. The theory can be formulated abstractly in the
present post-Lie setting. However, we will not give a detailed treatment of this
here, but restrict ourselves to a proof of the order conditions for the RKMK
methods in Definition 4.3, following the approach of [MK99] in a post-Lie set-
ting.

Theorem 4.11. Let f ∈ L, where L is a post-Lie algebra. If {ai,j}
s
i,j=1 and

{bj}
s
j=1 satisfy the classical RK order conditions of Theorem 4.10 up to order

p, then the RKMK method in Definition 4.3 is also of order p, satisfying

ΨRKMK(hf)− exp∗(hf) = O(hp+1). (41)

Proof. Let c and C be the infinitesimal characters and characters of the Hopf
algebra of L. Given f ∈ c, define a vector field F : c → c as

F (θ) = d exp−1θ (exp(θ) ⊲ f).

According to Proposition 3.10 we have exp∗(f) = exp(θ(1)), where θ(t) ∈ c

satisfies the differential equation θ(0) = 0, θ′(t) = F (θ(t)). Note that c is
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a vector space, and is therefore also naturally a pre-Lie algebra, and we can
integrate the differential equation using one step of a classical s-stage RK method
of order p, with stepsize h = 1, starting at θ(0) = 0. This yields

Ui =

s∑

j=1

aijKj

Ki = F (Ui) = d exp−1Ui
(exp(Ui) ⊲ f), i = 1, . . . , s,

θ(1) ≈
s∑

j=1

bjKj,

which is the RKMK scheme. The verification of the order (41) is now straight-
forward.
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